CS480/680: Introduction to Machine Learning Lec 01: Perceptron

Yaoliang Yu

FACULTY OF MATHEMATICS DAVID R. CHERITON SCHOOL OF COMPUTER SCIENCE

May 08, 2024

example results

What a Dataset Looks Like

$\mathbb{R}^{d} \ni\left\{\begin{array}{cccccc\|cc}\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & \mathrm{x}_{4} & \cdots & \mathrm{x}_{n} & \mathrm{x} & \mathrm{x}^{\prime} \\ \hline 0 & 1 & 0 & 1 & \cdots & 1 & 1 & 0.9 \\ 0 & 0 & 1 & 1 & \cdots & 0 & 1 & 1.1 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 1 & 0 & 1 & 0 & \cdots & 1 & 1 & -0.1 \\ \hline \mathrm{y} & + & + & - & + & \cdots & - & ? \\ \hline\end{array}\right.$

- Each column is a data point: n in total; each has d features
- Bottom y is the label vector; binary in this case

0 x and x are test samples whose labels need to be predicted

What a Dataset Looks Like

| x_{1} | x_{2} | x_{3} | x_{4} | \cdots | x_{n} | x | x^{\prime} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbb{R}^{d} \ni\left\{\begin{array}{ccccccc}0 & 1 & 0 & 1 & \cdots & 1 & 1 \\ 0 & 0 & 1 & 1 & \cdots & 0 & 1 \\ 0.9 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 0 & 1 & 0 & \cdots & 1 & 1 \\ \hline \mathrm{y} & + & + & - & + & \cdots & - \\ \hline\end{array}\right.$ | | | | | | | |

- Each column is a data point: n in total; each has d features
- Bottom y is the label vector; binary in this case
- x and x^{\prime} are test samples whose labels need to be predicted

What a Dataset Looks Like

x_{1}	x_{2}	x_{3}	x_{4}	\cdots	x_{n}	x	x^{\prime}	
0	1	0	1	\cdots	1	1	0.9	
0	0	1	1	\cdots	0	1	1.1	
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots	
1	0	1	0	\cdots	1	1	-0.1	
y	+	+	-	+	\cdots	-	$?$	$?!$

- Each column is a data point: n in total; each has d features
- Bottom y is the label vector; binary in this case
- X and x^{\prime} are test samples whose labels need to be predicted

What a Dataset Looks Like

	x_{1}	x_{2}	x_{3}	X_{4}	x_{n}	x	x^{\prime}
$\mathbb{R}^{d} \ni\{$	0	1	0	1	1	1	0.9
	0	0	1	1	0	1	1.1
	:			:	:	:	:
	1	0	1	0	1	1	-0.1
y	+	+	-	+	-	?	?!

- Each column is a data point: n in total; each has d features
- Bottom y is the label vector; binary in this case
- x and x^{\prime} are test samples whose labels need to be predicted

Spam Filtering Example

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
and	1	0	0	1	1	1
viagra	1	0	1	0	0	0
the	0	1	1	0	1	1
of	1	1	0	1	0	1
nigeria	1	0	0	0	1	0
y	+	-	+	-	+	-

Spam Filtering Example

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
and	1	0	0	1	1	1
viagra	1	0	1	0	0	0
the	0	1	1	0	1	1
of	1	1	0	1	0	1
nigeria	1	0	0	0	1	0
y	+	-	+	-	+	-

- Training set: $X=\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right] \in \mathbb{R}^{d \times n}, \quad \mathrm{y}=\left[\mathrm{y}_{1}, \ldots, \mathrm{y}_{n}\right] \in\{ \pm 1\}^{n}$ each column of X is an email $x_{i} \in \mathbb{R}^{d}$, each with d (binary) features each entry in y is a label $\mathrm{y}_{i} \in\{ \pm 1\}$, indicating spam or not

Spam Filtering Example

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
and	1	0	0	1	1	1
viagra	1	0	1	0	0	0
the	0	1	1	0	1	1
of	1	1	0	1	0	1
nigeria	1	0	0	0	1	0
y	+	-	+	-	+	-

- Training set: $X=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathbb{R}^{d \times n}, \quad \mathrm{y}=\left[\mathrm{y}_{1}, \ldots, \mathrm{y}_{n}\right] \in\{ \pm 1\}^{n}$
- each column of X is an email $\mathbf{x}_{i} \in \mathbb{R}^{d}$, each with d (binary) features each entry in y is a label $y_{i} \in\{ \pm 1\}$, indicating spam or not

Spam Filtering Example

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
and	1	0	0	1	1	1
viagra	1	0	1	0	0	0
the	0	1	1	0	1	1
of	1	1	0	1	0	1
nigeria	1	0	0	0	1	0
y	+	-	+	-	+	-

- Training set: $X=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathbb{R}^{d \times n}, \quad \mathrm{y}=\left[\mathrm{y}_{1}, \ldots, \mathrm{y}_{n}\right] \in\{ \pm 1\}^{n}$
- each column of X is an email $\mathbf{x}_{i} \in \mathbb{R}^{d}$, each with d (binary) features
- each entry in y is a label $\mathrm{y}_{i} \in\{ \pm 1\}$, indicating spam or not

Spam Filtering Example

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
and	1	0	0	1	1	1
viagra	1	0	1	0	0	0
the	0	1	1	0	1	1
of	1	1	0	1	0	1
nigeria	1	0	0	0	1	0
y	+	-	+	-	+	-

- Training set: $X=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathbb{R}^{d \times n}, \quad \mathrm{y}=\left[\mathrm{y}_{1}, \ldots, \mathrm{y}_{n}\right] \in\{ \pm 1\}^{n}$
- each column of X is an email $\mathbf{x}_{i} \in \mathbb{R}^{d}$, each with d (binary) features
- each entry in y is a label $\mathrm{y}_{i} \in\{ \pm 1\}$, indicating spam or not
- Bag-of-words representation of text (email)

Batch vs. Online

- Batch learning
- Online learning

Batch vs. Online

- Batch learning
interested in performance on test set
training set (X, y) is just a means
statistical assumption on X and X
- Online learning

Batch vs. Online

- Batch learning
- interested in performance on test set X^{\prime}
training set (X, y) is just a means
statistical assumption on X and X
- Online learning

Batch vs. Online

- Batch learning
- interested in performance on test set X^{\prime}
- training set (X, y) is just a means
statistical assumption on X and X
- Online learning

Batch vs. Online

- Batch learning
- interested in performance on test set X^{\prime}
- training set (X, y) is just a means
- statistical assumption on X and X^{\prime}
- Online learning

Batch vs. Online

- Batch learning
- interested in performance on test set X^{\prime}
- training set (X, y) is just a means
- statistical assumption on X and X^{\prime}
- Online learning

```
data comes one by one (streaming)
need to predict y before knowing its true value
interested in making as few mistakes as possible
```


Batch vs. Online

- Batch learning
- interested in performance on test set X^{\prime}
- training set (X, y) is just a means
- statistical assumption on X and X^{\prime}
- Online learning
- data comes one by one (streaming)
need to predict y before knowing its true value
interested in making as few mistakes as possible

Batch vs. Online

- Batch learning
- interested in performance on test set X^{\prime}
- training set (X, y) is just a means
- statistical assumption on X and X^{\prime}
- Online learning
- data comes one by one (streaming)
- need to predict y before knowing its true value
interested in making as few mistakes as possible

Batch vs. Online

- Batch learning
- interested in performance on test set X^{\prime}
- training set (X, y) is just a means
- statistical assumption on X and X^{\prime}
- Online learning
- data comes one by one (streaming)
- need to predict y before knowing its true value
- interested in making as few mistakes as possible

Batch vs. Online

- Batch learning
- interested in performance on test set X^{\prime}
- training set (X, y) is just a means
- statistical assumption on X and X^{\prime}
- Online learning
- data comes one by one (streaming)
- need to predict y before knowing its true value
- interested in making as few mistakes as possible
- compare against some baseline

Thought Experiment

- Repeat the following game:
- How many mistakes in the worst-case?
- Predict first, reveal next:

Thought Experiment

- Repeat the following game:
observe instance x
predict its label \hat{y}_{2} (in whatever way you like)
reveal the true label y
suffer a mistake if \hat{y}
- How many mistakes in the worst-case?
- Predict first, reveal next

Thought Experiment

- Repeat the following game:
- observe instance \mathbf{x}_{i}
predict its label \hat{y}_{2} (in whatever way you like)
reveal the true label y
suffer a mistake if
- How many mistakes in the worst-case?
- Predict first, reveal next

Thought Experiment

- Repeat the following game:
- observe instance \mathbf{x}_{i}
- predict its label \hat{y}_{i} (in whatever way you like)
reveal the true label y
suffer a mistake if $\hat{y}_{i} \neq y$
- How many mistakes in the worst-case?
- Predict first, reveal next

Thought Experiment

- Repeat the following game:
- observe instance \mathbf{x}_{i}
- predict its label \hat{y}_{i} (in whatever way you like)
- reveal the true label y_{i}
- How many mistakes in the worst-case?
- Predict first, reveal next

Thought Experiment

- Repeat the following game:
- observe instance \mathbf{x}_{i}
- predict its label \hat{y}_{i} (in whatever way you like)
- reveal the true label y_{i}
- suffer a mistake if $\hat{\mathrm{y}}_{i} \neq \mathrm{y}_{i}$
- How many mistakes in the worst-case?
- Predict first, reveal next

Thought Experiment

- Repeat the following game:
- observe instance \mathbf{x}_{i}
- predict its label \hat{y}_{i} (in whatever way you like)
- reveal the true label y_{i}
- suffer a mistake if $\hat{\mathrm{y}}_{i} \neq \mathrm{y}_{i}$
- How many mistakes in the worst-case?
- Predict first, reveal next

Thought Experiment

- Repeat the following game:
- observe instance \mathbf{x}_{i}
- predict its label \hat{y}_{i} (in whatever way you like)
- reveal the true label y_{i}
- suffer a mistake if $\hat{\mathrm{y}}_{i} \neq \mathrm{y}_{i}$
- How many mistakes in the worst-case?
- Predict first, reveal next: no peeking into the future!

Linear Threshold Function

- Equivalently, $\exists \mathrm{w} \in \mathbb{R}^{d}$ such that $f(\mathrm{x})=\langle\mathrm{x}, \mathrm{w}\rangle:=\sum_{i} x_{j} w$ - Affine function: $\beta=1-\alpha$, or equivalently $\exists \mathrm{w} \in \mathbb{R}^{d}, b \in \mathbb{R}$ such that
- Combined together:

Linear Threshold Function

- Linear function: $\forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{x}, \mathbf{z} \in \mathbb{R}^{d}$,

$$
f(\alpha \mathbf{x}+\beta \mathbf{z})=\alpha \cdot f(\mathbf{x})+\beta \cdot f(\mathbf{z})
$$

- Equivalently, $\exists \mathrm{w} \in \mathbb{R}^{d}$ such that
- Affine function: $\beta=1-\alpha$, or equivalently $\exists \mathrm{w} \in \mathbb{R}^{d}, b \in \mathbb{R}$ such that
- Combined together:

Linear Threshold Function

- Linear function: $\forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{x}, \mathbf{z} \in \mathbb{R}^{d}$,

$$
f(\alpha \mathbf{x}+\beta \mathbf{z})=\alpha \cdot f(\mathbf{x})+\beta \cdot f(\mathbf{z})
$$

- Equivalently, $\exists \mathrm{w} \in \mathbb{R}^{d}$ such that $f(\mathrm{x})=\langle\mathrm{x}, \mathrm{w}\rangle:=\sum_{j} x_{j} w_{j}$
- Combined together:
or equivalently

Linear Threshold Function

- Linear function: $\forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{x}, \mathbf{z} \in \mathbb{R}^{d}$,

$$
f(\alpha \mathbf{x}+\beta \mathbf{z})=\alpha \cdot f(\mathbf{x})+\beta \cdot f(\mathbf{z})
$$

- Equivalently, $\exists \mathrm{w} \in \mathbb{R}^{d}$ such that $f(\mathrm{x})=\langle\mathrm{x}, \mathrm{w}\rangle:=\sum_{j} x_{j} w_{j}$
- Affine function: $\beta=1-\alpha$, or equivalently $\exists \mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}$ such that $f(\mathrm{x})=\langle\mathrm{x}, \mathrm{w}\rangle+b$
- Combined together:

Linear Threshold Function

- Linear function: $\forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{x}, \mathbf{z} \in \mathbb{R}^{d}$,

$$
f(\alpha \mathbf{x}+\beta \mathbf{z})=\alpha \cdot f(\mathbf{x})+\beta \cdot f(\mathbf{z})
$$

- Equivalently, $\exists \mathrm{w} \in \mathbb{R}^{d}$ such that $f(\mathrm{x})=\langle\mathrm{x}, \mathrm{w}\rangle:=\sum_{j} x_{j} w_{j}$
- Affine function: $\beta=1-\alpha$, or equivalently $\exists \mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}$ such that $f(\mathrm{x})=\langle\mathrm{x}, \mathrm{w}\rangle+b$
- Thresholding: $\operatorname{sign}(t)= \begin{cases}1, & t>0 \\ -1, & t<0 \\ ?, & t=0\end{cases}$
- Combined together:

Linear Threshold Function

- Linear function: $\forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{x}, \mathbf{z} \in \mathbb{R}^{d}$,

$$
f(\alpha \mathbf{x}+\beta \mathbf{z})=\alpha \cdot f(\mathbf{x})+\beta \cdot f(\mathbf{z})
$$

- Equivalently, $\exists \mathrm{w} \in \mathbb{R}^{d}$ such that $f(\mathbf{x})=\langle\mathbf{x}, \mathbf{w}\rangle:=\sum_{j} x_{j} w_{j}$
- Affine function: $\beta=1-\alpha$, or equivalently $\exists \mathrm{w} \in \mathbb{R}^{d}, b \in \mathbb{R}$ such that $f(\mathrm{x})=\langle\mathrm{x}, \mathrm{w}\rangle+b$
- Thresholding: $\operatorname{sign}(t)= \begin{cases}1, & t>0 \\ -1, & t<0 \\ ?, & t=0\end{cases}$
- Combined together: $\hat{y}=\operatorname{sign}(\underbrace{\langle\mathbf{x}, \mathbf{w}\rangle+b}_{\hat{y}})= \begin{cases}1, & \hat{y}>0 \\ -1, & \hat{y}<0 \\ ?, & \hat{y}=0\end{cases}$

Geometrically

Biological Inspiration

[^0]

OR Dataset

$$
\begin{array}{ccccc}
& & & \\
\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & \mathrm{x}_{4} \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
\mathrm{y} & - & + & + & + \\
\hline
\end{array} \quad \begin{gathered}
1.5 \\
\hline
\end{gathered}
$$

OR Dataset

	x_{1}	x_{2}	x_{3}
0	1	0	1
	x_{4}		
0	0	1	1
y	-	+	+

OR Dataset

OR Dataset

	x_{1}	x_{2}	x_{3}
0	1	x_{4}	
	0	0	1
y	-	+	+

OR Dataset

$\left.\begin{array}{cccc}\hline & \mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} \\ \hline 0 & 1 & 0 & 1 \\ & \mathrm{x}_{4} \\ \hline \mathrm{y} & - & 0 & 1\end{array}\right) 1$.

The Early Hype in AI...

NWW NAYY DEVIOR LBARIS B B DONG

Psychologist Shows Embryo of Computer Designed to Read and Grow Wiser

WASHINGTON, July 7 (UPI) -The Navy revealed the em bryo of an electronic compute today that it expects will be able to walk, talk, see, write reproduce itself and be conscious of its existence.
The embryo-the Weather Bureau's $\$ 2,000,000$ differentiat petween right and left after fifty attempts in the Navy' The service said it would us this principle to build the first of its Perceptron thinking maand write. It is expected to b and write. It is expected at cost of $\$ 100,000$. Digner of the Porceptron, do signer of the Perceptron, conaucted the demonstration. It
said the machine would be th said the machine woula be th
first device to think as the hufirst device to think as the hu-
man brain. As do human be man brain. As do human be takes at first, but will grow
wiser as it gains experience, $h t$ wiser
said.
Dr. Rosenblatt, a researct psychologist at the Cornel Aeronautical Laboratory, Buf
falo, said Perceptrons might b falo, said Perceptrons might be
fired to the planets as mechani irea to the planets
cal space explorers.

Without Fuman Controls
The Navy said the perceptron would be the first non-living mechanism "capable of receiving, recogniving and identifying its surroundings without any human training or control."
The "brain" is designed to remember images and information it has perceived itself. Ordinary computers remember only what is fed into them on punch cards or magnetic tape.
Later Perceptrons will be able to recognize people and call out their names and instantly translate speech in one language to speech or writing in another language, it was predicted.
Mr. Rosenblatt said in principle it would be possible to build brains that could reproauce themselves on an assembly line and which would be conscious of their existence.
In today's demonstration, the "704" was fed two cards, one with squares marked on the left side and the other with squares on the right side.

Learng by Doing

In the first fifty trials, the machine made no distinction between them. It then started registering a "Q" for the left squares and " O " for the right squares.

Dr. Rosenblatt said he could explain why the machine learned only in highly technical terms. But he said the computer had undergone a "self-induced change in the wiring diagram."

The first Perceptron will have about 1,000 electronic "association cells" recelving electrical impulses from an eyelike scanning device with 400 photo-cells. The human brain has $10,000,000,000$ responsive cells, including $100,000,000$ connections with the eyes.

...due to Perceptron

FIG. 1 - Organization of a biological brain. (Red areas indicate active cells, responding to the letter X .)

Mosaic of
Sensory
Points

Projection area (In some models)

Association System
(A-units)
Response
Units Output Signal

FIG. 2 - Organization of a perceptron.

Frank Rosenblatt (1928-1971)

Algorithm 1: Perceptron

Input: Dataset $\mathcal{D}=\left\{\left(\mathrm{x}_{i}, \mathrm{y}_{i}\right) \in \mathbb{R}^{d} \times\{ \pm 1\}: i=1, \ldots, n \int\right.$, initialization $\mathrm{w} \in \mathbb{R}^{d}$ and $b \in \mathbb{R}$, threshold $\delta \geq 0$
Output: approximate solution w and b
1 for $t=1,2, \ldots$ do
2 receive index $I_{t} \in\{1, \ldots, n\} \quad / / I_{t}$ can be random

```
if }\mp@subsup{\textrm{y}}{\mp@subsup{I}{t}{}}{}(\langle\mp@subsup{\mathbf{x}}{\mp@subsup{I}{t}{}}{},\mathbf{w}\rangle+b)\leq\delta the
```

 \(\mathbf{W} \leftarrow \mathbf{W}+\mathrm{y}_{I_{t}} \mathbf{x}_{I_{t}} \quad / /\) update after a 'mistake"
 - Typically
and
update: "if it ain't broke, don't fix it'

Algorithm 2: Perceptron

Input: Dataset $\mathcal{D}=\left\{\left(\mathrm{x}_{i}, \mathrm{y}_{i}\right) \in \mathbb{R}^{d} \times\{ \pm 1\}: i=1, \ldots, n \int\right.$, initialization $\mathrm{w} \in \mathbb{R}^{d}$ and $b \in \mathbb{R}$, threshold $\delta \geq 0$
Output: approximate solution w and b
1 for $t=1,2, \ldots$ do

- Typically $\delta=0$ and $w_{0}=0, b=0$
- Lazy update: 'if it ain't broke, don't fix it'

[^1]
Algorithm 3: Perceptron

Input: Dataset $\mathcal{D}=\left\{\left(\mathrm{x}_{i}, \mathrm{y}_{i}\right) \in \mathbb{R}^{d} \times\{ \pm 1\}: i=1, \ldots, n \int\right.$, initialization $\mathrm{w} \in \mathbb{R}^{d}$ and $b \in \mathbb{R}$, threshold $\delta \geq 0$
Output: approximate solution w and b
1 for $t=1,2, \ldots$ do
2 receive index $I_{t} \in\{1, \ldots, n\} \quad / / I_{t}$ can be random

```
if }\mp@subsup{\textrm{y}}{\mp@subsup{I}{t}{}}{}(\langle\mp@subsup{\textrm{x}}{\mp@subsup{I}{t}{}}{},\textrm{w}\rangle+b)\leq\delta\mathrm{ then
```

 \(\mathrm{W} \leftarrow \mathrm{W}+\mathrm{y}_{I_{t}} \mathrm{x}_{I_{t}} \quad / /\) update after a "mistake"
 - Typically $\delta=0$ and $w_{0}=0, b=0$
$-\mathrm{y} \hat{y}>0$ vs. $\mathrm{y} \hat{y}<0$ vs. $\mathrm{y} \hat{y}=0$, where $\hat{y}=\langle\mathrm{x}, \mathrm{w}\rangle+b$
update: 'if it ain't broke, don't fix it'

[^2]
Algorithm 4: Perceptron

Input: Dataset $\mathcal{D}=\gamma\left(\mathrm{x}_{i}, \mathrm{y}_{i}\right) \in \mathbb{R}^{d} \times\{ \pm 1\}: i=1, \ldots, n \int$, initialization $\mathrm{w} \in \mathbb{R}^{d}$ and $b \in \mathbb{R}$, threshold $\delta \geq 0$
Output: approximate solution w and b
1 for $t=1,2, \ldots$ do
2 receive index $I_{t} \in\{1, \ldots, n\} \quad / / I_{t}$ can be random

```
if }\mp@subsup{\textrm{y}}{\mp@subsup{I}{t}{}}{}(\langle\mp@subsup{\textrm{x}}{\mp@subsup{I}{t}{}}{},\textrm{w}\rangle+b)\leq\delta the
```

 \(\mathrm{W} \leftarrow \mathrm{W}+\mathrm{y}_{I_{t}} \mathrm{X}_{I_{t}} \quad\) // update after a "mistake"
 - Typically $\delta=0$ and $w_{0}=0, b=0$
- $\mathrm{y} \hat{y}>0$ vs. $\mathrm{y} \hat{y}<0$ vs. $\mathrm{y} \hat{y}=0$, where $\hat{y}=\langle\mathrm{x}, \mathrm{w}\rangle+b$
- Lazy update: "if it ain't broke, don't fix it"

[^3]
Perceptron as an Optimization Problem

$$
\text { find } \mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R} \text { such that } \forall i, \mathrm{y}_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right)>0
$$

- Perceptron solves the above
problem!

converges faster if the problem is "easier"

- Key insight whenever a mistake happens:

Perceptron as an Optimization Problem

$$
\text { find } \mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R} \text { such that } \forall i, \mathrm{y}_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right)>0
$$

- Perceptron solves the above optimization problem!
it is iterative: going through the data one by one

```
t converges faster if the problem is "easier"
```

- Key insight whenever a mistake happens:

Perceptron as an Optimization Problem

$$
\text { find } \mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R} \text { such that } \forall i, \mathrm{y}_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right)>0
$$

- Perceptron solves the above optimization problem!
- it is iterative: going through the data one by one

```
it converges faster if the problem is "easier'
```

- Key insight whenever a mistake happens:

Perceptron as an Optimization Problem

$$
\text { find } \mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R} \text { such that } \forall i, \mathrm{y}_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right)>0
$$

- Perceptron solves the above optimization problem!
- it is iterative: going through the data one by one
- it converges faster if the problem is "easier"
- Key insight whenever a mistake happens:

Perceptron as an Optimization Problem

$$
\text { find } \mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R} \text { such that } \forall i, \mathrm{y}_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right)>0
$$

- Perceptron solves the above optimization problem!
- it is iterative: going through the data one by one
- it converges faster if the problem is "easier"
- it behaves benignly even if no solution exists
- Key insight whenever a mistake happens:

Perceptron as an Optimization Problem

$$
\text { find } \mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R} \text { such that } \forall i, \mathrm{y}_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right)>0
$$

- Perceptron solves the above optimization problem!
- it is iterative: going through the data one by one
- it converges faster if the problem is "easier"
- it behaves benignly even if no solution exists
- Key insight whenever a mistake happens:

$$
\begin{aligned}
\mathrm{y}\left[\left\langle\mathbf{x}, \mathbf{w}_{k+1}\right\rangle+b_{k+1}\right] & =\mathrm{y}\left[\left\langle\mathbf{x}, \mathbf{w}_{k}+\mathbf{y} \mathbf{x}\right\rangle+b_{k}+\mathrm{y}\right] \\
& =\mathrm{y}\left[\left\langle\mathbf{x}, \mathbf{w}_{k}\right\rangle+b_{k}\right]+\|\mathbf{x}\|_{2}^{2}+1
\end{aligned}
$$

Does it work?

where $\operatorname{sign}(0)$ is undefined (e.g., always counted as a mistake).

Does it work?

where $\operatorname{sign}(0)$ is undefined (e.g., always counted as a mistake).

Does it work?

where $\operatorname{sign}(0)$ is undefined (e.g., always counted as a mistake).

Does it work?

where $\operatorname{sign}(0)$ is undefined (e.g., always counted as a mistake).

Does it work?

where $\operatorname{sign}(0)$ is undefined (e.g., always counted as a mistake).

$$
\mathbf{w}=[1,0], \quad b=0, \quad \hat{\mathbf{y}}=\operatorname{sign}(\langle\mathbf{x}, \mathbf{w}\rangle+b),
$$

where $\operatorname{sign}(0)$ is undefined (e.g., always counted as a mistake).

$$
\mathbf{w}=[1,0], \quad b=0, \quad \hat{\mathbf{y}}=\operatorname{sign}(\langle\mathbf{x}, \mathbf{w}\rangle+b),
$$

where $\operatorname{sign}(0)$ is undefined (e.g., always counted as a mistake).

where $\operatorname{sign}(0)$ is undefined (e.g., always counted as a mistake).

$$
\mathbf{w}=[1,0], \quad b=-1, \quad \hat{\mathbf{y}}=\operatorname{sign}(\langle\mathbf{x}, \mathbf{w}\rangle+b),
$$

where $\operatorname{sign}(0)$ is undefined (e.g., always counted as a mistake).

where $\operatorname{sign}(0)$ is undefined (e.g., always counted as a mistake).

where $\operatorname{sign}(0)$ is undefined (e.g., always counted as a mistake).

where $\operatorname{sign}(0)$ is undefined (e.g., always counted as a mistake).

where $\operatorname{sign}(0)$ is undefined (e.g., always counted as a mistake).

where $\operatorname{sign}(0)$ is undefined (e.g., always counted as a mistake).

$$
\mathbf{w}=[2,1], \quad b=0, \quad \hat{\mathbf{y}}=\operatorname{sign}(\langle\mathbf{x}, \mathbf{w}\rangle+b)
$$

where $\operatorname{sign}(0)$ is undefined (e.g., always counted as a mistake).

where $\operatorname{sign}(0)$ is undefined (e.g., always counted as a mistake).

where $\operatorname{sign}(0)$ is undefined (e.g., always counted as a mistake).

$$
\mathbf{w}=[2,2], \quad b=0, \quad \hat{\mathbf{y}}=\operatorname{sign}(\langle\mathbf{x}, \mathbf{w}\rangle+b)
$$

where $\operatorname{sign}(0)$ is undefined (e.g., always counted as a mistake).

$$
\mathbf{w}=[2,2], \quad b=0, \quad \hat{\mathbf{y}}=\operatorname{sign}(\langle\mathbf{x}, \mathbf{w}\rangle+b),
$$

where $\operatorname{sign}(0)$ is undefined (e.g., always counted as a mistake).

$$
\mathbf{w}=[2,2], \quad b=-1, \quad \hat{\mathbf{y}}=\operatorname{sign}(\langle\mathbf{x}, \mathbf{w}\rangle+b),
$$

where $\operatorname{sign}(0)$ is undefined (e.g., always counted as a mistake).

Spam Filtering Revisited

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
and	1	0	0	1	1	1
viagra	1	0	1	0	0	0
the	0	1	1	0	1	1
of	1	1	0	1	0	1
nigeria	1	0	0	0	1	0
y	+	-	+	-	+	-

- Recall the update:

Spam Filtering Revisited

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
and	1	0	0	1	1	1
viagra	1	0	1	0	0	0
the	0	1	1	0	1	1
of	1	1	0	1	0	1
nigeria	1	0	0	0	1	0
y	+	-	+	-	+	-

- Recall the update: $\mathrm{w} \leftarrow \mathrm{w}+\mathrm{yx}, \quad b \leftarrow b+\mathrm{y}$

Spam Filtering Revisited

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
and	1	0	0	1	1	1
viagra	1	0	1	0	0	0
the	0	1	1	0	1	1
of	1	1	0	1	0	1
nigeria	1	0	0	0	1	0
y	+	-	+	-	+	-

- Recall the update: $\mathrm{w} \leftarrow \mathrm{w}+\mathrm{yx}, \quad b \leftarrow b+\mathrm{y}$

$$
-\mathbf{w}_{0}=[0,0,0,0,0], \quad b_{0}=0 \Longrightarrow \hat{y}_{1}=-
$$

Spam Filtering Revisited

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
and	1	0	0	1	1	1
viagra	1	0	1	0	0	0
the	0	1	1	0	1	1
of	1	1	0	1	0	1
nigeria	1	0	0	0	1	0
y	+	-	+	-	+	-

- Recall the update: $\mathrm{w} \leftarrow \mathrm{w}+\mathrm{yx}, \quad b \leftarrow b+\mathrm{y}$

$$
-\mathbf{w}_{0}=[0,0,0,0,0], \quad b_{0}=0 \Longrightarrow \hat{y}_{1}=-
$$

Spam Filtering Revisited

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
and	1	0	0	1	1	1
viagra	1	0	1	0	0	0
the	0	1	1	0	1	1
of	1	1	0	1	0	1
nigeria	1	0	0	0	1	0
y	+	-	+	-	+	-

- Recall the update: $\mathrm{w} \leftarrow \mathrm{w}+\mathrm{yx}, \quad b \leftarrow b+\mathrm{y}$

$$
\begin{array}{ll}
-\mathrm{w}_{0}=[0,0,0,0,0], & b_{0}=0 \Longrightarrow \hat{y}_{1}=- \\
-\mathbf{w}_{1}=[1,1,0,1,1], & b_{1}=1 \Longrightarrow \hat{\mathrm{y}}_{2}=+
\end{array}
$$

Spam Filtering Revisited

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
and	1	0	0	1	1	1
viagra	1	0	1	0	0	0
the	0	1	1	0	1	1
of	1	1	0	1	0	1
nigeria	1	0	0	0	1	0
y	+	-	+	-	+	-

- Recall the update: $\mathrm{w} \leftarrow \mathrm{w}+\mathrm{yx}, \quad b \leftarrow b+\mathrm{y}$

$$
\begin{array}{ll}
-\mathrm{w}_{0}=[0,0,0,0,0], & b_{0}=0 \Longrightarrow \hat{\mathrm{y}}_{1}=- \\
-\mathrm{w}_{1}=[1,1,0,1,1], & b_{1}=1 \Longrightarrow \hat{\mathrm{y}}_{2}=+
\end{array}
$$

Spam Filtering Revisited

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
and	1	0	0	1	1	1
viagra	1	0	1	0	0	0
the	0	1	1	0	1	1
of	1	1	0	1	0	1
nigeria	1	0	0	0	1	0
y	+	-	+	-	+	-

- Recall the update: $\mathrm{w} \leftarrow \mathrm{w}+\mathrm{yx}, \quad b \leftarrow b+\mathrm{y}$

$$
\begin{aligned}
& -\mathrm{w}_{0}=[0,0,0,0,0], \quad b_{0}=0 \Longrightarrow \hat{y}_{1}=- \\
& -\mathrm{w}_{1}=[1,1,0,1,1], \quad b_{1}=1 \Longrightarrow \hat{y}_{2}=+ \\
& -\mathrm{w}_{2}=[1,1,-1,0,1], b_{2}=0 \Longrightarrow \hat{\mathrm{y}}_{3}=-
\end{aligned}
$$

Spam Filtering Revisited

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
and	1	0	0	1	1	1
viagra	1	0	1	0	0	0
the	0	1	1	0	1	1
of	1	1	0	1	0	1
nigeria	1	0	0	0	1	0
y	+	-	+	-	+	-

- Recall the update: $\mathrm{w} \leftarrow \mathrm{w}+\mathrm{yx}, \quad b \leftarrow b+\mathrm{y}$

$$
\begin{aligned}
& -\mathrm{w}_{0}=[0,0,0,0,0], \quad b_{0}=0 \Longrightarrow \hat{y}_{1}=- \\
& -\mathrm{w}_{1}=[1,1,0,1,1], \\
& -b_{1}=1 \Longrightarrow \hat{y}_{2}=+ \\
& -\mathrm{w}_{2}=[1,1,-1,0,1], b_{2}=0 \Longrightarrow \hat{\mathrm{y}}_{3}=-
\end{aligned}
$$

Spam Filtering Revisited

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
and	1	0	0	1	1	1
viagra	1	0	1	0	0	0
the	0	1	1	0	1	1
of	1	1	0	1	0	1
nigeria	1	0	0	0	1	0
y	+	-	+	-	+	-

- Recall the update: $\mathrm{w} \leftarrow \mathrm{w}+\mathrm{yx}, \quad b \leftarrow b+\mathrm{y}$

$$
\begin{aligned}
& -\mathrm{w}_{0}=[0,0,0,0,0], \quad b_{0}=0 \Longrightarrow \hat{y}_{1}=- \\
& -\mathrm{w}_{1}=[1,1,0,1,1], \quad b_{1}=1 \Longrightarrow \hat{y}_{2}=+ \\
& -\mathrm{w}_{2}=[1,1,-1,0,1], b_{2}=0 \Longrightarrow \hat{y}_{3}=- \\
& -\mathrm{w}_{3}=[1,2,0,0,1], \quad b_{3}=1 \Longrightarrow \hat{y}_{4}=+
\end{aligned}
$$

Spam Filtering Revisited

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
and	1	0	0	1	1	1
viagra	1	0	1	0	0	0
the	0	1	1	0	1	1
of	1	1	0	1	0	1
nigeria	1	0	0	0	1	0
y	+	-	+	-	+	-

- Recall the update: $\mathrm{w} \leftarrow \mathrm{w}+\mathrm{yx}, \quad b \leftarrow b+\mathrm{y}$

$$
\begin{aligned}
& -\mathrm{w}_{0}=[0,0,0,0,0], \quad b_{0}=0 \Longrightarrow \hat{y}_{1}=- \\
& -\mathrm{w}_{1}=[1,1,0,1,1], \\
& -b_{1}=1 \Longrightarrow \hat{y}_{2}=+ \\
& -\mathrm{w}_{2}=[1,1,-1,0,1], b_{2}=0 \Longrightarrow \hat{y}_{3}=- \\
& -\mathrm{w}_{3}=[1,2,0,0,1], \\
& b_{3}=1 \Longrightarrow \hat{\mathrm{y}}_{4}=+
\end{aligned}
$$

Spam Filtering Revisited

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
and	1	0	0	1	1	1
viagra	1	0	1	0	0	0
the	0	1	1	0	1	1
of	1	1	0	1	0	1
nigeria	1	0	0	0	1	0
y	+	-	+	-	+	-

- Recall the update: $\mathrm{w} \leftarrow \mathrm{w}+\mathrm{yx}, \quad b \leftarrow b+\mathrm{y}$

$$
\begin{aligned}
& -\mathrm{w}_{0}=[0,0,0,0,0], \quad b_{0}=0 \Longrightarrow \hat{y}_{1}=- \\
& -\mathrm{w}_{1}=[1,1,0,1,1], \quad b_{1}=1 \Longrightarrow \hat{y}_{2}=+ \\
& -\mathrm{w}_{2}=[1,1,-1,0,1], b_{2}=0 \Longrightarrow \hat{y}_{3}=- \\
& -\mathrm{w}_{3}=[1,2,0,0,1], \quad b_{3}=1 \Longrightarrow \hat{y}_{4}=+ \\
& -\mathrm{w}_{4}=[0,2,0,-1,1], b_{4}=0 \Longrightarrow \hat{y}_{5}=+
\end{aligned}
$$

Spam Filtering Revisited

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
and	1	0	0	1	1	1
viagra	1	0	1	0	0	0
the	0	1	1	0	1	1
of	1	1	0	1	0	1
nigeria	1	0	0	0	1	0
y	+	-	+	-	+	-

- Recall the update: $\mathrm{w} \leftarrow \mathrm{w}+\mathrm{yx}, \quad b \leftarrow b+\mathrm{y}$

$$
\begin{aligned}
& -\mathrm{w}_{0}=[0,0,0,0,0], \quad b_{0}=0 \Longrightarrow \hat{y}_{1}=- \\
& -\mathrm{w}_{1}=[1,1,0,1,1], \quad b_{1}=1 \Longrightarrow \hat{y}_{2}=+ \\
& -\mathrm{w}_{2}=[1,1,-1,0,1], b_{2}=0 \Longrightarrow \hat{y}_{3}=- \\
& -\mathrm{w}_{3}=[1,2,0,0,1], \quad b_{3}=1 \Longrightarrow \hat{\mathrm{y}}_{4}=+ \\
& -\mathrm{w}_{4}=[0,2,0,-1,1], b_{4}=0 \Longrightarrow \hat{\mathrm{y}}_{5}=+
\end{aligned}
$$

Spam Filtering Revisited

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
and	1	0	0	1	1	1
viagra	1	0	1	0	0	0
the	0	1	1	0	1	1
of	1	1	0	1	0	1
nigeria	1	0	0	0	1	0
y	+	-	+	-	+	-

- Recall the update: $\mathrm{w} \leftarrow \mathrm{w}+\mathrm{yx}, \quad b \leftarrow b+\mathrm{y}$
$-\mathrm{w}_{0}=[0,0,0,0,0], \quad b_{0}=0 \Longrightarrow \hat{y}_{1}=-$
$-\mathrm{w}_{1}=[1,1,0,1,1], \quad b_{1}=1 \Longrightarrow \hat{y}_{2}=+$
$-\mathrm{w}_{2}=[1,1,-1,0,1], b_{2}=0 \Longrightarrow \hat{y}_{3}=-$
$-\mathrm{w}_{3}=[1,2,0,0,1], b_{3}=1 \Longrightarrow \hat{y}_{4}=+$
$-\mathrm{w}_{4}=[0,2,0,-1,1], b_{4}=0 \Longrightarrow \hat{y}_{5}=+$
$-\mathrm{w}_{4}=[0,2,0,-1,1], b_{4}=0 \Longrightarrow \hat{y}_{6}=-$

Spam Filtering Revisited

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
and	1	0	0	1	1	1
viagra	1	0	1	0	0	0
the	0	1	1	0	1	1
of	1	1	0	1	0	1
nigeria	1	0	0	0	1	0
y	+	-	+	-	+	-

- Recall the update: $\mathrm{w} \leftarrow \mathrm{w}+\mathrm{yx}, \quad b \leftarrow b+\mathrm{y}$

$$
\begin{aligned}
& -\mathrm{w}_{0}=[0,0,0,0,0], \quad b_{0}=0 \Longrightarrow \hat{y}_{1}=- \\
& -\mathrm{w}_{1}=[1,1,0,1,1], \quad b_{1}=1 \Longrightarrow \hat{y}_{2}=+ \\
& -\mathrm{w}_{2}=[1,1,-1,0,1], b_{2}=0 \Longrightarrow \hat{y}_{3}=- \\
& -\mathrm{w}_{3}=[1,2,0,0,1], \quad b_{3}=1 \Longrightarrow \hat{\mathrm{y}}_{4}=+ \\
& -\mathrm{w}_{4}=[0,2,0,-1,1], b_{4}=0 \Longrightarrow \hat{\mathrm{y}}_{5}=+ \\
& -\mathrm{w}_{4}=[0,2,0,-1,1], b_{4}=0 \Longrightarrow \hat{\mathrm{y}}_{6}=-
\end{aligned}
$$

Perceptron and the $1^{\text {st }} \mathrm{Al}$ Winter

Marvin Minsky
(1927-2016)

Seymour Papert (1928-2016)

[^4]
XOR Dataset

	x_{1}	x_{2}	x_{3}
x_{4}			
0	1	0	1
	0	0	1
y	-	+	+

- Prove that no line can separate + from -
- What hannens if we run Percentron regardless?

XOR Dataset

	x_{1}	x_{2}	x_{3}
x_{4}			
0	1	0	1
0	0	1	1
y	-	+	+

- Prove that no line can separate + from -
- What happens if we run Perceptron regardless?

XOR Dataset

	x_{1}	x_{2}	x_{3}	x_{4}
	0	1	0	1
	0	0	1	1
y	-	+	+	-

- Prove that no line can separate + from -
- What happens if we run Perceptron regardless?

XOR Dataset

	x_{1}	x_{2}	x_{3}	x_{4}
	0	1	0	1
	0	0	1	1
y	-	+	+	-

- Prove that no line can separate + from -
- What happens if we run Perceptron regardless?

Notation Simplification

- Padding constant 1 to the (start) end of each x
- Pre-multiply x with its label y :
- The problem "simplifies" to:

```
find w}\in\mathbb{R}\mathrm{ P such that }
```


Notation Simplification

- Padding constant 1 to the (start) end of each x :

$$
\langle\mathbf{x}, \mathbf{w}\rangle+b=\langle\underbrace{\binom{\mathbf{x}}{1}}_{\mathbf{x}}, \underbrace{\binom{\mathbf{w}}{b}}_{\mathbf{w}}\rangle
$$

- Pre-multiply x with its label y :

- The problem "simplifies" to:
find w

Notation Simplification

- Padding constant 1 to the (start) end of each x :

$$
\langle\mathbf{x}, \mathbf{w}\rangle+b=\langle\underbrace{\binom{\mathbf{x}}{1}}_{\mathbf{x}}, \underbrace{\binom{\mathbf{w}}{b}}_{\mathbf{w}}\rangle
$$

- Pre-multiply x with its label y :

$$
\mathrm{y}[\langle\mathbf{x}, \mathbf{w}\rangle+b]=\langle\underbrace{\mathbf{y}\binom{\mathbf{x}}{1}}_{\mathbf{a}}, \underbrace{\binom{\mathbf{w}}{b}}_{\mathbf{w}}\rangle
$$

- The problem "simplifies" to:

$$
\text { find } w
$$

Notation Simplification

- Padding constant 1 to the (start) end of each x :

$$
\langle\mathbf{x}, \mathbf{w}\rangle+b=\langle\underbrace{\binom{\mathbf{x}}{1}}_{\mathbf{x}}, \underbrace{\binom{\mathbf{w}}{b}}_{\mathbf{w}}\rangle
$$

- Pre-multiply x with its label y :

$$
\mathrm{y}[\langle\mathbf{x}, \mathbf{w}\rangle+b]=\langle\underbrace{\mathrm{y}\binom{\mathbf{x}}{1}}_{\mathbf{a}}, \underbrace{\binom{\mathbf{w}}{b}}_{\mathbf{w}}\rangle
$$

- The problem "simplifies" to:

$$
\text { find } \mathbf{w} \in \mathbb{R}^{p} \text { such that } \mathbf{A}^{\top} \mathbf{w}>\mathbf{0} \text {, where } \mathbf{A}=\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right] \in \mathbb{R}^{p \times n}
$$

Interpreting Perceptron

Theorem:

```
int cone*}A\not=\emptyset\Longleftrightarrow int cone* A\cap cone A\not=\emptyset
```

$$
\begin{aligned}
\text { cone } A & :=\{A \boldsymbol{\lambda}: \boldsymbol{\lambda} \geq \mathbf{0}\} \\
\operatorname{cone}^{*} A & :=\left\{\mathbf{w}: A^{\top} \mathbf{w} \geq \mathbf{0}\right\} \\
\text { int cone }^{*} A & :=\left\{\mathbf{w}: A^{\top} \mathbf{w}>\mathbf{0}\right\}
\end{aligned}
$$

Interpreting Perceptron

Theorem:
int cone* $A \neq \emptyset \Longleftrightarrow$ int cone* $A \cap$ cone $A \neq \emptyset$.

$$
\begin{aligned}
& \text { cone } A:=\{A \boldsymbol{\lambda}: \boldsymbol{\lambda} \geq \mathbf{0}\} \\
& \text { cone }{ }^{*} A:=\left\{\mathbf{w}: A^{\top} \mathbf{w} \geq \mathbf{0}\right\} \\
& \text { int cone }{ }^{*} A:=\left\{\mathbf{w}: A^{\top} \mathbf{w}>\mathbf{0}\right\}
\end{aligned}
$$

Interpreting Perceptron

Theorem:

```
int cone* }A\not=\emptyset\Longleftrightarrow int cone* A\cap cone A\not=\emptyset
```

$$
\begin{aligned}
& \text { cone } A:=\{A \boldsymbol{\lambda}: \boldsymbol{\lambda} \geq \mathbf{0}\} \\
& \text { cone }{ }^{*} A:=\left\{\mathbf{w}: A^{\top} \mathbf{w} \geq \mathbf{0}\right\} \\
& \text { int cone }{ }^{*} A:=\left\{\mathbf{w}: A^{\top} \mathbf{w}>\mathbf{0}\right\}
\end{aligned}
$$

Interpreting Perceptron

Theorem:

```
int cone* }A\not=\emptyset\Longleftrightarrow int cone* A\cap cone A\not=\emptyset
```

$$
\begin{aligned}
& \text { cone } A:=\{A \boldsymbol{\lambda}: \boldsymbol{\lambda} \geq \mathbf{0}\} \\
& \text { cone }{ }^{*} A:=\left\{\mathbf{w}: A^{\top} \mathbf{w} \geq \mathbf{0}\right\} \\
& \text { int cone }{ }^{*} A:=\left\{\mathbf{w}: A^{\top} \mathbf{w}>\mathbf{0}\right\}
\end{aligned}
$$

Interpreting Perceptron

Theorem:
int cone* $A \neq \emptyset \Longleftrightarrow$ int cone* $A \cap$ cone $A \neq \emptyset$.

$$
\begin{aligned}
\text { cone } A & :=\{A \boldsymbol{\lambda}: \boldsymbol{\lambda} \geq \mathbf{0}\} \\
\text { cone }^{*} A & :=\left\{\mathbf{w}: A^{\top} \mathbf{w} \geq \mathbf{0}\right\} \\
\text { int cone } & A
\end{aligned}:=\left\{\mathbf{w}: A^{\top} \mathbf{w}>\mathbf{0}\right\}, ~ \$
$$

Interpreting Perceptron

Theorem:
int cone* $A \neq \emptyset \Longleftrightarrow$ int cone* $A \cap$ cone $A \neq \emptyset$.

$$
\begin{aligned}
\text { cone } A & :=\{A \boldsymbol{\lambda}: \boldsymbol{\lambda} \geq \mathbf{0}\} \\
\text { cone }^{*} A & :=\left\{\mathbf{w}: A^{\top} \mathbf{w} \geq \mathbf{0}\right\} \\
\text { int cone } & A
\end{aligned}:=\left\{\mathbf{w}: A^{\top} \mathbf{w}>\mathbf{0}\right\}, ~ \$
$$

Convergence Theorem

Theorem: (Block, 1962; Novikoff, 1962)
Provided that there exists a (strictly) separating hyperplane, the Perceptron iterate converges to some w. If each training data is selected infinitely often, then for all i, $\left\langle\mathrm{y}_{i} \mathbf{x}_{i}, \mathbf{w}\right\rangle>\delta$.

Corollary:
Let and initial w $=0$. Then, Perceptron converges after at most
mistakes, where

Convergence Theorem

Theorem: (Block, 1962; Novikoff, 1962)
Provided that there exists a (strictly) separating hyperplane, the Perceptron iterate converges to some w. If each training data is selected infinitely often, then for all i, $\left\langle y_{i} x_{i}, w\right\rangle>\delta$.

Corollary:
Let $\delta=0$ and initial $\mathbf{w}=0$. Then, Perceptron converges after at most $(R / \gamma)^{2}$ mistakes, where

$$
R:=\max _{i}\left\|\mathbf{x}_{i}\right\|_{2}, \quad \gamma:=\max _{\|\mathbf{w}\|_{2} \leq 1} \min _{i}\left\langle\mathbf{y}_{i} \mathbf{x}_{i}, \mathbf{w}\right\rangle
$$

The Proof

- By assumption:

$$
\begin{aligned}
\exists \mathbf{w}^{\star} \text { s.t. } \min _{i}\left\langle\mathrm{y}_{i} \mathbf{x}_{i}, \mathbf{w}^{\star}\right\rangle>0 \Longleftrightarrow & \text { for some and hence for all } s>0 \\
& \exists \mathbf{w}^{\star} \text { s.t. } \min _{i}\left\langle\mathrm{y}_{i} \mathbf{x}_{i}, \mathbf{w}^{\star}\right\rangle \geq s
\end{aligned}
$$

- Update after a mistake:

- The angle approaches 0

The Proof

- By assumption:

$$
\begin{aligned}
\exists \mathbf{w}^{\star} \text { s.t. } \min _{i}\left\langle\mathbf{y}_{i} \mathbf{x}_{i}, \mathbf{w}^{\star}\right\rangle>0 \Longleftrightarrow & \text { for some and hence for all } s>0 \\
& \exists \mathbf{w}^{\star} \text { s.t. } \min _{i}\left\langle\mathrm{y}_{i} \mathbf{x}_{i}, \mathbf{w}^{\star}\right\rangle \geq s
\end{aligned}
$$

- Update after a mistake:
- The angle approaches 0

The Proof

- By assumption:

$$
\begin{aligned}
\exists \mathbf{w}^{\star} \text { s.t. } \min _{i}\left\langle\mathrm{y}_{i} \mathbf{x}_{i}, \mathbf{w}^{\star}\right\rangle>0 \Longleftrightarrow & \text { for some and hence for all } s>0 \\
& \exists \mathbf{w}^{\star} \text { s.t. } \min _{i}\left\langle\mathrm{y}_{i} \mathbf{x}_{i}, \mathbf{w}^{\star}\right\rangle \geq s
\end{aligned}
$$

- Update after a mistake:

$$
\begin{aligned}
\left\langle\mathbf{w}_{k+1}, \mathbf{w}^{\star}\right\rangle & =\left\langle\mathbf{w}_{k}+\mathbf{y} \mathbf{x}, \mathbf{w}^{\star}\right\rangle=\left\langle\mathbf{w}_{k}, \mathbf{w}^{\star}\right\rangle+\overbrace{\left\langle\mathbf{y} \mathbf{x}, \mathbf{w}^{\star}\right\rangle}^{\geq s} \\
\left\|\mathbf{w}_{k+1}\right\|_{2} & =\left\|\mathbf{w}_{k}+\mathbf{y} \mathbf{x}\right\|_{2}=\sqrt{\left\|\mathbf{w}_{k}\right\|_{2}^{2}+\underbrace{\|\mathbf{x}\|_{2}^{2}}_{\leq R^{2}}+2 \underbrace{\left\langle\mathbf{y} \mathbf{x}, \mathbf{w}_{k}\right\rangle}_{\leq \delta}}
\end{aligned}
$$

- The angle approaches 0

The Proof

- By assumption:

$$
\begin{aligned}
\exists \mathbf{w}^{\star} \text { s.t. } \min _{i}\left\langle\mathrm{y}_{i} \mathbf{x}_{i}, \mathbf{w}^{\star}\right\rangle>0 \Longleftrightarrow & \text { for some and hence for all } s>0 \\
& \exists \mathbf{w}^{\star} \text { s.t. } \min _{i}\left\langle\mathrm{y}_{i} \mathbf{x}_{i}, \mathbf{w}^{\star}\right\rangle \geq s
\end{aligned}
$$

- Update after a mistake:

$$
\begin{aligned}
\left\langle\mathbf{w}_{k+1}, \mathbf{w}^{\star}\right\rangle & =\left\langle\mathbf{w}_{k}+\mathbf{y} \mathbf{x}, \mathbf{w}^{\star}\right\rangle=\left\langle\mathbf{w}_{k}, \mathbf{w}^{\star}\right\rangle+\overbrace{\left\langle\mathbf{y} \mathbf{x}, \mathbf{w}^{\star}\right\rangle}^{\geq s} \\
\left\|\mathbf{w}_{k+1}\right\|_{2} & =\left\|\mathbf{w}_{k}+\mathbf{y} \mathbf{x}\right\|_{2}=\sqrt{\left\|\mathbf{w}_{k}\right\|_{2}^{2}+\underbrace{\|\mathbf{x}\|_{2}^{2}}_{\leq R^{2}}+2 \underbrace{\left\langle\mathbf{y} \mathbf{x}, \mathbf{w}_{k}\right\rangle}_{\leq \delta}}
\end{aligned}
$$

- The angle approaches 0 ?

$$
\cos \angle\left(\mathbf{w}_{k+1}, \mathbf{w}^{\star}\right):=\frac{\left\langle\mathbf{w}_{k+1}, \mathbf{w}^{\star}\right\rangle}{\left\|\mathbf{w}_{k+1}\right\|_{2} \cdot\left\|\mathbf{w}^{\star}\right\|_{2}}=\frac{\Omega(k)}{O(\sqrt{k})} \xrightarrow[?]{\rightarrow} 1
$$

The Margin

$$
\begin{aligned}
\sqrt{\left\|\mathbf{w}_{0}\right\|_{2}^{2}+k R^{2}+2 k \delta} \cdot\left\|\mathbf{w}^{\star}\right\|_{2} & \geq\left\|\mathbf{w}_{k}\right\|_{2} \cdot\left\|\mathbf{w}^{\star}\right\|_{2} \\
& \geq\left\langle\mathbf{w}_{k}, \mathbf{w}^{\star}\right\rangle \geq\left\langle\mathbf{w}_{0}, \mathbf{w}^{\star}\right\rangle+k s
\end{aligned}
$$

The Margin

$$
\begin{aligned}
& \sqrt{\| \mathbf{w}+K_{2}^{2}+k R^{2}+2 k \sqrt{2}} \cdot\left\|\mathbf{w}^{\star}\right\|_{2} \geq\left\|\mathbf{w}_{k}\right\|_{2} \cdot\left\|\mathbf{w}^{\star}\right\|_{2} \\
& \geq\left\langle\mathbf{w}_{k}, \mathbf{w}^{\star}\right\rangle \geq\left(\mathbf{w} \cdot \boldsymbol{0}, \mathbf{w}^{\star}\right\rangle+k s
\end{aligned}
$$

- With $\delta=0$ and $\mathbf{w}_{0}=0$: the number of mistakes k
- What is s and w^{*} ? Can we choose them to our advantage?

The Margin

$$
\begin{aligned}
\sqrt{\| \mathbf{w} K_{2}^{2}+k R^{2}+2 k 反} \cdot\left\|\mathbf{w}^{\star}\right\|_{2} & \geq\left\|\mathbf{w}_{k}\right\|_{2} \cdot\left\|\mathbf{w}^{\star}\right\|_{2} \\
& \left.\geq\left\langle\mathbf{w}_{k}, \mathbf{w}^{\star}\right\rangle \geq \text { (w, } 0, \mathbf{w}^{\star}\right\rangle+k s
\end{aligned}
$$

- With $\delta=0$ and $\mathbf{w}_{0}=0$: the number of mistakes $k \leq \frac{R^{2}\left\|\mathbf{w}^{\star}\right\|_{2}^{2}}{s^{2}}$
- What is s and w^{*} ? Can we choose them to our advantage?

The Margin

$$
\begin{aligned}
\sqrt{\| \mathbf{w o r k}_{2}^{2}+k R^{2}+2 k \delta} \cdot\left\|\mathbf{w}^{\star}\right\|_{2} & \geq\left\|\mathbf{w}_{k}\right\|_{2} \cdot\left\|\mathbf{w}^{\star}\right\|_{2} \\
& \geq\left\langle\mathbf{w}_{k}, \mathbf{w}^{\star}\right\rangle \geq\left\langle\mathbf{w}_{0}, \mathbf{w}^{\star}\right\rangle+k s
\end{aligned}
$$

- With $\delta=0$ and $\mathbf{w}_{0}=0$: the number of mistakes $k \leq \frac{R^{2}\left\|\mathbf{w}^{*}\right\|_{2}^{2}}{s^{2}}$
- What is s and \mathbf{w}^{\star} ? Can we choose them to our advantage?

$$
\gamma:=\max _{\left\|\mathbf{w}^{\star}\right\|_{2}=1} \min _{i}\left\langle y_{i} \mathbf{x}_{i}, \mathbf{w}^{\star}\right\rangle=\max _{\left\|\mathbf{w}^{\star}\right\|_{2} \leq 1} \min _{i}\left\langle\mathrm{y}_{i} \mathbf{x}_{i}, \mathbf{w}^{\star}\right\rangle
$$

The Margin

$$
\begin{aligned}
\sqrt{\| \mathbf{w o k t h}_{2}^{2}+k R^{2}+2 k \delta} \cdot\left\|\mathbf{w}^{\star}\right\|_{2} & \geq\left\|\mathbf{w}_{k}\right\|_{2} \cdot\left\|\mathbf{w}^{\star}\right\|_{2} \\
& \geq\left\langle\mathbf{w}_{k}, \mathbf{w}^{\star}\right\rangle \geq\left\langle\mathbf{w}_{0}, \mathbf{w}^{\star}\right\rangle+k s
\end{aligned}
$$

- With $\delta=0$ and $\mathbf{w}_{0}=0$: the number of mistakes $k \leq \frac{R^{2}\left\|\mathbf{w}^{*}\right\|_{2}^{2}}{s^{2}}$
- What is s and w^{\star} ? Can we choose them to our advantage?

$$
\gamma:=\max _{\left\|\mathbf{w}^{\star}\right\|_{2}=1} \min _{i}\left\langle y_{i} \mathbf{x}_{i}, \mathbf{w}^{\star}\right\rangle=\max _{\left\|\mathbf{w}^{\star}\right\|_{2} \leq 1} \min _{i}\left\langle\mathrm{y}_{i} \mathbf{x}_{i}, \mathbf{w}^{\star}\right\rangle
$$

- The larger the margin γ is, the more (linearly) separable the data is, and hence the faster Perceptron converges!

$$
\begin{aligned}
& \sqrt{\sqrt{\mathbf{w}^{2}+K_{2}^{2}}+k R^{2}+2 k \sqrt{2}} \cdot\left\|\mathbf{w}^{\star}\right\|_{2} \geq\left\|\mathbf{w}_{k}\right\|_{2} \cdot\left\|\mathbf{w}^{\star}\right\|_{2} \\
& \geq\left\langle\mathbf{w}_{k}, \mathbf{w}^{\star}\right\rangle \geq\left\langle\mathbf{w}_{0}, \mathbf{w}^{*}\right\rangle+k s
\end{aligned}
$$

- With $\delta=0$ and $\mathbf{w}_{0}=0$: the number of mistakes $k \leq \frac{R^{2}\left\|\mathbf{w}^{\star}\right\|_{2}^{2}}{s^{2}}$
- What is s and w^{\star} ? Can we choose them to our advantage?

$$
\gamma:=\max _{\left\|\mathbf{w}^{\star}\right\|_{2}=1} \min _{i}\left\langle\mathbf{y}_{i} \mathbf{x}_{i}, \mathbf{w}^{\star}\right\rangle=\max _{\left\|\mathbf{w}^{\star}\right\|_{2} \leq 1} \min _{i}\left\langle\mathrm{y}_{i} \mathbf{x}_{i}, \mathbf{w}^{\star}\right\rangle
$$

- The larger the margin γ is, the more (linearly) separable the data is, and hence the faster Perceptron converges!

But...Is Perceptron Unique?

Support Vector Machines: Primal

Support Vector Machines: Primal

$$
\max _{\mathbf{w}: \forall i, \hat{y}_{i} \mathbf{y}_{i}>0} \min _{i=1, \ldots, n} \frac{\hat{y}_{i} \mathbf{y}_{i}}{\|\mathbf{w}\|}, \quad \text { where } \quad \hat{y}_{i}:=\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b
$$

Beyond Separability

- Soft-margin induced by a reasonable loss ℓ and regularizer

Beyond Separability

- Soft-margin induced by a reasonable loss l and regularizer

Beyond Separability

- Soft-margin induced by a reasonable loss ℓ and regularizer

Beyond Separability

- Soft-margin induced by a reasonable loss ℓ and regularizer

Beyond Separability

- Soft-margin induced by a reasonable loss ℓ and regularizer reg:

$$
\min _{\mathbf{w}} \hat{\mathbb{E}} \ell(\mathrm{y} \hat{y})+\operatorname{reg}(\mathbf{w}), \quad \text { s.t. } \quad \hat{y}:=\langle\mathbf{x}, \mathbf{w}\rangle+b
$$

Beyond Separability

- Soft-margin induced by a reasonable loss ℓ and regularizer reg:

$$
\min _{\mathbf{w}} \hat{\mathbb{E}} \ell(\mathrm{y} \hat{y})+\operatorname{reg}(\mathbf{w}), \quad \text { s.t. } \quad \hat{y}:=\langle\mathbf{x}, \mathbf{w}\rangle+b
$$

- Deeper model through a better feature representation

Boundedness Theorem

- Perceptron convergence hinges on the existence of a perfect classifier (i.e., a separating hyperplane)
- What if such an assumption fails? (It will in practice.)

Theorem: (Minsky and Papert, 1969; Block and Levin, 1970)
The Perceptron iterate (w h) is always bounded In particular, if there is no separating hyperplane, then perceptron cycles.

- "...proof of this theorem is complicated and obscure..." (Minsky and Papert, 1969); see also (Amaldi and Hauser, 2005)
M. L. Minsky and S. A. Papert. "Perceptron". MIT press, 1969, H. D. Block and S. A. Levin. "On the boundedness of an iterative procedure for solving a system of linear inequalities". Proceedings of the American Mathematical Society, vol. 26 (1970), pp. 229-235, E. Amaldi and R. Hauser. "Boundedness Theorems for the Relaxation Method". Mathematics of Operations Research, vol. 30, no. 4 (2005), pp. 939-955.

Boundedness Theorem

- Perceptron convergence hinges on the existence of a perfect classifier (i.e., a separating hyperplane)
- What if such an assumption fails? (It will in practice.)

Theorem: (Minsky and Papert, 1969; Block and Levin, 1970)

The Perceptron iterate (w, h) is always bounded. In particular, if there is no separating hyperplane, then perceptron cycles.

- "...proof of this theorem is complicated and obscure..." (Minsky and Papert, 1969); see also (Amaldi and Hauser, 2005)
M. L. Minsky and S. A. Papert. "Perceptron". MIT press, 1969, H. D. Block and S. A. Levin. "On the boundedness of an iterative procedure for solving a system of linear inequalities". Proceedings of the American Mathematical Society, vol. 26 (1970), pp. 229-235, E. Amaldi and R. Hauser. "Boundedness Theorems for the Relaxation Method". Mathematics of Operations Research, vol. 30, no. 4 (2005), pp. 939-955.

Boundedness Theorem

- Perceptron convergence hinges on the existence of a perfect classifier (i.e., a separating hyperplane)
- What if such an assumption fails? (It will in practice.)

Theorem: (Minsky and Papert, 1969; Block and Levin, 1970)
The Perceptron iterate (w, b) is always bounded. In particular, if there is no separating hyperplane, then perceptron cycles.
> - "...proof of this theorem is complicated and obscure ... 1969); see also (Amaldi and Hauser, 2005)

Boundedness Theorem

- Perceptron convergence hinges on the existence of a perfect classifier (i.e., a separating hyperplane)
- What if such an assumption fails? (It will in practice.)

Theorem: (Minsky and Papert, 1969; Block and Levin, 1970)
The Perceptron iterate (w, b) is always bounded. In particular, if there is no separating hyperplane, then perceptron cycles.

- "...proof of this theorem is complicated and obscure..." (Minsky and Papert, 1969); see also (Amaldi and Hauser, 2005)

When to Stop Perceptron?

- Online setting: never
- Batch setting

When to Stop Perceptron?

- Online setting: never
- Batch setting

When to Stop Perceptron?

- Online setting: never
- Batch setting
maximum number of iterations reached, e.g. iter $==$ maxiter
maximum allowed runtime reached
training error stops changing
validation error stops deceasing
weights change falls below tolerance (if using a diminishing step size)

When to Stop Perceptron?

- Online setting: never
- Batch setting
- maximum number of iterations reached, e.g. iter $==$ maxiter
maximum allowed runtime reached
training error stops changing
validation error stops deceasing
weights change falls below tolerance (if using a diminishing step size)

When to Stop Perceptron?

- Online setting: never
- Batch setting
- maximum number of iterations reached, e.g. iter $==$ maxiter
- maximum allowed runtime reached
training error stops changing
validation error stops deceasing
weights change falls below tolerance (if using a diminishing step size)

When to Stop Perceptron?

- Online setting: never
- Batch setting
- maximum number of iterations reached, e.g. iter $==$ maxiter
- maximum allowed runtime reached
- training error stops changing
validation error stops deceasing
weights change falls below tolerance (if using a diminishing step size)

When to Stop Perceptron?

- Online setting: never
- Batch setting
- maximum number of iterations reached, e.g. iter $==$ maxiter
- maximum allowed runtime reached
- training error stops changing
- validation error stops deceasing
weights change falls below tolerance (if using a diminishing step size)

When to Stop Perceptron?

- Online setting: never
- Batch setting
- maximum number of iterations reached, e.g. iter $==$ maxiter
- maximum allowed runtime reached
- training error stops changing
- validation error stops deceasing
- weights change falls below tolerance (if using a diminishing step size)

$$
\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t}+\eta_{t} \mathrm{y}_{I_{t}} \mathbf{x}_{I_{t}}, \quad \eta_{t} \rightarrow 0
$$

Multiclass Perceptron

- One vs. all
- One vs. one

balanced

- Direct extension: assignment

Multiclass Perceptron

- One vs. all
let class k be positive, and all other classes as negative train Perceptron $\mathbf{w}_{k j}$; in total c imbalanced Perceptrons

- One vs. one

balanced

- Direct extension: assignment

Multiclass Perceptron

- One vs. all
- let class k be positive, and all other classes as negative train Perceptron whi in total cimbalanced Perceptrons predict according to highest score: $\hat{\mathrm{y}}:=\operatorname{argmax}_{k}\langle\mathrm{x}, \mathrm{w}$
- One vs. one

balanced

- Direct extension: assignment

Multiclass Perceptron

- One vs. all
- let class k be positive, and all other classes as negative
- train Perceptron \mathbf{w}_{k}; in total c imbalanced Perceptrons predict according to highest score
- One vs. one

balanced

- Direct extension: assignment

Multiclass Perceptron

- One vs. all
- let class k be positive, and all other classes as negative
- train Perceptron \mathbf{w}_{k}; in total c imbalanced Perceptrons
- predict according to highest score: $\hat{y}:=\operatorname{argmax}_{k}\left\langle\mathbf{x}, \mathbf{w}_{k}\right\rangle$
- One vs. one

balanced

- Direct extension: assignment

Multiclass Perceptron

- One vs. all
- let class k be positive, and all other classes as negative
- train Perceptron \mathbf{w}_{k}; in total c imbalanced Perceptrons
- predict according to highest score: $\hat{\mathrm{y}}:=\operatorname{argmax}_{k}\left\langle\mathbf{x}, \mathbf{w}_{k}\right\rangle$
- One vs. one
let class k be positive,class l be negative, and discard all other classes
train Perceptron what in total (C) batanced Perceptrons
predict by voting: $\hat{y}:=\operatorname{argmax} \sum \llbracket\left\langle x, w_{k, l}\right\rangle>0 \rrbracket$
- Direct extension: assignment

Multiclass Perceptron

- One vs. all
- let class k be positive, and all other classes as negative
- train Perceptron \mathbf{w}_{k}; in total c imbalanced Perceptrons
- predict according to highest score: $\hat{\mathrm{y}}:=\operatorname{argmax}_{k}\left\langle\mathbf{x}, \mathbf{w}_{k}\right\rangle$
- One vs. one
- let class k be positive,class l be negative, and discard all other classes
train Perceptron $w_{\text {m.li }}$ in total $\binom{c}{2}$ balanced Perceptrons predict by voting: $\hat{y}:=\operatorname{argmax} \sum \llbracket\left\langle x, w_{k ; l}\right\rangle>0 \rrbracket$
- Direct extension: assignment

Multiclass Perceptron

- One vs. all
- let class k be positive, and all other classes as negative
- train Perceptron \mathbf{w}_{k}; in total c imbalanced Perceptrons
- predict according to highest score: $\hat{\mathrm{y}}:=\operatorname{argmax}_{k}\left\langle\mathbf{x}, \mathbf{w}_{k}\right\rangle$
- One vs. one
- let class k be positive,class l be negative, and discard all other classes
- train Perceptron $\mathbf{w}_{k, l}$; in total $\binom{c}{2}$ balanced Perceptrons predict by voting:
- Direct extension: assignment

Multiclass Perceptron

- One vs. all
- let class k be positive, and all other classes as negative
- train Perceptron \mathbf{w}_{k}; in total c imbalanced Perceptrons
- predict according to highest score: $\hat{\mathrm{y}}:=\operatorname{argmax}_{k}\left\langle\mathbf{x}, \mathbf{w}_{k}\right\rangle$
- One vs. one
- let class k be positive,class l be negative, and discard all other classes
- train Perceptron $\mathbf{w}_{k, l}$; in total $\binom{c}{2}$ balanced Perceptrons
- predict by voting: $\hat{y}:=\underset{k}{\operatorname{argmax}} \sum_{l \neq k} \llbracket\left\langle\mathbf{x}, \mathbf{w}_{k, l}\right\rangle>0 \rrbracket$
- Direct extension: assignment

Multiclass Perceptron

- One vs. all
- let class k be positive, and all other classes as negative
- train Perceptron \mathbf{w}_{k}; in total c imbalanced Perceptrons
- predict according to highest score: $\hat{\mathrm{y}}:=\operatorname{argmax}_{k}\left\langle\mathbf{x}, \mathbf{w}_{k}\right\rangle$
- One vs. one
- let class k be positive,class l be negative, and discard all other classes
- train Perceptron $\mathbf{w}_{k, l}$; in total $\binom{c}{2}$ balanced Perceptrons
- predict by voting: $\hat{\mathbf{y}}:=\underset{k}{\operatorname{argmax}} \sum_{l \neq k} \llbracket\left\langle\mathbf{x}, \mathbf{w}_{k, l}\right\rangle>0 \rrbracket$
- Direct extension: assignment

[^0]: W. S. McCulloch and W. Pitts. "A logical calculus of the ideas immanent in nervous activity". The bulletin of mathematical biophysics, vol. 5, no. 4 (1943), pp. 115-133.

[^1]: F. Rosenblatt. "The perceptron: A probabilistic model for information storage and organization in the brain". Psychological Review, vol. 65, no. 6 (1958), pp. 386-408

[^2]: F. Rosenblatt. "The perceptron: A probabilistic model for information storage and organization in the brain". Psychological Review, vol. 65, no. 6 (1958), pp. 386-408

[^3]: F. Rosenblatt. "The perceptron: A probabilistic model for information storage and organization in the brain". Psychological Review, vol. 65,
 no. 6 (1958), pp. 386-408

[^4]: M. L. Minsky and S. A. Papert. "Perceptron". MIT press, 1969.

