
CS480/680: Introduction to Machine Learning
Lec 01: Perceptron

Yaoliang Yu

May 08, 2024

Supervised Learning Z hotdog app
dataset

L01 1/29

https://www.youtube.com/watch?v=tWwCK95X6go
https://www.kaggle.com/datasets/yashvrdnjain/hotdognothotdog

Supervised Learning Z hotdog app

L01 1/29

https://www.youtube.com/watch?v=tWwCK95X6go

Supervised Learning Z hotdog app

L01 1/29

https://www.youtube.com/watch?v=tWwCK95X6go

Supervised Learning Z hotdog app
example results

L01 1/29

https://www.youtube.com/watch?v=tWwCK95X6go
https://towardsdatascience.com/hot-dog-or-not-hot-dog-ab9d67f20674

What a Dataset Looks Like

x1 x2 x3 x4 · · · xn x x′

Rd ∋

0 1 0 1 · · · 1 1 0.9
0 0 1 1 · · · 0 1 1.1
...

...
...

...
...

...
1 0 1 0 · · · 1 1 −0.1

y + + – + · · · – ? ?!

• Each column is a data point: n in total; each has d features

• Bottom y is the label vector; binary in this case

• x and x′ are test samples whose labels need to be predicted

L01 2/29

What a Dataset Looks Like

x1 x2 x3 x4 · · · xn x x′

Rd ∋

0 1 0 1 · · · 1 1 0.9
0 0 1 1 · · · 0 1 1.1
...

...
...

...
...

...
1 0 1 0 · · · 1 1 −0.1

y + + – + · · · – ? ?!

• Each column is a data point: n in total; each has d features

• Bottom y is the label vector; binary in this case

• x and x′ are test samples whose labels need to be predicted

L01 2/29

What a Dataset Looks Like

x1 x2 x3 x4 · · · xn x x′

Rd ∋

0 1 0 1 · · · 1 1 0.9
0 0 1 1 · · · 0 1 1.1
...

...
...

...
...

...
1 0 1 0 · · · 1 1 −0.1

y + + – + · · · – ? ?!

• Each column is a data point: n in total; each has d features

• Bottom y is the label vector; binary in this case

• x and x′ are test samples whose labels need to be predicted

L01 2/29

What a Dataset Looks Like

x1 x2 x3 x4 · · · xn x x′

Rd ∋

0 1 0 1 · · · 1 1 0.9
0 0 1 1 · · · 0 1 1.1
...

...
...

...
...

...
1 0 1 0 · · · 1 1 −0.1

y + + – + · · · – ? ?!

• Each column is a data point: n in total; each has d features

• Bottom y is the label vector; binary in this case

• x and x′ are test samples whose labels need to be predicted

L01 2/29

Spam Filtering Example

x1 x2 x3 x4 x5 x6

and 1 0 0 1 1 1
viagra 1 0 1 0 0 0
the 0 1 1 0 1 1
of 1 1 0 1 0 1

nigeria 1 0 0 0 1 0
y + – + – + –

• Training set: X=[x1, . . . ,xn]∈Rd×n, y=[y1, . . . , yn]∈{±1}n

– each column of X is an email xi ∈ Rd, each with d (binary) features

– each entry in y is a label yi ∈ {±1}, indicating spam or not

• Bag-of-words representation of text (email)

L01 3/29

Spam Filtering Example

x1 x2 x3 x4 x5 x6

and 1 0 0 1 1 1
viagra 1 0 1 0 0 0
the 0 1 1 0 1 1
of 1 1 0 1 0 1

nigeria 1 0 0 0 1 0
y + – + – + –

• Training set: X=[x1, . . . ,xn]∈Rd×n, y=[y1, . . . , yn]∈{±1}n

– each column of X is an email xi ∈ Rd, each with d (binary) features

– each entry in y is a label yi ∈ {±1}, indicating spam or not

• Bag-of-words representation of text (email)

L01 3/29

Spam Filtering Example

x1 x2 x3 x4 x5 x6

and 1 0 0 1 1 1
viagra 1 0 1 0 0 0
the 0 1 1 0 1 1
of 1 1 0 1 0 1

nigeria 1 0 0 0 1 0
y + – + – + –

• Training set: X=[x1, . . . ,xn]∈Rd×n, y=[y1, . . . , yn]∈{±1}n

– each column of X is an email xi ∈ Rd, each with d (binary) features

– each entry in y is a label yi ∈ {±1}, indicating spam or not

• Bag-of-words representation of text (email)

L01 3/29

Spam Filtering Example

x1 x2 x3 x4 x5 x6

and 1 0 0 1 1 1
viagra 1 0 1 0 0 0
the 0 1 1 0 1 1
of 1 1 0 1 0 1

nigeria 1 0 0 0 1 0
y + – + – + –

• Training set: X=[x1, . . . ,xn]∈Rd×n, y=[y1, . . . , yn]∈{±1}n

– each column of X is an email xi ∈ Rd, each with d (binary) features

– each entry in y is a label yi ∈ {±1}, indicating spam or not

• Bag-of-words representation of text (email)

L01 3/29

Spam Filtering Example

x1 x2 x3 x4 x5 x6

and 1 0 0 1 1 1
viagra 1 0 1 0 0 0
the 0 1 1 0 1 1
of 1 1 0 1 0 1

nigeria 1 0 0 0 1 0
y + – + – + –

• Training set: X=[x1, . . . ,xn]∈Rd×n, y=[y1, . . . , yn]∈{±1}n

– each column of X is an email xi ∈ Rd, each with d (binary) features

– each entry in y is a label yi ∈ {±1}, indicating spam or not

• Bag-of-words representation of text (email)

L01 3/29

Batch vs. Online

• Batch learning

– interested in performance on test set X ′

– training set (X, y) is just a means

– statistical assumption on X and X ′

• Online learning

– data comes one by one (streaming)

– need to predict y before knowing its true value

– interested in making as few mistakes as possible

– compare against some baseline

L01 4/29

Batch vs. Online

• Batch learning

– interested in performance on test set X ′

– training set (X, y) is just a means

– statistical assumption on X and X ′

• Online learning

– data comes one by one (streaming)

– need to predict y before knowing its true value

– interested in making as few mistakes as possible

– compare against some baseline

L01 4/29

Batch vs. Online

• Batch learning

– interested in performance on test set X ′

– training set (X, y) is just a means

– statistical assumption on X and X ′

• Online learning

– data comes one by one (streaming)

– need to predict y before knowing its true value

– interested in making as few mistakes as possible

– compare against some baseline

L01 4/29

Batch vs. Online

• Batch learning

– interested in performance on test set X ′

– training set (X, y) is just a means

– statistical assumption on X and X ′

• Online learning

– data comes one by one (streaming)

– need to predict y before knowing its true value

– interested in making as few mistakes as possible

– compare against some baseline

L01 4/29

Batch vs. Online

• Batch learning

– interested in performance on test set X ′

– training set (X, y) is just a means

– statistical assumption on X and X ′

• Online learning

– data comes one by one (streaming)

– need to predict y before knowing its true value

– interested in making as few mistakes as possible

– compare against some baseline

L01 4/29

Batch vs. Online

• Batch learning

– interested in performance on test set X ′

– training set (X, y) is just a means

– statistical assumption on X and X ′

• Online learning

– data comes one by one (streaming)

– need to predict y before knowing its true value

– interested in making as few mistakes as possible

– compare against some baseline

L01 4/29

Batch vs. Online

• Batch learning

– interested in performance on test set X ′

– training set (X, y) is just a means

– statistical assumption on X and X ′

• Online learning

– data comes one by one (streaming)

– need to predict y before knowing its true value

– interested in making as few mistakes as possible

– compare against some baseline

L01 4/29

Batch vs. Online

• Batch learning

– interested in performance on test set X ′

– training set (X, y) is just a means

– statistical assumption on X and X ′

• Online learning

– data comes one by one (streaming)

– need to predict y before knowing its true value

– interested in making as few mistakes as possible

– compare against some baseline

L01 4/29

Batch vs. Online

• Batch learning

– interested in performance on test set X ′

– training set (X, y) is just a means

– statistical assumption on X and X ′

• Online learning

– data comes one by one (streaming)

– need to predict y before knowing its true value

– interested in making as few mistakes as possible

– compare against some baseline

L01 4/29

Batch vs. Online

• Batch learning

– interested in performance on test set X ′

– training set (X, y) is just a means

– statistical assumption on X and X ′

• Online learning

– data comes one by one (streaming)

– need to predict y before knowing its true value

– interested in making as few mistakes as possible

– compare against some baseline

L01 4/29

Thought Experiment

• Repeat the following game:

– observe instance xi

– predict its label ŷi (in whatever way you like)

– reveal the true label yi

– suffer a mistake if ŷi ̸= yi

• How many mistakes in the worst-case?

• Predict first, reveal next: no peeking into the future!

L01 5/29

Thought Experiment

• Repeat the following game:

– observe instance xi

– predict its label ŷi (in whatever way you like)

– reveal the true label yi

– suffer a mistake if ŷi ̸= yi

• How many mistakes in the worst-case?

• Predict first, reveal next: no peeking into the future!

L01 5/29

Thought Experiment

• Repeat the following game:

– observe instance xi

– predict its label ŷi (in whatever way you like)

– reveal the true label yi

– suffer a mistake if ŷi ̸= yi

• How many mistakes in the worst-case?

• Predict first, reveal next: no peeking into the future!

L01 5/29

Thought Experiment

• Repeat the following game:

– observe instance xi

– predict its label ŷi (in whatever way you like)

– reveal the true label yi

– suffer a mistake if ŷi ̸= yi

• How many mistakes in the worst-case?

• Predict first, reveal next: no peeking into the future!

L01 5/29

Thought Experiment

• Repeat the following game:

– observe instance xi

– predict its label ŷi (in whatever way you like)

– reveal the true label yi

– suffer a mistake if ŷi ̸= yi

• How many mistakes in the worst-case?

• Predict first, reveal next: no peeking into the future!

L01 5/29

Thought Experiment

• Repeat the following game:

– observe instance xi

– predict its label ŷi (in whatever way you like)

– reveal the true label yi

– suffer a mistake if ŷi ̸= yi

• How many mistakes in the worst-case?

• Predict first, reveal next: no peeking into the future!

L01 5/29

Thought Experiment

• Repeat the following game:

– observe instance xi

– predict its label ŷi (in whatever way you like)

– reveal the true label yi

– suffer a mistake if ŷi ̸= yi

• How many mistakes in the worst-case?

• Predict first, reveal next: no peeking into the future!

L01 5/29

Thought Experiment

• Repeat the following game:

– observe instance xi

– predict its label ŷi (in whatever way you like)

– reveal the true label yi

– suffer a mistake if ŷi ̸= yi

• How many mistakes in the worst-case?

• Predict first, reveal next: no peeking into the future!

L01 5/29

Linear Threshold Function

• Linear function: ∀α, β ∈ R,∀x, z ∈ Rd,

f(αx+ βz) = α · f(x) + β · f(z)
• Equivalently, ∃w ∈ Rd such that f(x) = ⟨x,w⟩ :=

∑
j xjwj

• Affine function: β = 1− α, or equivalently ∃w ∈ Rd, b ∈ R such that
f(x) = ⟨x,w⟩+ b

• Thresholding: sign(t) =

1, t > 0

−1, t < 0

?, t = 0

• Combined together: ŷ = sign(⟨x,w⟩+ b︸ ︷︷ ︸
ŷ

) =

1, ŷ > 0

−1, ŷ < 0

?, ŷ = 0

L01 6/29

Linear Threshold Function

• Linear function: ∀α, β ∈ R,∀x, z ∈ Rd,

f(αx+ βz) = α · f(x) + β · f(z)
• Equivalently, ∃w ∈ Rd such that f(x) = ⟨x,w⟩ :=

∑
j xjwj

• Affine function: β = 1− α, or equivalently ∃w ∈ Rd, b ∈ R such that
f(x) = ⟨x,w⟩+ b

• Thresholding: sign(t) =

1, t > 0

−1, t < 0

?, t = 0

• Combined together: ŷ = sign(⟨x,w⟩+ b︸ ︷︷ ︸
ŷ

) =

1, ŷ > 0

−1, ŷ < 0

?, ŷ = 0

L01 6/29

Linear Threshold Function

• Linear function: ∀α, β ∈ R,∀x, z ∈ Rd,

f(αx+ βz) = α · f(x) + β · f(z)
• Equivalently, ∃w ∈ Rd such that f(x) = ⟨x,w⟩ :=

∑
j xjwj

• Affine function: β = 1− α, or equivalently ∃w ∈ Rd, b ∈ R such that
f(x) = ⟨x,w⟩+ b

• Thresholding: sign(t) =

1, t > 0

−1, t < 0

?, t = 0

• Combined together: ŷ = sign(⟨x,w⟩+ b︸ ︷︷ ︸
ŷ

) =

1, ŷ > 0

−1, ŷ < 0

?, ŷ = 0

L01 6/29

Linear Threshold Function

• Linear function: ∀α, β ∈ R,∀x, z ∈ Rd,

f(αx+ βz) = α · f(x) + β · f(z)
• Equivalently, ∃w ∈ Rd such that f(x) = ⟨x,w⟩ :=

∑
j xjwj

• Affine function: β = 1− α, or equivalently ∃w ∈ Rd, b ∈ R such that
f(x) = ⟨x,w⟩+ b

• Thresholding: sign(t) =

1, t > 0

−1, t < 0

?, t = 0

• Combined together: ŷ = sign(⟨x,w⟩+ b︸ ︷︷ ︸
ŷ

) =

1, ŷ > 0

−1, ŷ < 0

?, ŷ = 0

L01 6/29

Linear Threshold Function

• Linear function: ∀α, β ∈ R,∀x, z ∈ Rd,

f(αx+ βz) = α · f(x) + β · f(z)
• Equivalently, ∃w ∈ Rd such that f(x) = ⟨x,w⟩ :=

∑
j xjwj

• Affine function: β = 1− α, or equivalently ∃w ∈ Rd, b ∈ R such that
f(x) = ⟨x,w⟩+ b

• Thresholding: sign(t) =

1, t > 0

−1, t < 0

?, t = 0

• Combined together: ŷ = sign(⟨x,w⟩+ b︸ ︷︷ ︸
ŷ

) =

1, ŷ > 0

−1, ŷ < 0

?, ŷ = 0

L01 6/29

Linear Threshold Function

• Linear function: ∀α, β ∈ R,∀x, z ∈ Rd,

f(αx+ βz) = α · f(x) + β · f(z)
• Equivalently, ∃w ∈ Rd such that f(x) = ⟨x,w⟩ :=

∑
j xjwj

• Affine function: β = 1− α, or equivalently ∃w ∈ Rd, b ∈ R such that
f(x) = ⟨x,w⟩+ b

• Thresholding: sign(t) =

1, t > 0

−1, t < 0

?, t = 0

• Combined together: ŷ = sign(⟨x,w⟩+ b︸ ︷︷ ︸
ŷ

) =

1, ŷ > 0

−1, ŷ < 0

?, ŷ = 0

L01 6/29

Geometrically

+

+

+

–

− b

w2

− b

w1

w

⟨x,w⟩+ b = 0

x1

x2

L01 7/29

Geometrically

+

+

+

–

− b

w2

− b

w1

w

⟨x,w⟩+ b = 0

x1

x2

L01 7/29

Biological Inspiration

W. S. McCulloch and W. Pitts. “A logical calculus of the ideas immanent in nervous activity”. The bulletin of mathematical biophysics,
vol. 5, no. 4 (1943), pp. 115–133.

L01 8/29

https://doi.org/10.1007/BF02478259

sign function

∑
w2x2

...
...

wdxd

w1x1

b1

inputs weights

inner product

L01 9/29

sign function

∑
w2x2

...
...

wdxd

w1x1

b1

inputs weights

inner product nonlinear

L01 9/29

OR Dataset

x1 x2 x3 x4

0 1 0 1
0 0 1 1

y – + + +

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

L01 10/29

OR Dataset

x1 x2 x3 x4

0 1 0 1
0 0 1 1

y – + + +

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

L01 10/29

OR Dataset

x1 x2 x3 x4

0 1 0 1
0 0 1 1

y – + + +

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

L01 10/29

OR Dataset

x1 x2 x3 x4

0 1 0 1
0 0 1 1

y – + + +

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

L01 10/29

OR Dataset

x1 x2 x3 x4

0 1 0 1
0 0 1 1

y – + + +

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

L01 10/29

The Early Hype in AI...

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NEW NAVY DEVICE LEARNS BY DOING: Psychologist Shows Embryo of Computer Designed to Read and Grow ...
New York Times (1923-); Jul 8, 1958; ProQuest Historical Newspapers: The New York Times
pg. 25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NEW NAVY DEVICE LEARNS BY DOING: Psychologist Shows Embryo of Computer Designed to Read and Grow ...
New York Times (1923-); Jul 8, 1958; ProQuest Historical Newspapers: The New York Times
pg. 25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NEW NAVY DEVICE LEARNS BY DOING: Psychologist Shows Embryo of Computer Designed to Read and Grow ...
New York Times (1923-); Jul 8, 1958; ProQuest Historical Newspapers: The New York Times
pg. 25

New York Times, 1958
L01 11/29

http://search.proquest.com.proxy.lib.uwaterloo.ca/historical-newspapers/new-navy-device-learns-doing/docview/114558973/se-2?accountid=14906

...due to Perceptron

Frank Rosenblatt
(1928 – 1971)

L01 12/29

Algorithm 1: Perceptron
Input: Dataset D = *(xi, yi) ∈ Rd × {±1} : i = 1, . . . , n+, initialization w ∈ Rd

and b ∈ R, threshold δ ≥ 0
Output: approximate solution w and b

1 for t = 1, 2, . . . do
2 receive index It ∈ {1, . . . , n} // It can be random
3 if yIt(⟨xIt ,w⟩+ b) ≤ δ then
4 w← w + yItxIt // update after a “mistake”
5 b← b+ yIt

• Typically δ = 0 and w0 = 0, b = 0

– yŷ > 0 vs. yŷ < 0 vs. yŷ = 0, where ŷ = ⟨x,w⟩+ b

• Lazy update: “if it ain’t broke, don’t fix it”

F. Rosenblatt. “The perceptron: A probabilistic model for information storage and organization in the brain”. Psychological Review, vol. 65,
no. 6 (1958), pp. 386–408.

L01 13/29

http://psycnet.apa.org/record/1959-09865-001

Algorithm 2: Perceptron
Input: Dataset D = *(xi, yi) ∈ Rd × {±1} : i = 1, . . . , n+, initialization w ∈ Rd

and b ∈ R, threshold δ ≥ 0
Output: approximate solution w and b

1 for t = 1, 2, . . . do
2 receive index It ∈ {1, . . . , n} // It can be random
3 if yIt(⟨xIt ,w⟩+ b) ≤ δ then
4 w← w + yItxIt // update after a “mistake”
5 b← b+ yIt

• Typically δ = 0 and w0 = 0, b = 0

– yŷ > 0 vs. yŷ < 0 vs. yŷ = 0, where ŷ = ⟨x,w⟩+ b

• Lazy update: “if it ain’t broke, don’t fix it”

F. Rosenblatt. “The perceptron: A probabilistic model for information storage and organization in the brain”. Psychological Review, vol. 65,
no. 6 (1958), pp. 386–408.

L01 13/29

http://psycnet.apa.org/record/1959-09865-001

Algorithm 3: Perceptron
Input: Dataset D = *(xi, yi) ∈ Rd × {±1} : i = 1, . . . , n+, initialization w ∈ Rd

and b ∈ R, threshold δ ≥ 0
Output: approximate solution w and b

1 for t = 1, 2, . . . do
2 receive index It ∈ {1, . . . , n} // It can be random
3 if yIt(⟨xIt ,w⟩+ b) ≤ δ then
4 w← w + yItxIt // update after a “mistake”
5 b← b+ yIt

• Typically δ = 0 and w0 = 0, b = 0

– yŷ > 0 vs. yŷ < 0 vs. yŷ = 0, where ŷ = ⟨x,w⟩+ b

• Lazy update: “if it ain’t broke, don’t fix it”

F. Rosenblatt. “The perceptron: A probabilistic model for information storage and organization in the brain”. Psychological Review, vol. 65,
no. 6 (1958), pp. 386–408.

L01 13/29

http://psycnet.apa.org/record/1959-09865-001

Algorithm 4: Perceptron
Input: Dataset D = *(xi, yi) ∈ Rd × {±1} : i = 1, . . . , n+, initialization w ∈ Rd

and b ∈ R, threshold δ ≥ 0
Output: approximate solution w and b

1 for t = 1, 2, . . . do
2 receive index It ∈ {1, . . . , n} // It can be random
3 if yIt(⟨xIt ,w⟩+ b) ≤ δ then
4 w← w + yItxIt // update after a “mistake”
5 b← b+ yIt

• Typically δ = 0 and w0 = 0, b = 0

– yŷ > 0 vs. yŷ < 0 vs. yŷ = 0, where ŷ = ⟨x,w⟩+ b

• Lazy update: “if it ain’t broke, don’t fix it”

F. Rosenblatt. “The perceptron: A probabilistic model for information storage and organization in the brain”. Psychological Review, vol. 65,
no. 6 (1958), pp. 386–408.

L01 13/29

http://psycnet.apa.org/record/1959-09865-001

Perceptron as an Optimization Problem

find w ∈ Rd, b ∈ R such that ∀i, yi(⟨xi,w⟩+ b)> 0

• Perceptron solves the above optimization problem!

– it is iterative: going through the data one by one

– it converges faster if the problem is “easier”

– it behaves benignly even if no solution exists

• Key insight whenever a mistake happens:

y[⟨x,wk+1⟩+ bk+1] = y[⟨x,wk + yx⟩+ bk + y]

= y[⟨x,wk⟩+ bk] + ∥x∥22 + 1

L01 14/29

Perceptron as an Optimization Problem

find w ∈ Rd, b ∈ R such that ∀i, yi(⟨xi,w⟩+ b)> 0

• Perceptron solves the above optimization problem!

– it is iterative: going through the data one by one

– it converges faster if the problem is “easier”

– it behaves benignly even if no solution exists

• Key insight whenever a mistake happens:

y[⟨x,wk+1⟩+ bk+1] = y[⟨x,wk + yx⟩+ bk + y]

= y[⟨x,wk⟩+ bk] + ∥x∥22 + 1

L01 14/29

Perceptron as an Optimization Problem

find w ∈ Rd, b ∈ R such that ∀i, yi(⟨xi,w⟩+ b)> 0

• Perceptron solves the above optimization problem!

– it is iterative: going through the data one by one

– it converges faster if the problem is “easier”

– it behaves benignly even if no solution exists

• Key insight whenever a mistake happens:

y[⟨x,wk+1⟩+ bk+1] = y[⟨x,wk + yx⟩+ bk + y]

= y[⟨x,wk⟩+ bk] + ∥x∥22 + 1

L01 14/29

Perceptron as an Optimization Problem

find w ∈ Rd, b ∈ R such that ∀i, yi(⟨xi,w⟩+ b)> 0

• Perceptron solves the above optimization problem!

– it is iterative: going through the data one by one

– it converges faster if the problem is “easier”

– it behaves benignly even if no solution exists

• Key insight whenever a mistake happens:

y[⟨x,wk+1⟩+ bk+1] = y[⟨x,wk + yx⟩+ bk + y]

= y[⟨x,wk⟩+ bk] + ∥x∥22 + 1

L01 14/29

Perceptron as an Optimization Problem

find w ∈ Rd, b ∈ R such that ∀i, yi(⟨xi,w⟩+ b)> 0

• Perceptron solves the above optimization problem!

– it is iterative: going through the data one by one

– it converges faster if the problem is “easier”

– it behaves benignly even if no solution exists

• Key insight whenever a mistake happens:

y[⟨x,wk+1⟩+ bk+1] = y[⟨x,wk + yx⟩+ bk + y]

= y[⟨x,wk⟩+ bk] + ∥x∥22 + 1

L01 14/29

Perceptron as an Optimization Problem

find w ∈ Rd, b ∈ R such that ∀i, yi(⟨xi,w⟩+ b)> 0

• Perceptron solves the above optimization problem!

– it is iterative: going through the data one by one

– it converges faster if the problem is “easier”

– it behaves benignly even if no solution exists

• Key insight whenever a mistake happens:

y[⟨x,wk+1⟩+ bk+1] = y[⟨x,wk + yx⟩+ bk + y]

= y[⟨x,wk⟩+ bk] + ∥x∥22 + 1

L01 14/29

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/29

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [0, 0], b = 0, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/29

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [0, 0], b = 0, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/29

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [0, 0], b = −1, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/29

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [0, 0], b = −1, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/29

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [1, 0], b = 0, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/29

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [1, 0], b = 0, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/29

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [1, 0], b = −1, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/29

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [1, 0], b = −1, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/29

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [1, 1], b = 0, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/29

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [1, 1], b = 0, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/29

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [1, 1], b = −1, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/29

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [1, 1], b = −1, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/29

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [2, 1], b = 0, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/29

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [2, 1], b = 0, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/29

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [2, 1], b = −1, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/29

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [2, 1], b = −1, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/29

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [2, 2], b = 0, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/29

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [2, 2], b = 0, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/29

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [2, 2], b = −1, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/29

https://github.com/watml/CS794/tree/master/lec-perceptron

Spam Filtering Revisited
x1 x2 x3 x4 x5 x6

and 1 0 0 1 1 1
viagra 1 0 1 0 0 0
the 0 1 1 0 1 1
of 1 1 0 1 0 1

nigeria 1 0 0 0 1 0
y + – + – + –

• Recall the update: w← w + yx, b← b+ y
– w0 = [0, 0, 0, 0, 0], b0 = 0 =⇒ ŷ1 = −
– w1 = [1, 1, 0, 1, 1], b1 = 1 =⇒ ŷ2 = +
– w2 = [1, 1,−1, 0, 1], b2 = 0 =⇒ ŷ3 = −
– w3 = [1, 2, 0, 0, 1], b3 = 1 =⇒ ŷ4 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ5 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ6 = −

L01 16/29

Spam Filtering Revisited
x1 x2 x3 x4 x5 x6

and 1 0 0 1 1 1
viagra 1 0 1 0 0 0
the 0 1 1 0 1 1
of 1 1 0 1 0 1

nigeria 1 0 0 0 1 0
y + – + – + –

• Recall the update: w← w + yx, b← b+ y
– w0 = [0, 0, 0, 0, 0], b0 = 0 =⇒ ŷ1 = −
– w1 = [1, 1, 0, 1, 1], b1 = 1 =⇒ ŷ2 = +
– w2 = [1, 1,−1, 0, 1], b2 = 0 =⇒ ŷ3 = −
– w3 = [1, 2, 0, 0, 1], b3 = 1 =⇒ ŷ4 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ5 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ6 = −

L01 16/29

Spam Filtering Revisited
x1 x2 x3 x4 x5 x6

and 1 0 0 1 1 1
viagra 1 0 1 0 0 0
the 0 1 1 0 1 1
of 1 1 0 1 0 1

nigeria 1 0 0 0 1 0
y + – + – + –

• Recall the update: w← w + yx, b← b+ y
– w0 = [0, 0, 0, 0, 0], b0 = 0 =⇒ ŷ1 = −
– w1 = [1, 1, 0, 1, 1], b1 = 1 =⇒ ŷ2 = +
– w2 = [1, 1,−1, 0, 1], b2 = 0 =⇒ ŷ3 = −
– w3 = [1, 2, 0, 0, 1], b3 = 1 =⇒ ŷ4 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ5 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ6 = −

L01 16/29

Spam Filtering Revisited
x1 x2 x3 x4 x5 x6

and 1 0 0 1 1 1
viagra 1 0 1 0 0 0
the 0 1 1 0 1 1
of 1 1 0 1 0 1

nigeria 1 0 0 0 1 0
y + – + – + –

• Recall the update: w← w + yx, b← b+ y
– w0 = [0, 0, 0, 0, 0], b0 = 0 =⇒ ŷ1 = −
– w1 = [1, 1, 0, 1, 1], b1 = 1 =⇒ ŷ2 = +
– w2 = [1, 1,−1, 0, 1], b2 = 0 =⇒ ŷ3 = −
– w3 = [1, 2, 0, 0, 1], b3 = 1 =⇒ ŷ4 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ5 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ6 = −

L01 16/29

Spam Filtering Revisited
x1 x2 x3 x4 x5 x6

and 1 0 0 1 1 1
viagra 1 0 1 0 0 0
the 0 1 1 0 1 1
of 1 1 0 1 0 1

nigeria 1 0 0 0 1 0
y + – + – + –

• Recall the update: w← w + yx, b← b+ y
– w0 = [0, 0, 0, 0, 0], b0 = 0 =⇒ ŷ1 = −
– w1 = [1, 1, 0, 1, 1], b1 = 1 =⇒ ŷ2 = +
– w2 = [1, 1,−1, 0, 1], b2 = 0 =⇒ ŷ3 = −
– w3 = [1, 2, 0, 0, 1], b3 = 1 =⇒ ŷ4 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ5 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ6 = −

L01 16/29

Spam Filtering Revisited
x1 x2 x3 x4 x5 x6

and 1 0 0 1 1 1
viagra 1 0 1 0 0 0
the 0 1 1 0 1 1
of 1 1 0 1 0 1

nigeria 1 0 0 0 1 0
y + – + – + –

• Recall the update: w← w + yx, b← b+ y
– w0 = [0, 0, 0, 0, 0], b0 = 0 =⇒ ŷ1 = −
– w1 = [1, 1, 0, 1, 1], b1 = 1 =⇒ ŷ2 = +
– w2 = [1, 1,−1, 0, 1], b2 = 0 =⇒ ŷ3 = −
– w3 = [1, 2, 0, 0, 1], b3 = 1 =⇒ ŷ4 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ5 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ6 = −

L01 16/29

Spam Filtering Revisited
x1 x2 x3 x4 x5 x6

and 1 0 0 1 1 1
viagra 1 0 1 0 0 0
the 0 1 1 0 1 1
of 1 1 0 1 0 1

nigeria 1 0 0 0 1 0
y + – + – + –

• Recall the update: w← w + yx, b← b+ y
– w0 = [0, 0, 0, 0, 0], b0 = 0 =⇒ ŷ1 = −
– w1 = [1, 1, 0, 1, 1], b1 = 1 =⇒ ŷ2 = +
– w2 = [1, 1,−1, 0, 1], b2 = 0 =⇒ ŷ3 = −
– w3 = [1, 2, 0, 0, 1], b3 = 1 =⇒ ŷ4 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ5 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ6 = −

L01 16/29

Spam Filtering Revisited
x1 x2 x3 x4 x5 x6

and 1 0 0 1 1 1
viagra 1 0 1 0 0 0
the 0 1 1 0 1 1
of 1 1 0 1 0 1

nigeria 1 0 0 0 1 0
y + – + – + –

• Recall the update: w← w + yx, b← b+ y
– w0 = [0, 0, 0, 0, 0], b0 = 0 =⇒ ŷ1 = −
– w1 = [1, 1, 0, 1, 1], b1 = 1 =⇒ ŷ2 = +
– w2 = [1, 1,−1, 0, 1], b2 = 0 =⇒ ŷ3 = −
– w3 = [1, 2, 0, 0, 1], b3 = 1 =⇒ ŷ4 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ5 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ6 = −

L01 16/29

Spam Filtering Revisited
x1 x2 x3 x4 x5 x6

and 1 0 0 1 1 1
viagra 1 0 1 0 0 0
the 0 1 1 0 1 1
of 1 1 0 1 0 1

nigeria 1 0 0 0 1 0
y + – + – + –

• Recall the update: w← w + yx, b← b+ y
– w0 = [0, 0, 0, 0, 0], b0 = 0 =⇒ ŷ1 = −
– w1 = [1, 1, 0, 1, 1], b1 = 1 =⇒ ŷ2 = +
– w2 = [1, 1,−1, 0, 1], b2 = 0 =⇒ ŷ3 = −
– w3 = [1, 2, 0, 0, 1], b3 = 1 =⇒ ŷ4 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ5 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ6 = −

L01 16/29

Spam Filtering Revisited
x1 x2 x3 x4 x5 x6

and 1 0 0 1 1 1
viagra 1 0 1 0 0 0
the 0 1 1 0 1 1
of 1 1 0 1 0 1

nigeria 1 0 0 0 1 0
y + – + – + –

• Recall the update: w← w + yx, b← b+ y
– w0 = [0, 0, 0, 0, 0], b0 = 0 =⇒ ŷ1 = −
– w1 = [1, 1, 0, 1, 1], b1 = 1 =⇒ ŷ2 = +
– w2 = [1, 1,−1, 0, 1], b2 = 0 =⇒ ŷ3 = −
– w3 = [1, 2, 0, 0, 1], b3 = 1 =⇒ ŷ4 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ5 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ6 = −

L01 16/29

Spam Filtering Revisited
x1 x2 x3 x4 x5 x6

and 1 0 0 1 1 1
viagra 1 0 1 0 0 0
the 0 1 1 0 1 1
of 1 1 0 1 0 1

nigeria 1 0 0 0 1 0
y + – + – + –

• Recall the update: w← w + yx, b← b+ y
– w0 = [0, 0, 0, 0, 0], b0 = 0 =⇒ ŷ1 = −
– w1 = [1, 1, 0, 1, 1], b1 = 1 =⇒ ŷ2 = +
– w2 = [1, 1,−1, 0, 1], b2 = 0 =⇒ ŷ3 = −
– w3 = [1, 2, 0, 0, 1], b3 = 1 =⇒ ŷ4 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ5 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ6 = −

L01 16/29

Spam Filtering Revisited
x1 x2 x3 x4 x5 x6

and 1 0 0 1 1 1
viagra 1 0 1 0 0 0
the 0 1 1 0 1 1
of 1 1 0 1 0 1

nigeria 1 0 0 0 1 0
y + – + – + –

• Recall the update: w← w + yx, b← b+ y
– w0 = [0, 0, 0, 0, 0], b0 = 0 =⇒ ŷ1 = −
– w1 = [1, 1, 0, 1, 1], b1 = 1 =⇒ ŷ2 = +
– w2 = [1, 1,−1, 0, 1], b2 = 0 =⇒ ŷ3 = −
– w3 = [1, 2, 0, 0, 1], b3 = 1 =⇒ ŷ4 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ5 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ6 = −

L01 16/29

Spam Filtering Revisited
x1 x2 x3 x4 x5 x6

and 1 0 0 1 1 1
viagra 1 0 1 0 0 0
the 0 1 1 0 1 1
of 1 1 0 1 0 1

nigeria 1 0 0 0 1 0
y + – + – + –

• Recall the update: w← w + yx, b← b+ y
– w0 = [0, 0, 0, 0, 0], b0 = 0 =⇒ ŷ1 = −
– w1 = [1, 1, 0, 1, 1], b1 = 1 =⇒ ŷ2 = +
– w2 = [1, 1,−1, 0, 1], b2 = 0 =⇒ ŷ3 = −
– w3 = [1, 2, 0, 0, 1], b3 = 1 =⇒ ŷ4 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ5 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ6 = −

L01 16/29

Spam Filtering Revisited
x1 x2 x3 x4 x5 x6

and 1 0 0 1 1 1
viagra 1 0 1 0 0 0
the 0 1 1 0 1 1
of 1 1 0 1 0 1

nigeria 1 0 0 0 1 0
y + – + – + –

• Recall the update: w← w + yx, b← b+ y
– w0 = [0, 0, 0, 0, 0], b0 = 0 =⇒ ŷ1 = −
– w1 = [1, 1, 0, 1, 1], b1 = 1 =⇒ ŷ2 = +
– w2 = [1, 1,−1, 0, 1], b2 = 0 =⇒ ŷ3 = −
– w3 = [1, 2, 0, 0, 1], b3 = 1 =⇒ ŷ4 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ5 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ6 = −

L01 16/29

Perceptron and the 1st AI Winter

Seymour Papert
(1928 – 2016)

Marvin Minsky
(1927 – 2016)

Seymour Papert
(1928 – 2016)

M. L. Minsky and S. A. Papert. “Perceptron”. MIT press, 1969.

L01 17/29

https://mitpress.mit.edu/books/perceptrons-reissue-1988-expanded-edition-new-foreword-leon-bottou

XOR Dataset

x1 x2 x3 x4

0 1 0 1
0 0 1 1

y – + + –

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

–

+

+

–

• Prove that no line can separate + from –
• What happens if we run Perceptron regardless?

L01 18/29

XOR Dataset

x1 x2 x3 x4

0 1 0 1
0 0 1 1

y – + + –

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

–

+

+

–

• Prove that no line can separate + from –
• What happens if we run Perceptron regardless?

L01 18/29

XOR Dataset

x1 x2 x3 x4

0 1 0 1
0 0 1 1

y – + + –

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

–

+

+

–

• Prove that no line can separate + from –
• What happens if we run Perceptron regardless?

L01 18/29

XOR Dataset

x1 x2 x3 x4

0 1 0 1
0 0 1 1

y – + + –

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

–

+

+

–

• Prove that no line can separate + from –
• What happens if we run Perceptron regardless?

L01 18/29

Notation Simplification
• Padding constant 1 to the (start) end of each x:

⟨x,w⟩+ b =

〈(
x

1

)
︸︷︷︸

x

,

(
w

b

)
︸ ︷︷ ︸

w

〉

• Pre-multiply x with its label y:

y[⟨x,w⟩+ b] =

〈
y

(
x

1

)
︸ ︷︷ ︸

a

,

(
w

b

)
︸ ︷︷ ︸

w

〉

• The problem “simplifies” to:

find w ∈ Rp such that A⊤w > 0, where A = [a1, . . . , an] ∈ Rp×n

L01 19/29

Notation Simplification
• Padding constant 1 to the (start) end of each x:

⟨x,w⟩+ b =

〈(
x

1

)
︸︷︷︸

x

,

(
w

b

)
︸ ︷︷ ︸

w

〉

• Pre-multiply x with its label y:

y[⟨x,w⟩+ b] =

〈
y

(
x

1

)
︸ ︷︷ ︸

a

,

(
w

b

)
︸ ︷︷ ︸

w

〉

• The problem “simplifies” to:

find w ∈ Rp such that A⊤w > 0, where A = [a1, . . . , an] ∈ Rp×n

L01 19/29

Notation Simplification
• Padding constant 1 to the (start) end of each x:

⟨x,w⟩+ b =

〈(
x

1

)
︸︷︷︸

x

,

(
w

b

)
︸ ︷︷ ︸

w

〉

• Pre-multiply x with its label y:

y[⟨x,w⟩+ b] =

〈
y

(
x

1

)
︸ ︷︷ ︸

a

,

(
w

b

)
︸ ︷︷ ︸

w

〉

• The problem “simplifies” to:

find w ∈ Rp such that A⊤w > 0, where A = [a1, . . . , an] ∈ Rp×n

L01 19/29

Notation Simplification
• Padding constant 1 to the (start) end of each x:

⟨x,w⟩+ b =

〈(
x

1

)
︸︷︷︸

x

,

(
w

b

)
︸ ︷︷ ︸

w

〉

• Pre-multiply x with its label y:

y[⟨x,w⟩+ b] =

〈
y

(
x

1

)
︸ ︷︷ ︸

a

,

(
w

b

)
︸ ︷︷ ︸

w

〉

• The problem “simplifies” to:

find w ∈ Rp such that A⊤w > 0, where A = [a1, . . . , an] ∈ Rp×n

L01 19/29

Interpreting Perceptron

Theorem:
int cone∗A ̸= ∅ ⇐⇒ int cone∗A ∩ coneA ̸= ∅.

coneA := {Aλ : λ ≥ 0}
cone ∗A := {w : A⊤w ≥ 0}

int cone ∗A := {w : A⊤w > 0}

−1 1 2 3

−1

1

2

3

a2

a1

L01 20/29

Interpreting Perceptron

Theorem:
int cone∗A ̸= ∅ ⇐⇒ int cone∗A ∩ coneA ̸= ∅.

coneA := {Aλ : λ ≥ 0}
cone ∗A := {w : A⊤w ≥ 0}

int cone ∗A := {w : A⊤w > 0}

−1 1 2 3

−1

1

2

3

a2

a1

coneA

L01 20/29

Interpreting Perceptron

Theorem:
int cone∗A ̸= ∅ ⇐⇒ int cone∗A ∩ coneA ̸= ∅.

coneA := {Aλ : λ ≥ 0}
cone ∗A := {w : A⊤w ≥ 0}

int cone ∗A := {w : A⊤w > 0}

−1 1 2 3

−1

1

2

3

a1

L01 20/29

Interpreting Perceptron

Theorem:
int cone∗A ̸= ∅ ⇐⇒ int cone∗A ∩ coneA ̸= ∅.

coneA := {Aλ : λ ≥ 0}
cone ∗A := {w : A⊤w ≥ 0}

int cone ∗A := {w : A⊤w > 0}

−1 1 2 3

−1

1

2

3

a2

L01 20/29

Interpreting Perceptron

Theorem:
int cone∗A ̸= ∅ ⇐⇒ int cone∗A ∩ coneA ̸= ∅.

coneA := {Aλ : λ ≥ 0}
cone ∗A := {w : A⊤w ≥ 0}

int cone ∗A := {w : A⊤w > 0}

−1 1 2 3

−1

1

2

3

a2

a1

coneA int cone∗A

L01 20/29

Interpreting Perceptron

Theorem:
int cone∗A ̸= ∅ ⇐⇒ int cone∗A ∩ coneA ̸= ∅.

coneA := {Aλ : λ ≥ 0}
cone ∗A := {w : A⊤w ≥ 0}

int cone ∗A := {w : A⊤w > 0}

−1 1 2 3

−1

1

2

3

a2

a1

coneA int cone∗A

L01 20/29

Convergence Theorem

Theorem: (Block, 1962; Novikoff, 1962)

Provided that there exists a (strictly) separating hyperplane, the Perceptron iterate
converges to some w. If each training data is selected infinitely often, then for all i,
⟨yixi,w⟩ > δ.

Corollary:

Let δ = 0 and initial w = 0. Then, Perceptron converges after at most (R/γ)2

mistakes, where

R := max
i
∥xi∥2, γ := max

∥w∥2≤1
min

i
⟨yixi,w⟩

H. D. Block. “The perceptron: A model for brain functioning”. Reviews of Modern Physics, vol. 34, no. 1 (1962), pp. 123–135, A. Novikoff.
“On Convergence proofs for perceptrons”. In: Symposium on Mathematical Theory of Automata. 1962, pp. 615–622.L01 21/29

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.34.123
https://cs.uwaterloo.ca/~y328yu/classics/novikoff.pdf

Convergence Theorem

Theorem: (Block, 1962; Novikoff, 1962)

Provided that there exists a (strictly) separating hyperplane, the Perceptron iterate
converges to some w. If each training data is selected infinitely often, then for all i,
⟨yixi,w⟩ > δ.

Corollary:

Let δ = 0 and initial w = 0. Then, Perceptron converges after at most (R/γ)2

mistakes, where

R := max
i
∥xi∥2, γ := max

∥w∥2≤1
min

i
⟨yixi,w⟩

H. D. Block. “The perceptron: A model for brain functioning”. Reviews of Modern Physics, vol. 34, no. 1 (1962), pp. 123–135, A. Novikoff.
“On Convergence proofs for perceptrons”. In: Symposium on Mathematical Theory of Automata. 1962, pp. 615–622.L01 21/29

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.34.123
https://cs.uwaterloo.ca/~y328yu/classics/novikoff.pdf

The Proof
• By assumption:

∃w⋆ s.t. min
i
⟨yixi,w⋆⟩ > 0 ⇐⇒ for some and hence for all s > 0

∃w⋆ s.t. min
i
⟨yixi,w⋆⟩ ≥ s

• Update after a mistake:

⟨wk+1,w
⋆⟩ = ⟨wk + yx,w⋆⟩ = ⟨wk,w

⋆⟩+
≥s︷ ︸︸ ︷

⟨yx,w⋆⟩

∥wk+1∥2 = ∥wk + yx∥2 =
√
∥wk∥22 + ∥x∥22︸︷︷︸

≤R2

+2 ⟨yx,wk⟩︸ ︷︷ ︸
≤δ

• The angle approaches 0 ?

cos∠(wk+1,w
⋆) :=

⟨wk+1,w⋆⟩
∥wk+1∥2 · ∥w⋆∥2

=
Ω(k)

O(
√
k)

?→ 1

L01 22/29

The Proof
• By assumption:

∃w⋆ s.t. min
i
⟨yixi,w⋆⟩ > 0 ⇐⇒ for some and hence for all s > 0

∃w⋆ s.t. min
i
⟨yixi,w⋆⟩ ≥ s

• Update after a mistake:

⟨wk+1,w
⋆⟩ = ⟨wk + yx,w⋆⟩ = ⟨wk,w

⋆⟩+
≥s︷ ︸︸ ︷

⟨yx,w⋆⟩

∥wk+1∥2 = ∥wk + yx∥2 =
√
∥wk∥22 + ∥x∥22︸︷︷︸

≤R2

+2 ⟨yx,wk⟩︸ ︷︷ ︸
≤δ

• The angle approaches 0 ?

cos∠(wk+1,w
⋆) :=

⟨wk+1,w⋆⟩
∥wk+1∥2 · ∥w⋆∥2

=
Ω(k)

O(
√
k)

?→ 1

L01 22/29

The Proof
• By assumption:

∃w⋆ s.t. min
i
⟨yixi,w⋆⟩ > 0 ⇐⇒ for some and hence for all s > 0

∃w⋆ s.t. min
i
⟨yixi,w⋆⟩ ≥ s

• Update after a mistake:

⟨wk+1,w
⋆⟩ = ⟨wk + yx,w⋆⟩ = ⟨wk,w

⋆⟩+
≥s︷ ︸︸ ︷

⟨yx,w⋆⟩

∥wk+1∥2 = ∥wk + yx∥2 =
√
∥wk∥22 + ∥x∥22︸︷︷︸

≤R2

+2 ⟨yx,wk⟩︸ ︷︷ ︸
≤δ

• The angle approaches 0 ?

cos∠(wk+1,w
⋆) :=

⟨wk+1,w⋆⟩
∥wk+1∥2 · ∥w⋆∥2

=
Ω(k)

O(
√
k)

?→ 1

L01 22/29

The Proof
• By assumption:

∃w⋆ s.t. min
i
⟨yixi,w⋆⟩ > 0 ⇐⇒ for some and hence for all s > 0

∃w⋆ s.t. min
i
⟨yixi,w⋆⟩ ≥ s

• Update after a mistake:

⟨wk+1,w
⋆⟩ = ⟨wk + yx,w⋆⟩ = ⟨wk,w

⋆⟩+
≥s︷ ︸︸ ︷

⟨yx,w⋆⟩

∥wk+1∥2 = ∥wk + yx∥2 =
√
∥wk∥22 + ∥x∥22︸︷︷︸

≤R2

+2 ⟨yx,wk⟩︸ ︷︷ ︸
≤δ

• The angle approaches 0 ?

cos∠(wk+1,w
⋆) :=

⟨wk+1,w⋆⟩
∥wk+1∥2 · ∥w⋆∥2

=
Ω(k)

O(
√
k)

?→ 1

L01 22/29

The Margin

√
∥w0∥22 + kR2 + 2kδ · ∥w⋆∥2 ≥ ∥wk∥2 · ∥w⋆∥2

≥ ⟨wk,w
⋆⟩ ≥ ⟨w0,w

⋆⟩+ ks

• With δ = 0 and w0 = 0: the number of mistakes k ≤ R2∥w⋆∥22
s2

• What is s and w⋆? Can we choose them to our advantage?

γ := max
∥w⋆∥2=1

min
i
⟨yixi,w⋆⟩ = max

∥w⋆∥2≤1
min

i
⟨yixi,w⋆⟩

• The larger the margin γ is, the more (linearly) separable the data is, and hence
the faster Perceptron converges!

L01 23/29

The Margin

√
��

��H
HHH∥w0∥22 + kR2 +���HHH2kδ · ∥w⋆∥2 ≥ ∥wk∥2 · ∥w⋆∥2

≥ ⟨wk,w
⋆⟩ ≥�����XXXXX⟨w0,w

⋆⟩+ ks

• With δ = 0 and w0 = 0: the number of mistakes k ≤ R2∥w⋆∥22
s2

• What is s and w⋆? Can we choose them to our advantage?

γ := max
∥w⋆∥2=1

min
i
⟨yixi,w⋆⟩ = max

∥w⋆∥2≤1
min

i
⟨yixi,w⋆⟩

• The larger the margin γ is, the more (linearly) separable the data is, and hence
the faster Perceptron converges!

L01 23/29

The Margin

√
��

��H
HHH∥w0∥22 + kR2 +���HHH2kδ · ∥w⋆∥2 ≥ ∥wk∥2 · ∥w⋆∥2

≥ ⟨wk,w
⋆⟩ ≥�����XXXXX⟨w0,w

⋆⟩+ ks

• With δ = 0 and w0 = 0: the number of mistakes k ≤ R2∥w⋆∥22
s2

• What is s and w⋆? Can we choose them to our advantage?

γ := max
∥w⋆∥2=1

min
i
⟨yixi,w⋆⟩ = max

∥w⋆∥2≤1
min

i
⟨yixi,w⋆⟩

• The larger the margin γ is, the more (linearly) separable the data is, and hence
the faster Perceptron converges!

L01 23/29

The Margin

√
��

��H
HHH∥w0∥22 + kR2 +���HHH2kδ · ∥w⋆∥2 ≥ ∥wk∥2 · ∥w⋆∥2

≥ ⟨wk,w
⋆⟩ ≥�����XXXXX⟨w0,w

⋆⟩+ ks

• With δ = 0 and w0 = 0: the number of mistakes k ≤ R2∥w⋆∥22
s2

• What is s and w⋆? Can we choose them to our advantage?

γ := max
∥w⋆∥2=1

min
i
⟨yixi,w⋆⟩ = max

∥w⋆∥2≤1
min

i
⟨yixi,w⋆⟩

• The larger the margin γ is, the more (linearly) separable the data is, and hence
the faster Perceptron converges!

L01 23/29

The Margin

√
��

��H
HHH∥w0∥22 + kR2 +���HHH2kδ · ∥w⋆∥2 ≥ ∥wk∥2 · ∥w⋆∥2

≥ ⟨wk,w
⋆⟩ ≥�����XXXXX⟨w0,w

⋆⟩+ ks

• With δ = 0 and w0 = 0: the number of mistakes k ≤ R2∥w⋆∥22
s2

• What is s and w⋆? Can we choose them to our advantage?

γ := max
∥w⋆∥2=1

min
i
⟨yixi,w⋆⟩ = max

∥w⋆∥2≤1
min

i
⟨yixi,w⋆⟩

• The larger the margin γ is, the more (linearly) separable the data is, and hence
the faster Perceptron converges!

L01 23/29

The Margin

√
��

��H
HHH∥w0∥22 + kR2 +���HHH2kδ · ∥w⋆∥2 ≥ ∥wk∥2 · ∥w⋆∥2

≥ ⟨wk,w
⋆⟩ ≥�����XXXXX⟨w0,w

⋆⟩+ ks

• With δ = 0 and w0 = 0: the number of mistakes k ≤ R2∥w⋆∥22
s2

• What is s and w⋆? Can we choose them to our advantage?

γ := max
∥w⋆∥2=1

min
i
⟨yixi,w⋆⟩ = max

∥w⋆∥2≤1
min

i
⟨yixi,w⋆⟩

• The larger the margin γ is, the more (linearly) separable the data is, and hence
the faster Perceptron converges!

L01 23/29

But...Is Perceptron Unique?

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

L01 24/29

Support Vector Machines: Primal

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

L01 25/29

Support Vector Machines: Primal

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

L01 25/29

Support Vector Machines: Primal

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

L01 25/29

Support Vector Machines: Primal

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

L01 25/29

Support Vector Machines: Primal

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

L01 25/29

Support Vector Machines: Primal

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

L01 25/29

Support Vector Machines: Primal

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

L01 25/29

Support Vector Machines: Primal

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

L01 25/29

Support Vector Machines: Primal

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

max
w:∀i,ŷiyi>0

min
i=1,...,n

ŷiyi
∥w∥

, where ŷi := ⟨xi,w⟩+ b
L01 25/29

Beyond Separability

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

+
–

–

–

–

• Soft-margin induced by a reasonable loss ℓ and regularizer reg:

minw Êℓ(yŷ) + reg(w), s.t. ŷ := ⟨x,w⟩+ b

• Deeper model through a better feature representation
L01 26/29

Beyond Separability

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

+
–

–

–

–

• Soft-margin induced by a reasonable loss ℓ and regularizer reg:

minw Êℓ(yŷ) + reg(w), s.t. ŷ := ⟨x,w⟩+ b

• Deeper model through a better feature representation
L01 26/29

Beyond Separability

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

+
–

–

–

–

• Soft-margin induced by a reasonable loss ℓ and regularizer reg:

minw Êℓ(yŷ) + reg(w), s.t. ŷ := ⟨x,w⟩+ b

• Deeper model through a better feature representation
L01 26/29

Beyond Separability

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

+
–

–

–

–

• Soft-margin induced by a reasonable loss ℓ and regularizer reg:

minw Êℓ(yŷ) + reg(w), s.t. ŷ := ⟨x,w⟩+ b

• Deeper model through a better feature representation
L01 26/29

Beyond Separability

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

+
–

–

–

–

• Soft-margin induced by a reasonable loss ℓ and regularizer reg:

minw Êℓ(yŷ) + reg(w), s.t. ŷ := ⟨x,w⟩+ b

• Deeper model through a better feature representation
L01 26/29

Beyond Separability

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

+
–

–

–

–

• Soft-margin induced by a reasonable loss ℓ and regularizer reg:

minw Êℓ(yŷ) + reg(w), s.t. ŷ := ⟨x,w⟩+ b

• Deeper model through a better feature representation
L01 26/29

Boundedness Theorem

• Perceptron convergence hinges on the existence of a perfect classifier (i.e., a
separating hyperplane)
• What if such an assumption fails? (It will in practice.)

Theorem: (Minsky and Papert, 1969; Block and Levin, 1970)

The Perceptron iterate (w, b) is always bounded. In particular, if there is no separating
hyperplane, then perceptron cycles.

• “...proof of this theorem is complicated and obscure...” (Minsky and Papert,
1969); see also (Amaldi and Hauser, 2005)

M. L. Minsky and S. A. Papert. “Perceptron”. MIT press, 1969, H. D. Block and S. A. Levin. “On the boundedness of an iterative
procedure for solving a system of linear inequalities”. Proceedings of the American Mathematical Society, vol. 26 (1970), pp. 229–235, E. Amaldi
and R. Hauser. “Boundedness Theorems for the Relaxation Method”. Mathematics of Operations Research, vol. 30, no. 4 (2005), pp. 939–955.

L01 27/29

https://mitpress.mit.edu/books/perceptrons-reissue-1988-expanded-edition-new-foreword-leon-bottou
https://www.ams.org/proc/1970-026-02/S0002-9939-1970-0265383-5/S0002-9939-1970-0265383-5.pdf
https://www.ams.org/proc/1970-026-02/S0002-9939-1970-0265383-5/S0002-9939-1970-0265383-5.pdf
https://pubsonline.informs.org/doi/abs/10.1287/moor.1050.0164

Boundedness Theorem

• Perceptron convergence hinges on the existence of a perfect classifier (i.e., a
separating hyperplane)
• What if such an assumption fails? (It will in practice.)

Theorem: (Minsky and Papert, 1969; Block and Levin, 1970)

The Perceptron iterate (w, b) is always bounded. In particular, if there is no separating
hyperplane, then perceptron cycles.

• “...proof of this theorem is complicated and obscure...” (Minsky and Papert,
1969); see also (Amaldi and Hauser, 2005)

M. L. Minsky and S. A. Papert. “Perceptron”. MIT press, 1969, H. D. Block and S. A. Levin. “On the boundedness of an iterative
procedure for solving a system of linear inequalities”. Proceedings of the American Mathematical Society, vol. 26 (1970), pp. 229–235, E. Amaldi
and R. Hauser. “Boundedness Theorems for the Relaxation Method”. Mathematics of Operations Research, vol. 30, no. 4 (2005), pp. 939–955.

L01 27/29

https://mitpress.mit.edu/books/perceptrons-reissue-1988-expanded-edition-new-foreword-leon-bottou
https://www.ams.org/proc/1970-026-02/S0002-9939-1970-0265383-5/S0002-9939-1970-0265383-5.pdf
https://www.ams.org/proc/1970-026-02/S0002-9939-1970-0265383-5/S0002-9939-1970-0265383-5.pdf
https://pubsonline.informs.org/doi/abs/10.1287/moor.1050.0164

Boundedness Theorem

• Perceptron convergence hinges on the existence of a perfect classifier (i.e., a
separating hyperplane)
• What if such an assumption fails? (It will in practice.)

Theorem: (Minsky and Papert, 1969; Block and Levin, 1970)

The Perceptron iterate (w, b) is always bounded. In particular, if there is no separating
hyperplane, then perceptron cycles.

• “...proof of this theorem is complicated and obscure...” (Minsky and Papert,
1969); see also (Amaldi and Hauser, 2005)

M. L. Minsky and S. A. Papert. “Perceptron”. MIT press, 1969, H. D. Block and S. A. Levin. “On the boundedness of an iterative
procedure for solving a system of linear inequalities”. Proceedings of the American Mathematical Society, vol. 26 (1970), pp. 229–235, E. Amaldi
and R. Hauser. “Boundedness Theorems for the Relaxation Method”. Mathematics of Operations Research, vol. 30, no. 4 (2005), pp. 939–955.

L01 27/29

https://mitpress.mit.edu/books/perceptrons-reissue-1988-expanded-edition-new-foreword-leon-bottou
https://www.ams.org/proc/1970-026-02/S0002-9939-1970-0265383-5/S0002-9939-1970-0265383-5.pdf
https://www.ams.org/proc/1970-026-02/S0002-9939-1970-0265383-5/S0002-9939-1970-0265383-5.pdf
https://pubsonline.informs.org/doi/abs/10.1287/moor.1050.0164

Boundedness Theorem

• Perceptron convergence hinges on the existence of a perfect classifier (i.e., a
separating hyperplane)
• What if such an assumption fails? (It will in practice.)

Theorem: (Minsky and Papert, 1969; Block and Levin, 1970)

The Perceptron iterate (w, b) is always bounded. In particular, if there is no separating
hyperplane, then perceptron cycles.

• “...proof of this theorem is complicated and obscure...” (Minsky and Papert,
1969); see also (Amaldi and Hauser, 2005)

M. L. Minsky and S. A. Papert. “Perceptron”. MIT press, 1969, H. D. Block and S. A. Levin. “On the boundedness of an iterative
procedure for solving a system of linear inequalities”. Proceedings of the American Mathematical Society, vol. 26 (1970), pp. 229–235, E. Amaldi
and R. Hauser. “Boundedness Theorems for the Relaxation Method”. Mathematics of Operations Research, vol. 30, no. 4 (2005), pp. 939–955.

L01 27/29

https://mitpress.mit.edu/books/perceptrons-reissue-1988-expanded-edition-new-foreword-leon-bottou
https://www.ams.org/proc/1970-026-02/S0002-9939-1970-0265383-5/S0002-9939-1970-0265383-5.pdf
https://www.ams.org/proc/1970-026-02/S0002-9939-1970-0265383-5/S0002-9939-1970-0265383-5.pdf
https://pubsonline.informs.org/doi/abs/10.1287/moor.1050.0164

When to Stop Perceptron?

• Online setting: never

• Batch setting

– maximum number of iterations reached, e.g. iter == maxiter

– maximum allowed runtime reached

– training error stops changing

– validation error stops deceasing

– weights change falls below tolerance (if using a diminishing step size)

wt+1 ← wt + ηtyItxIt , ηt → 0

L01 28/29

When to Stop Perceptron?

• Online setting: never

• Batch setting

– maximum number of iterations reached, e.g. iter == maxiter

– maximum allowed runtime reached

– training error stops changing

– validation error stops deceasing

– weights change falls below tolerance (if using a diminishing step size)

wt+1 ← wt + ηtyItxIt , ηt → 0

L01 28/29

When to Stop Perceptron?

• Online setting: never

• Batch setting

– maximum number of iterations reached, e.g. iter == maxiter

– maximum allowed runtime reached

– training error stops changing

– validation error stops deceasing

– weights change falls below tolerance (if using a diminishing step size)

wt+1 ← wt + ηtyItxIt , ηt → 0

L01 28/29

When to Stop Perceptron?

• Online setting: never

• Batch setting

– maximum number of iterations reached, e.g. iter == maxiter

– maximum allowed runtime reached

– training error stops changing

– validation error stops deceasing

– weights change falls below tolerance (if using a diminishing step size)

wt+1 ← wt + ηtyItxIt , ηt → 0

L01 28/29

When to Stop Perceptron?

• Online setting: never

• Batch setting

– maximum number of iterations reached, e.g. iter == maxiter

– maximum allowed runtime reached

– training error stops changing

– validation error stops deceasing

– weights change falls below tolerance (if using a diminishing step size)

wt+1 ← wt + ηtyItxIt , ηt → 0

L01 28/29

When to Stop Perceptron?

• Online setting: never

• Batch setting

– maximum number of iterations reached, e.g. iter == maxiter

– maximum allowed runtime reached

– training error stops changing

– validation error stops deceasing

– weights change falls below tolerance (if using a diminishing step size)

wt+1 ← wt + ηtyItxIt , ηt → 0

L01 28/29

When to Stop Perceptron?

• Online setting: never

• Batch setting

– maximum number of iterations reached, e.g. iter == maxiter

– maximum allowed runtime reached

– training error stops changing

– validation error stops deceasing

– weights change falls below tolerance (if using a diminishing step size)

wt+1 ← wt + ηtyItxIt , ηt → 0

L01 28/29

When to Stop Perceptron?

• Online setting: never

• Batch setting

– maximum number of iterations reached, e.g. iter == maxiter

– maximum allowed runtime reached

– training error stops changing

– validation error stops deceasing

– weights change falls below tolerance (if using a diminishing step size)

wt+1 ← wt + ηtyItxIt , ηt → 0

L01 28/29

Multiclass Perceptron

• One vs. all

– let class k be positive, and all other classes as negative

– train Perceptron wk; in total c imbalanced Perceptrons

– predict according to highest score: ŷ := argmaxk ⟨x,wk⟩

• One vs. one

– let class k be positive,class l be negative, and discard all other classes

– train Perceptron wk,l; in total
(
c
2

)
balanced Perceptrons

– predict by voting: ŷ := argmax
k

∑
l ̸=k

J⟨x,wk,l⟩ > 0K

• Direct extension: assignment

L01 29/29

Multiclass Perceptron

• One vs. all

– let class k be positive, and all other classes as negative

– train Perceptron wk; in total c imbalanced Perceptrons

– predict according to highest score: ŷ := argmaxk ⟨x,wk⟩

• One vs. one

– let class k be positive,class l be negative, and discard all other classes

– train Perceptron wk,l; in total
(
c
2

)
balanced Perceptrons

– predict by voting: ŷ := argmax
k

∑
l ̸=k

J⟨x,wk,l⟩ > 0K

• Direct extension: assignment

L01 29/29

Multiclass Perceptron

• One vs. all

– let class k be positive, and all other classes as negative

– train Perceptron wk; in total c imbalanced Perceptrons

– predict according to highest score: ŷ := argmaxk ⟨x,wk⟩

• One vs. one

– let class k be positive,class l be negative, and discard all other classes

– train Perceptron wk,l; in total
(
c
2

)
balanced Perceptrons

– predict by voting: ŷ := argmax
k

∑
l ̸=k

J⟨x,wk,l⟩ > 0K

• Direct extension: assignment

L01 29/29

Multiclass Perceptron

• One vs. all

– let class k be positive, and all other classes as negative

– train Perceptron wk; in total c imbalanced Perceptrons

– predict according to highest score: ŷ := argmaxk ⟨x,wk⟩

• One vs. one

– let class k be positive,class l be negative, and discard all other classes

– train Perceptron wk,l; in total
(
c
2

)
balanced Perceptrons

– predict by voting: ŷ := argmax
k

∑
l ̸=k

J⟨x,wk,l⟩ > 0K

• Direct extension: assignment

L01 29/29

Multiclass Perceptron

• One vs. all

– let class k be positive, and all other classes as negative

– train Perceptron wk; in total c imbalanced Perceptrons

– predict according to highest score: ŷ := argmaxk ⟨x,wk⟩

• One vs. one

– let class k be positive,class l be negative, and discard all other classes

– train Perceptron wk,l; in total
(
c
2

)
balanced Perceptrons

– predict by voting: ŷ := argmax
k

∑
l ̸=k

J⟨x,wk,l⟩ > 0K

• Direct extension: assignment

L01 29/29

Multiclass Perceptron

• One vs. all

– let class k be positive, and all other classes as negative

– train Perceptron wk; in total c imbalanced Perceptrons

– predict according to highest score: ŷ := argmaxk ⟨x,wk⟩

• One vs. one

– let class k be positive,class l be negative, and discard all other classes

– train Perceptron wk,l; in total
(
c
2

)
balanced Perceptrons

– predict by voting: ŷ := argmax
k

∑
l ̸=k

J⟨x,wk,l⟩ > 0K

• Direct extension: assignment

L01 29/29

Multiclass Perceptron

• One vs. all

– let class k be positive, and all other classes as negative

– train Perceptron wk; in total c imbalanced Perceptrons

– predict according to highest score: ŷ := argmaxk ⟨x,wk⟩

• One vs. one

– let class k be positive,class l be negative, and discard all other classes

– train Perceptron wk,l; in total
(
c
2

)
balanced Perceptrons

– predict by voting: ŷ := argmax
k

∑
l ̸=k

J⟨x,wk,l⟩ > 0K

• Direct extension: assignment

L01 29/29

Multiclass Perceptron

• One vs. all

– let class k be positive, and all other classes as negative

– train Perceptron wk; in total c imbalanced Perceptrons

– predict according to highest score: ŷ := argmaxk ⟨x,wk⟩

• One vs. one

– let class k be positive,class l be negative, and discard all other classes

– train Perceptron wk,l; in total
(
c
2

)
balanced Perceptrons

– predict by voting: ŷ := argmax
k

∑
l ̸=k

J⟨x,wk,l⟩ > 0K

• Direct extension: assignment

L01 29/29

Multiclass Perceptron

• One vs. all

– let class k be positive, and all other classes as negative

– train Perceptron wk; in total c imbalanced Perceptrons

– predict according to highest score: ŷ := argmaxk ⟨x,wk⟩

• One vs. one

– let class k be positive,class l be negative, and discard all other classes

– train Perceptron wk,l; in total
(
c
2

)
balanced Perceptrons

– predict by voting: ŷ := argmax
k

∑
l ̸=k

J⟨x,wk,l⟩ > 0K

• Direct extension: assignment

L01 29/29

Multiclass Perceptron

• One vs. all

– let class k be positive, and all other classes as negative

– train Perceptron wk; in total c imbalanced Perceptrons

– predict according to highest score: ŷ := argmaxk ⟨x,wk⟩

• One vs. one

– let class k be positive,class l be negative, and discard all other classes

– train Perceptron wk,l; in total
(
c
2

)
balanced Perceptrons

– predict by voting: ŷ := argmax
k

∑
l ̸=k

J⟨x,wk,l⟩ > 0K

• Direct extension: assignment

L01 29/29

