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Supervised Learning Z hotdog app
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https://www.youtube.com/watch?v=tWwCK95X6go
https://www.kaggle.com/datasets/yashvrdnjain/hotdognothotdog
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example results
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https://www.youtube.com/watch?v=tWwCK95X6go
https://towardsdatascience.com/hot-dog-or-not-hot-dog-ab9d67f20674


What a Dataset Looks Like

x1 x2 x3 x4 · · · xn x x′

Rd ∋


0 1 0 1 · · · 1 1 0.9
0 0 1 1 · · · 0 1 1.1
...

...
...

... . . . ...
...

...
1 0 1 0 · · · 1 1 −0.1

y + + – + · · · – ? ?!

• Each column is a data point: n in total; each has d features

• Bottom y is the label vector; binary in this case

• x and x′ are test samples whose labels need to be predicted
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Spam Filtering Example

x1 x2 x3 x4 x5 x6

and 1 0 0 1 1 1
viagra 1 0 1 0 0 0
the 0 1 1 0 1 1
of 1 1 0 1 0 1

nigeria 1 0 0 0 1 0
y + – + – + –

• Training set: X=[x1, . . . ,xn]∈Rd×n, y=[y1, . . . , yn]∈{±1}n

– each column of X is an email xi ∈ Rd, each with d (binary) features

– each entry in y is a label yi ∈ {±1}, indicating spam or not

• Bag-of-words representation of text (email)
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Batch vs. Online

• Batch learning

– interested in performance on test set X ′

– training set (X, y) is just a means

– statistical assumption on X and X ′

• Online learning

– data comes one by one (streaming)

– need to predict y before knowing its true value

– interested in making as few mistakes as possible

– compare against some baseline
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Thought Experiment

• Repeat the following game:

– observe instance xi

– predict its label ŷi (in whatever way you like)

– reveal the true label yi

– suffer a mistake if ŷi ̸= yi

• How many mistakes in the worst-case?

• Predict first, reveal next: no peeking into the future!
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Linear Threshold Function

• Linear function: ∀α, β ∈ R,∀x, z ∈ Rd,

f(αx+ βz) = α · f(x) + β · f(z)
• Equivalently, ∃w ∈ Rd such that f(x) = ⟨x,w⟩ :=

∑
j xjwj

• Affine function: β = 1− α, or equivalently ∃w ∈ Rd, b ∈ R such that
f(x) = ⟨x,w⟩+ b

• Thresholding: sign(t) =


1, t > 0

−1, t < 0

?, t = 0

• Combined together: ŷ = sign(⟨x,w⟩+ b︸ ︷︷ ︸
ŷ

) =


1, ŷ > 0

−1, ŷ < 0

?, ŷ = 0
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ŷ

) =


1, ŷ > 0
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Geometrically

+

+

+

–

− b

w2

− b

w1

w

⟨x,w⟩+ b = 0

x1

x2
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Biological Inspiration

W. S. McCulloch and W. Pitts. “A logical calculus of the ideas immanent in nervous activity”. The bulletin of mathematical biophysics,
vol. 5, no. 4 (1943), pp. 115–133.

L01 8/29

https://doi.org/10.1007/BF02478259


sign function

∑
w2x2

...
...

wdxd

w1x1

b1

inputs weights

inner product
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w2x2
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...

wdxd

w1x1
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inputs weights

inner product nonlinear
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OR Dataset

x1 x2 x3 x4

0 1 0 1
0 0 1 1

y – + + +

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–
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The Early Hype in AI...

Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

NEW NAVY DEVICE LEARNS BY DOING: Psychologist Shows Embryo of Computer Designed to Read and Grow ...
New York Times (1923-); Jul 8, 1958; ProQuest Historical Newspapers: The New York Times
pg. 25

Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

NEW NAVY DEVICE LEARNS BY DOING: Psychologist Shows Embryo of Computer Designed to Read and Grow ...
New York Times (1923-); Jul 8, 1958; ProQuest Historical Newspapers: The New York Times
pg. 25

Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

NEW NAVY DEVICE LEARNS BY DOING: Psychologist Shows Embryo of Computer Designed to Read and Grow ...
New York Times (1923-); Jul 8, 1958; ProQuest Historical Newspapers: The New York Times
pg. 25

New York Times, 1958
L01 11/29

http://search.proquest.com.proxy.lib.uwaterloo.ca/historical-newspapers/new-navy-device-learns-doing/docview/114558973/se-2?accountid=14906


...due to Perceptron

Frank Rosenblatt
(1928 – 1971)

L01 12/29



Algorithm 1: Perceptron
Input: Dataset D = *(xi, yi) ∈ Rd × {±1} : i = 1, . . . , n+, initialization w ∈ Rd

and b ∈ R, threshold δ ≥ 0
Output: approximate solution w and b

1 for t = 1, 2, . . . do
2 receive index It ∈ {1, . . . , n} // It can be random
3 if yIt(⟨xIt ,w⟩+ b) ≤ δ then
4 w← w + yItxIt // update after a “mistake”
5 b← b+ yIt

• Typically δ = 0 and w0 = 0, b = 0

– yŷ > 0 vs. yŷ < 0 vs. yŷ = 0, where ŷ = ⟨x,w⟩+ b

• Lazy update: “if it ain’t broke, don’t fix it”

F. Rosenblatt. “The perceptron: A probabilistic model for information storage and organization in the brain”. Psychological Review, vol. 65,
no. 6 (1958), pp. 386–408.

L01 13/29

http://psycnet.apa.org/record/1959-09865-001
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Perceptron as an Optimization Problem

find w ∈ Rd, b ∈ R such that ∀i, yi(⟨xi,w⟩+ b)> 0

• Perceptron solves the above optimization problem!

– it is iterative: going through the data one by one

– it converges faster if the problem is “easier”

– it behaves benignly even if no solution exists

• Key insight whenever a mistake happens:

y[⟨x,wk+1⟩+ bk+1] = y[⟨x,wk + yx⟩+ bk + y]

= y[⟨x,wk⟩+ bk] + ∥x∥22 + 1

L01 14/29
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Spam Filtering Revisited
x1 x2 x3 x4 x5 x6

and 1 0 0 1 1 1
viagra 1 0 1 0 0 0
the 0 1 1 0 1 1
of 1 1 0 1 0 1

nigeria 1 0 0 0 1 0
y + – + – + –

• Recall the update: w← w + yx, b← b+ y
– w0 = [0, 0, 0, 0, 0], b0 = 0 =⇒ ŷ1 = −
– w1 = [1, 1, 0, 1, 1], b1 = 1 =⇒ ŷ2 = +
– w2 = [1, 1,−1, 0, 1], b2 = 0 =⇒ ŷ3 = −
– w3 = [1, 2, 0, 0, 1], b3 = 1 =⇒ ŷ4 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ5 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ6 = −
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– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ6 = −
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– w3 = [1, 2, 0, 0, 1], b3 = 1 =⇒ ŷ4 = +
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– w3 = [1, 2, 0, 0, 1], b3 = 1 =⇒ ŷ4 = +
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– w1 = [1, 1, 0, 1, 1], b1 = 1 =⇒ ŷ2 = +
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– w2 = [1, 1,−1, 0, 1], b2 = 0 =⇒ ŷ3 = −
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Perceptron and the 1st AI Winter

Seymour Papert
(1928 – 2016)

Marvin Minsky
(1927 – 2016)

Seymour Papert
(1928 – 2016)

M. L. Minsky and S. A. Papert. “Perceptron”. MIT press, 1969.
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XOR Dataset

x1 x2 x3 x4

0 1 0 1
0 0 1 1

y – + + –
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1

1.5

–

+

+

–

• Prove that no line can separate + from –
• What happens if we run Perceptron regardless?
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Notation Simplification
• Padding constant 1 to the (start) end of each x:

⟨x,w⟩+ b =

〈(
x

1

)
︸︷︷︸

x

,

(
w

b

)
︸ ︷︷ ︸

w

〉

• Pre-multiply x with its label y:

y[⟨x,w⟩+ b] =

〈
y

(
x

1

)
︸ ︷︷ ︸

a

,

(
w

b

)
︸ ︷︷ ︸

w

〉

• The problem “simplifies” to:

find w ∈ Rp such that A⊤w > 0, where A = [a1, . . . , an] ∈ Rp×n
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find w ∈ Rp such that A⊤w > 0, where A = [a1, . . . , an] ∈ Rp×n
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Interpreting Perceptron

Theorem:
int cone∗A ̸= ∅ ⇐⇒ int cone∗A ∩ coneA ̸= ∅.

coneA := {Aλ : λ ≥ 0}
cone ∗A := {w : A⊤w ≥ 0}

int cone ∗A := {w : A⊤w > 0}
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Convergence Theorem

Theorem: (Block, 1962; Novikoff, 1962)

Provided that there exists a (strictly) separating hyperplane, the Perceptron iterate
converges to some w. If each training data is selected infinitely often, then for all i,
⟨yixi,w⟩ > δ.

Corollary:

Let δ = 0 and initial w = 0. Then, Perceptron converges after at most (R/γ)2

mistakes, where

R := max
i
∥xi∥2, γ := max

∥w∥2≤1
min

i
⟨yixi,w⟩

H. D. Block. “The perceptron: A model for brain functioning”. Reviews of Modern Physics, vol. 34, no. 1 (1962), pp. 123–135, A. Novikoff.
“On Convergence proofs for perceptrons”. In: Symposium on Mathematical Theory of Automata. 1962, pp. 615–622.L01 21/29

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.34.123
https://cs.uwaterloo.ca/~y328yu/classics/novikoff.pdf
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The Proof
• By assumption:

∃w⋆ s.t. min
i
⟨yixi,w⋆⟩ > 0 ⇐⇒ for some and hence for all s > 0

∃w⋆ s.t. min
i
⟨yixi,w⋆⟩ ≥ s

• Update after a mistake:

⟨wk+1,w
⋆⟩ = ⟨wk + yx,w⋆⟩ = ⟨wk,w

⋆⟩+
≥s︷ ︸︸ ︷

⟨yx,w⋆⟩

∥wk+1∥2 = ∥wk + yx∥2 =
√
∥wk∥22 + ∥x∥22︸︷︷︸

≤R2

+2 ⟨yx,wk⟩︸ ︷︷ ︸
≤δ

• The angle approaches 0 ?

cos∠(wk+1,w
⋆) :=

⟨wk+1,w⋆⟩
∥wk+1∥2 · ∥w⋆∥2

=
Ω(k)

O(
√
k)

?→ 1
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The Margin

√
∥w0∥22 + kR2 + 2kδ · ∥w⋆∥2 ≥ ∥wk∥2 · ∥w⋆∥2

≥ ⟨wk,w
⋆⟩ ≥ ⟨w0,w

⋆⟩+ ks

• With δ = 0 and w0 = 0: the number of mistakes k ≤ R2∥w⋆∥22
s2

• What is s and w⋆? Can we choose them to our advantage?

γ := max
∥w⋆∥2=1

min
i
⟨yixi,w⋆⟩ = max

∥w⋆∥2≤1
min

i
⟨yixi,w⋆⟩

• The larger the margin γ is, the more (linearly) separable the data is, and hence
the faster Perceptron converges!
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But...Is Perceptron Unique?
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Support Vector Machines: Primal
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Support Vector Machines: Primal
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+

–

max
w:∀i,ŷiyi>0

min
i=1,...,n

ŷiyi
∥w∥

, where ŷi := ⟨xi,w⟩+ b
L01 25/29



Beyond Separability
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• Soft-margin induced by a reasonable loss ℓ and regularizer reg:

minw Êℓ(yŷ) + reg(w), s.t. ŷ := ⟨x,w⟩+ b

• Deeper model through a better feature representation
L01 26/29
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Boundedness Theorem

• Perceptron convergence hinges on the existence of a perfect classifier (i.e., a
separating hyperplane)
• What if such an assumption fails? (It will in practice.)

Theorem: (Minsky and Papert, 1969; Block and Levin, 1970)

The Perceptron iterate (w, b) is always bounded. In particular, if there is no separating
hyperplane, then perceptron cycles.

• “...proof of this theorem is complicated and obscure...” (Minsky and Papert,
1969); see also (Amaldi and Hauser, 2005)

M. L. Minsky and S. A. Papert. “Perceptron”. MIT press, 1969, H. D. Block and S. A. Levin. “On the boundedness of an iterative
procedure for solving a system of linear inequalities”. Proceedings of the American Mathematical Society, vol. 26 (1970), pp. 229–235, E. Amaldi
and R. Hauser. “Boundedness Theorems for the Relaxation Method”. Mathematics of Operations Research, vol. 30, no. 4 (2005), pp. 939–955.

L01 27/29
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When to Stop Perceptron?

• Online setting: never

• Batch setting

– maximum number of iterations reached, e.g. iter == maxiter

– maximum allowed runtime reached

– training error stops changing

– validation error stops deceasing

– weights change falls below tolerance (if using a diminishing step size)

wt+1 ← wt + ηtyItxIt , ηt → 0
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Multiclass Perceptron

• One vs. all

– let class k be positive, and all other classes as negative

– train Perceptron wk; in total c imbalanced Perceptrons

– predict according to highest score: ŷ := argmaxk ⟨x,wk⟩

• One vs. one

– let class k be positive,class l be negative, and discard all other classes

– train Perceptron wk,l; in total
(
c
2

)
balanced Perceptrons

– predict by voting: ŷ := argmax
k

∑
l ̸=k

J⟨x,wk,l⟩ > 0K

• Direct extension: assignment
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• One vs. one

– let class k be positive,class l be negative, and discard all other classes

– train Perceptron wk,l; in total
(
c
2

)
balanced Perceptrons

– predict by voting: ŷ := argmax
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k

∑
l ̸=k

J⟨x,wk,l⟩ > 0K

• Direct extension: assignment

L01 29/29



Multiclass Perceptron

• One vs. all

– let class k be positive, and all other classes as negative

– train Perceptron wk; in total c imbalanced Perceptrons

– predict according to highest score: ŷ := argmaxk ⟨x,wk⟩
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