CS480/680: Introduction to Machine Learning

Lec 02: Linear Regression

Yaoliang Yu

FACULTY OF MATHEMATICS DAVID R. CHERITON SCHOOL OF COMPUTER SCIENCE

May 13, 2024

Regression

- Given training data $\chi\left(x_{i}, y_{i}\right) \int$, find $f: \mathcal{X} \rightarrow \mathcal{Y}$ such that $f\left(x_{i}\right) \approx y_{i}$

Regression

- Given training data $\left\{\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right) \int\right.$, find $f: \mathcal{X} \rightarrow \mathcal{Y}$ such that $f\left(\mathbf{x}_{i}\right) \approx y_{i}$

Regression

- Given training data $\left\{\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right) \int\right.$, find $f: \mathcal{X} \rightarrow \mathcal{Y}$ such that $f\left(\mathbf{x}_{i}\right) \approx y_{i}$
$-\mathbf{x}_{i} \in \mathcal{X} \subseteq \mathbb{R}^{d}$: feature vector for the i-th training example

Regression

- Given training data $\mathcal{}\left(\mathrm{x}_{i}, \mathrm{y}_{i}\right) \int$, find $f: \mathcal{X} \rightarrow \mathcal{Y}$ such that $f\left(\mathrm{x}_{i}\right) \approx y_{i}$
$-\mathbf{x}_{i} \in \mathcal{X} \subseteq \mathbb{R}^{d}$: feature vector for the i-th training example
$-\mathrm{y}_{i} \in \mathcal{Y} \subseteq \mathbb{R}^{t}: t$ responses, e.g. $t=1$ or even $t=\infty$

Some Examples

- Prior knowledge on the functional form of
- Linear vs. nonlinear

Some Examples

- Prior knowledge on the functional form of f
- Linear vs. nonlinear

Some Examples

- Prior knowledge on the functional form of f
- Linear vs. nonlinear

The Difficulty

Theorem: Exact interpolation is always possible
For any ${ }^{*}$ finite training data $\chi\left(\mathrm{x}_{i}, \mathrm{y}_{i}\right): i=1, \ldots, n \int$, there exist infinitely many functions f such that for all i,

$$
f\left(\mathbf{x}_{i}\right)=\mathbf{y}_{i} .
$$

- No amount of training data is enough to decide on a unique f !
- On new data x , our prediction $\hat{\mathrm{y}}=f(\mathrm{x})$ can vary wildly!
- This is where prior knowledge of f comes into play
\qquad "the simplest explanation is usually the correct one"

The Difficulty

Theorem: Exact interpolation is always possible
For any ${ }^{*}$ finite training data $\chi\left(x_{i}, y_{i}\right): i=1, \ldots, n \int$, there exist infinitely many functions f such that for all i,

$$
f\left(\mathbf{x}_{i}\right)=\mathbf{y}_{i} .
$$

- No amount of training data is enough to decide on a unique f !
- On new data x, our prediction
can vary wildy!
- This is where prior knowledge of f comes into play
-

"the simplest explanation is usually the correct one

The Difficulty

Theorem: Exact interpolation is always possible
For any ${ }^{*}$ finite training data $\left.\ell\left(x_{i}, y_{i}\right): i=1, \ldots, n\right\}$, there exist infinitely many functions f such that for all i,

$$
f\left(\mathbf{x}_{i}\right)=\mathbf{y}_{i} .
$$

- No amount of training data is enough to decide on a unique f !
- On new data \mathbf{x}, our prediction $\hat{\mathrm{y}}=f(\mathrm{x})$ can vary wildly!
- This is where prior knowledge of f comes into play
-

The Difficulty

Theorem: Exact interpolation is always possible
For any ${ }^{*}$ finite training data $\left.\ell\left(x_{i}, y_{i}\right): i=1, \ldots, n\right\}$, there exist infinitely many functions f such that for all i,

$$
f\left(\mathbf{x}_{i}\right)=\mathbf{y}_{i} .
$$

- No amount of training data is enough to decide on a unique f !
- On new data \mathbf{x}, our prediction $\hat{\mathrm{y}}=f(\mathrm{x})$ can vary wildly!
- This is where prior knowledge of f comes into play

The Difficulty

Theorem: Exact interpolation is always possible
For any ${ }^{*}$ finite training data $\left.\ell\left(x_{i}, y_{i}\right): i=1, \ldots, n\right\}$, there exist infinitely many functions f such that for all i,

$$
f\left(\mathbf{x}_{i}\right)=\mathbf{y}_{i} .
$$

- No amount of training data is enough to decide on a unique f !
- On new data \mathbf{x}, our prediction $\hat{\mathrm{y}}=f(\mathrm{x})$ can vary wildly!
- This is where prior knowledge of f comes into play
- Occam's razor: "the simplest explanation is usually the correct one"

Statistical Learning

- Training and test data are both iid samples from the same unknown distribution \mathbb{P}
regression
- Needs to know the distribution \mathbb{P}, i.e., all pairs (X, Y) !
- Changing the square loss changes the regression function accordingly

Statistical Learning

- Training and test data are both iid samples from the same unknown distribution \mathbb{P} regression:
- Needs to know the distribution
- Changing the square loss changes the regression function accordingly

Statistical Learning

- Training and test data are both iid samples from the same unknown distribution \mathbb{P}
- $\left(\mathrm{X}_{i}, \mathrm{Y}_{i}\right) \sim \mathbb{P}$ and $(\mathrm{X}, \mathrm{Y}) \sim \mathbb{P}$
regression:
- Needs to know the distribution pairs
- Changing the square loss changes the regression function accordingly

Statistical Learning

- Training and test data are both iid samples from the same unknown distribution \mathbb{P}
$-\left(X_{i}, Y_{i}\right) \sim \mathbb{P}$ and $(X, Y) \sim \mathbb{P}$
- Least squares regression: $\min _{f: \mathcal{X} \rightarrow \mathcal{Y}} \mathbb{E}\|f(X)-Y\|_{2}^{2}$
- Needs to know the distribution

```
pairs
```

- Changing the square loss changes the regression function accordingly

Statistical Learning

- Training and test data are both iid samples from the same unknown distribution \mathbb{P}
$-\left(X_{i}, Y_{i}\right) \sim \mathbb{P}$ and $(X, Y) \sim \mathbb{P}$
- Least squares regression: $\min _{f: \mathcal{X} \rightarrow \mathcal{Y}} \mathbb{E}\|f(X)-Y\|_{2}^{2}$
- Regression function: $m(\mathbf{x})=\mathbb{E}[Y \mid X=\mathbf{x}]$
- Needs to know the distribution
- Changing the square loss changes the regression function accordingly

Statistical Learning

- Training and test data are both iid samples from the same unknown distribution \mathbb{P}
$-\left(X_{i}, Y_{i}\right) \sim \mathbb{P}$ and $(X, Y) \sim \mathbb{P}$
- Least squares regression: $\min _{f: \mathcal{X} \rightarrow \mathcal{Y}} \mathbb{E}\|f(\mathrm{X})-\mathrm{Y}\|_{2}^{2}$
- Regression function: $m(\mathrm{x})=\mathbb{E}[\mathrm{Y} \mid \mathrm{X}=\mathrm{x}]$
- Needs to know the distribution P, i.e., all pairs (X, Y)!
- Changing the square loss changes the regression function accordingly

Statistical Learning

- Training and test data are both iid samples from the same unknown distribution \mathbb{P}
$-\left(X_{i}, Y_{i}\right) \sim \mathbb{P}$ and $(X, Y) \sim \mathbb{P}$
- Least squares regression: $\min _{f: \mathcal{X} \rightarrow \mathcal{Y}} \mathbb{E}\|f(\mathrm{X})-\mathrm{Y}\|_{2}^{2}$
- Regression function: $m(\mathrm{x})=\mathbb{E}[\mathrm{Y} \mid \mathrm{X}=\mathrm{x}]$
- Needs to know the distribution P, i.e., all pairs (X, Y)!
- Changing the square loss changes the regression function accordingly

$$
\begin{aligned}
\mathbb{E}\|f(\mathbf{X})-\mathrm{Y}\|_{2}^{2} & =\mathbb{E}\|f(\mathbf{X})-m(\mathbf{X})+m(\mathbf{X})-\mathrm{Y}\|_{2}^{2} \\
& =\mathbb{E}\|f(\mathbf{X})-m(\mathbf{X})\|_{2}^{2}+\mathbb{E}\|m(\mathbf{X})-\mathrm{Y}\|_{2}^{2} \\
& =\underbrace{\mathbb{E}\|f(\mathbf{X})-m(\mathbf{X})\|_{2}^{2}}_{\text {bias }^{2}}+\underbrace{\mathbb{E}\|m(\mathbf{X})-\mathbf{Y}\|_{2}^{2}}_{\text {noise variance }}
\end{aligned}
$$

- The noise variance does not depend on our choice of f !
- We aim to choose $f \approx m$ to minimize bias hence squared error

Bias-Variance Decomposition

$$
\begin{aligned}
\mathbb{E}\|f(\mathbf{X})-\mathrm{Y}\|_{2}^{2} & =\mathbb{E}\|f(\mathbf{X})-m(\mathbf{X})+m(\mathbf{X})-\mathbf{Y}\|_{2}^{2} \\
= & \mathbb{E}\|f(\mathbf{X})-m(\mathbf{X})\|_{2}^{2}+\mathbb{E}\|m(\mathbf{X})-\mathrm{Y}\|_{2}^{2} \\
& +2 \mathbb{E}\langle f(\mathbf{X})-m(\mathbf{X}), m(\mathbf{X})-\mathrm{Y}\rangle \\
= & \underbrace{\mathbb{E}\|f(\mathbf{X})-m(\mathbf{X})\|_{2}^{2}}_{\text {bias }^{2}}+\underbrace{\mathbb{E}\|m(\mathbf{X})-\mathbf{Y}\|_{2}^{2}}_{\text {noise variance }}
\end{aligned}
$$

- The noise variance does not depend on our choice of f !
it is an inherent measure of the difficulty of our problem
- We aim to choose
to minimize bias hence squared error

Bias-Variance Decomposition

$$
\begin{aligned}
& \mathbb{E}\|f(\mathbf{X})-\mathrm{Y}\|_{2}^{2}=\mathbb{E}\|f(\mathbf{X})-m(\mathbf{X})+m(\mathbf{X})-\mathbf{Y}\|_{2}^{2} \\
&=\mathbb{E}\|f(\mathbf{X})-m(\mathbf{X})\|_{2}^{2}+\mathbb{E}\|m(\mathbf{X})-\mathrm{Y}\|_{2}^{2} \\
&+2 \mathbb{E}\langle f(\mathbf{X})-m(\mathbf{X}), m(\mathbf{X})-\mathbf{Y}\rangle \\
&=\underbrace{\mathbb{E}\|f(\mathbf{X})-m(\mathbf{X})\|_{2}^{2}}_{\text {bias }^{2}}+\underbrace{\mathbb{E}\|m(\mathbf{X})-\mathbf{Y}\|_{2}^{2}}_{\text {noise variance }}
\end{aligned}
$$

- The noise variance does not depend on our choice of f !
- it is an inherent measure of the difficulty of our problem
- We aim to choose $f \approx m$ to minimize bias hence squared error

Bias-Variance Decomposition

$$
\begin{aligned}
\mathbb{E}\|f(\mathbf{X})-\mathrm{Y}\|_{2}^{2} & =\mathbb{E}\|f(\mathbf{X})-m(\mathbf{X})+m(\mathbf{X})-\mathrm{Y}\|_{2}^{2} \\
& =\mathbb{E}\|f(\mathbf{X})-m(\mathbf{X})\|_{2}^{2}+\mathbb{E}\|m(\mathbf{X})-\mathrm{Y}\|_{2}^{2} \\
& =\underbrace{\mathbb{E}\|f(\mathbf{X})-m(\mathbf{X})\|_{2}^{2}}_{\text {bias }^{2}}+\underbrace{\mathbb{E}\|m(\mathbf{X})-\mathrm{Y}\|_{2}^{2}}_{\text {noise variance }}
\end{aligned}
$$

- The noise variance does not depend on our choice of f !
- it is an inherent measure of the difficulty of our problem
- We aim to choose $f \approx m$ to minimize bias hence squared error

Sampling \rightarrow Training

$$
\min _{f: X \rightarrow \mathcal{Y}} \hat{\mathbb{E}}\|f(\mathrm{X})-\mathrm{Y}\|_{2}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left\|f\left(\mathrm{X}_{i}\right)-\mathrm{Y}_{i}\right\|_{2}^{2}
$$

- Replace expectation with sample average:
- Finite training set \rightarrow exact interpolation paradox!
- Need to restrict the form of f, using prior knowledge
- (Uniform) law of large numbers: as training data size $n \rightarrow \infty$, \mathbb{T} - \mathbb{F} and (hopafully) argmin \mathbb{I} - argmin $\mathbb{I F}$

Sampling \rightarrow Training

$$
\min _{f: X \rightarrow Y} \hat{\mathbb{E}}\|f(X)-Y\|_{2}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left\|f\left(X_{i}\right)-Y_{i}\right\|_{2}^{2}
$$

- Replace expectation with sample average: $\left(\mathrm{X}_{i}, \mathrm{Y}_{i}\right)^{\text {i.i.d. }} P$
- Finite training set \rightarrow exact interpolation paradox!
- Need to restrict the form of f, using prior knowledge
-

(Uniform) law of large numbers: as training data size

Sampling \rightarrow Training

$$
\min _{f: X \rightarrow Y} \hat{\mathbb{E}}\|f(X)-Y\|_{2}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left\|f\left(X_{i}\right)-Y_{i}\right\|_{2}^{2}
$$

- Replace expectation with sample average: $\left(\mathrm{X}_{i}, \mathrm{Y}_{i}\right) \stackrel{i . i . d .}{\sim} P$
- Finite training set \rightarrow exact interpolation paradox!
- Need to restrict the form of f, using prior knowledge as training data size

Sampling \rightarrow Training

$$
\min _{f: X \rightarrow Y} \hat{\mathbb{E}}\|f(X)-Y\|_{2}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left\|f\left(X_{i}\right)-Y_{i}\right\|_{2}^{2}
$$

- Replace expectation with sample average: $\left(\mathrm{X}_{i}, \mathrm{Y}_{i}\right) \stackrel{i . i . d .}{\sim} P$
- Finite training set \rightarrow exact interpolation paradox!
- Need to restrict the form of f, using prior knowledge

$$
\min _{f: X \rightarrow Y} \hat{\mathbb{E}}\|f(X)-Y\|_{2}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left\|f\left(X_{i}\right)-Y_{i}\right\|_{2}^{2}
$$

- Replace expectation with sample average: $\left(\mathrm{X}_{i}, \mathrm{Y}_{i}\right)^{i \cdot \frac{i . d .}{\sim}} P$
- Finite training set \rightarrow exact interpolation paradox!
- Need to restrict the form of f, using prior knowledge
- (Uniform) law of large numbers: as training data size $n \rightarrow \infty$,

$$
\hat{\mathbb{E}} \rightarrow \mathbb{E} \text { and (hopefully) argmin } \hat{\mathbb{E}} \rightarrow \operatorname{argmin} \mathbb{E}
$$

Linear Least Squares Regression

- Affine function:
- Padding: $\mathrm{x} \leftarrow\binom{\mathrm{x}}{1}, \mathrm{~W} \leftarrow[W, \mathrm{~b}]$, hence $f(\mathrm{x})=\mathrm{W} \mathrm{x}$
- In matrix form:

Linear Least Squares Regression

- Affine function: $f(\mathrm{x})=W \mathrm{x}+\mathrm{b}$ with $W \in \mathbb{R}^{t \times d}$ and $\mathrm{b} \in \mathbb{R}^{t}$
- Padding: $x \leftarrow\binom{\mathrm{x}}{1}, \mathrm{~W} \leftarrow[W, \mathrm{~b}]$, hence $f(\mathrm{x})=\mathrm{W} \mathrm{x}$
- In matrix form:

Linear Least Squares Regression

- Affine function: $f(\mathrm{x})=W \mathrm{x}+\mathrm{b}$ with $W \in \mathbb{R}^{t \times d}$ and $\mathrm{b} \in \mathbb{R}^{t}$
- Padding: $\mathrm{x} \leftarrow\binom{\mathrm{x}}{1}, \mathrm{~W} \leftarrow[W, \mathrm{~b}]$, hence $f(\mathrm{x})=\mathbf{W} \mathbf{x}$
- In matrix form:

Linear Least Squares Regression

- Affine function: $f(\mathrm{x})=W \mathrm{x}+\mathrm{b}$ with $W \in \mathbb{R}^{t \times d}$ and $\mathrm{b} \in \mathbb{R}^{t}$
- Padding: $\mathbf{x} \leftarrow\binom{\mathrm{x}}{1}, \mathbf{W} \leftarrow[W, \mathrm{~b}]$, hence $f(\mathrm{x})=\mathbf{W} \mathbf{x}$
- In matrix form: $\frac{1}{n} \sum_{i}\left\|f\left(\mathbf{x}_{i}\right)-\mathrm{y}_{i}\right\|_{2}^{2}=\frac{1}{n}\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{\mathrm{F}}^{2}$

Linear Least Squares Regression

- Affine function: $f(\mathrm{x})=W \mathrm{x}+\mathrm{b}$ with $W \in \mathbb{R}^{t \times d}$ and $\mathrm{b} \in \mathbb{R}^{t}$
- Padding: $\mathbf{x} \leftarrow\binom{\mathrm{x}}{1}, \mathbf{W} \leftarrow[W, \mathrm{~b}]$, hence $f(\mathrm{x})=\mathbf{W} \mathbf{x}$
- In matrix form: $\frac{1}{n} \sum_{i}\left\|f\left(\mathbf{x}_{i}\right)-\mathrm{y}_{i}\right\|_{2}^{2}=\frac{1}{n}\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{\mathrm{F}}^{2}$

$$
\mathbf{-} \mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathbb{R}^{(d+1) \times n}, \mathbf{Y}=\left[\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}\right] \in \mathbb{R}^{t \times n}
$$

Linear Least Squares Regression

- Affine function: $f(\mathrm{x})=W \mathrm{x}+\mathrm{b}$ with $W \in \mathbb{R}^{t \times d}$ and $\mathrm{b} \in \mathbb{R}^{t}$
- Padding: $\mathbf{x} \leftarrow\binom{\mathrm{x}}{1}, \mathbf{W} \leftarrow[W, \mathbf{b}]$, hence $f(\mathbf{x})=\mathbf{W} \mathbf{x}$
- In matrix form: $\frac{1}{n} \sum_{i}\left\|f\left(\mathbf{x}_{i}\right)-\mathrm{y}_{i}\right\|_{2}^{2}=\frac{1}{n}\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{\mathrm{F}}^{2}$
$-\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathbb{R}^{(d+1) \times n}, \mathbf{Y}=\left[\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}\right] \in \mathbb{R}^{t \times n}$
$-\|A\|_{F}=\sqrt{\sum_{i j} a_{i j}^{2}}$

$$
\min _{\mathbf{W} \in \mathbb{R}^{t \times(d+1)}} \frac{1}{n}\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{\mathbf{F}}^{2}
$$

Calculus Detour

- Let $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ be a smooth real-valued function
- Fix an inner product
- Define the gradient $\nabla f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ as
- Chain rule still holds

Calculus Detour

- Let $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ be a smooth real-valued function
- Fix an inner product
- Define the gradient $\nabla f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ as

Calculus Detour

- Let $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ be a smooth real-valued function
- Fix an inner product $\langle\cdot, \cdot\rangle$
- Define the gradient $\nabla f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ as

Calculus Detour

- Let $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ be a smooth real-valued function
- Fix an inner product $\langle\cdot, \cdot\rangle$
- Define the gradient $\nabla f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ as

$$
\left.\frac{\mathrm{d} f(\mathbf{w}+t \mathbf{z})}{\mathrm{d} t}\right|_{t=0}=\langle\nabla f(\mathbf{w}), \mathbf{z}\rangle
$$

LHS is the usual (scalar) derivative of the univariate function t
w and z are fixed as constants:
gradient $\nabla \ldots$ is representation of directional derivative over the inner product we choose

Calculus Detour

- Let $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ be a smooth real-valued function
- Fix an inner product $\langle\cdot, \cdot\rangle$
- Define the gradient $\nabla f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ as

$$
\left.\frac{\mathrm{d} f(\mathbf{w}+t \mathbf{z})}{\mathrm{d} t}\right|_{t=0}=\langle\nabla f(\mathbf{w}), \mathbf{z}\rangle
$$

- LHS is the usual (scalar) derivative of the univariate function $t \mapsto f(\mathbf{w}+t \mathbf{z})$
w and z are fixed as constants:
gradient ∇f is representation of directional derivative over the inner product we choose

Calculus Detour

- Let $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ be a smooth real-valued function
- Fix an inner product $\langle\cdot, \cdot\rangle$
- Define the gradient $\nabla f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ as

$$
\left.\frac{\mathrm{d} f(\mathbf{w}+t \mathbf{z})}{\mathrm{d} t}\right|_{t=0}=\langle\nabla f(\mathbf{w}), \mathbf{z}\rangle
$$

- LHS is the usual (scalar) derivative of the univariate function $t \mapsto f(\mathbf{w}+t \mathbf{z})$
- w and z are fixed as constants: directional derivative gradient ∇f is representation of directional derivative over the inner product we choose

Calculus Detour

- Let $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ be a smooth real-valued function
- Fix an inner product $\langle\cdot, \cdot\rangle$
- Define the gradient $\nabla f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ as

$$
\left.\frac{\mathrm{d} f(\mathbf{w}+t \mathbf{z})}{\mathrm{d} t}\right|_{t=0}=\langle\nabla f(\mathbf{w}), \mathbf{z}\rangle
$$

- LHS is the usual (scalar) derivative of the univariate function $t \mapsto f(\mathbf{w}+t \mathbf{z})$
- w and z are fixed as constants: directional derivative
- gradient ∇f is representation of directional derivative over the inner product we choose

Calculus Detour

- Let $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ be a smooth real-valued function
- Fix an inner product $\langle\cdot, \cdot\rangle$
- Define the gradient $\nabla f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ as

$$
\left.\frac{\mathrm{d} f(\mathbf{w}+t \mathbf{z})}{\mathrm{d} t}\right|_{t=0}=\langle\nabla f(\mathbf{w}), \mathbf{z}\rangle
$$

- LHS is the usual (scalar) derivative of the univariate function $t \mapsto f(\mathbf{w}+t \mathbf{z})$
- w and z are fixed as constants: directional derivative
- gradient ∇f is representation of directional derivative over the inner product we choose
- Chain rule still holds

Example: Univariate functions

Consider $f: \mathbb{R} \rightarrow \mathbb{R}$ (i.e., $p=1$) and the standard inner product $\langle a, b\rangle:=a b$. By chain rule:

$$
\frac{\mathrm{d} f(w+t z)}{\mathrm{d} t} \upharpoonright_{t=0}=f^{\prime}(w+t z) z \upharpoonright_{t=0}=f^{\prime}(w) z=\left\langle f^{\prime}(w), z\right\rangle,
$$

i.e., $\nabla f(w)=f^{\prime}(w)$. What is the gradient if we choose $\langle a, b\rangle:=2 a b$?

Example: Partial derivatives

Consider $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ and the standard inner product $\langle\mathrm{w}, \mathrm{x}\rangle:=\sum_{j} w_{j} x_{j}$. Choose the direction $\mathrm{z}=\mathrm{e}_{j}$ (i.e., 1 at the j-th entry and 0 elsewhere):

$$
\frac{\mathrm{d} f\left(\mathbf{w}+t \mathbf{e}_{j}\right)}{\mathrm{d} t} \upharpoonright_{t=0}=\partial_{j} f(\mathbf{w})=\left\langle\nabla f(\mathbf{w}), \mathbf{e}_{j}\right\rangle=[\nabla f(\mathbf{w})]_{j},
$$

i.e., $\nabla f(w)=\left[\partial_{1} f(\mathbf{w}), \ldots, \partial_{p} f(\mathrm{w})\right]$.

Example: Quadratic function

Consider the quadratic function $f(\mathrm{w})=\langle\mathrm{w}, A \mathrm{w}+\mathrm{b}\rangle+c$.

$$
\begin{aligned}
f(\mathbf{w}+t \mathbf{z}) & =\langle\mathbf{w}+t \mathbf{z}, A(\mathbf{w}+t \mathbf{z})+\mathbf{b}\rangle+c \\
& =t^{2}\langle\mathbf{z}, A \mathbf{z}\rangle+t\langle\mathbf{w}, A \mathbf{z}\rangle+t\langle\mathbf{z}, A \mathbf{w}+\mathbf{b}\rangle+\langle\mathbf{w}, A \mathbf{w}+\mathbf{b}\rangle+c \\
\frac{\mathrm{~d} f(\mathbf{w}+t \mathbf{z})}{\mathrm{d} t} \upharpoonright_{t=0} & =\langle\mathbf{w}, A \mathbf{z}\rangle+\langle\mathbf{z}, A \mathbf{w}+\mathbf{b}\rangle=\left\langle A^{\top} \mathbf{w}+A \mathbf{w}+\mathbf{b}, \mathbf{z}\right\rangle
\end{aligned}
$$

$$
\text { i.e., } \nabla f(\mathrm{w})=\left(A^{\top}+A\right) \mathrm{w}+\mathrm{b} \text {. }
$$

$\cdot\langle\mathrm{a}+\mathrm{b}, \mathrm{x}+\mathrm{y}\rangle=\langle\mathrm{a}, \mathrm{x}\rangle+\langle\mathrm{a}, \mathrm{y}\rangle+\langle\mathrm{b}, \mathrm{x}\rangle+\langle\mathrm{b}, \mathrm{y}\rangle$

- $\langle\mathrm{a}, t \mathrm{~b}\rangle=\langle t \mathrm{a}, \mathrm{b}\rangle=t\langle\mathrm{a}, \mathrm{b}\rangle$
$\left.0(w, A Z\rangle)=\left\langle A^{\top} w, Z\right\rangle,(A w, Z\rangle\right)=\left\langle w, A^{\top} z\right\rangle$

Example: Quadratic function

Consider the quadratic function $f(\mathrm{w})=\langle\mathrm{w}, A \mathrm{w}+\mathrm{b}\rangle+c$.

$$
\begin{aligned}
f(\mathbf{w}+t \mathbf{z}) & =\langle\mathbf{w}+t \mathbf{z}, A(\mathbf{w}+t \mathbf{z})+\mathbf{b}\rangle+c \\
& =t^{2}\langle\mathbf{z}, A \mathbf{z}\rangle+t\langle\mathbf{w}, A \mathbf{z}\rangle+t\langle\mathbf{z}, A \mathbf{w}+\mathbf{b}\rangle+\langle\mathbf{w}, A \mathbf{w}+\mathbf{b}\rangle+c \\
\frac{\mathrm{~d} f(\mathbf{w}+t \mathbf{z})}{\mathrm{d} t} \Gamma_{t=0} & =\langle\mathbf{w}, A \mathbf{z}\rangle+\langle\mathbf{z}, A \mathbf{w}+\mathbf{b}\rangle=\left\langle A^{\top} \mathbf{w}+A \mathbf{w}+\mathbf{b}, \mathbf{z}\right\rangle,
\end{aligned}
$$

i.e., $\nabla f(\mathrm{w})=\left(A^{\top}+A\right) \mathrm{w}+\mathrm{b}$.

- $\langle\mathrm{a}+\mathrm{b}, \mathrm{x}+\mathrm{y}\rangle=\langle\mathrm{a}, \mathrm{x}\rangle+\langle\mathrm{a}, \mathrm{y}\rangle+\langle\mathrm{b}, \mathrm{x}\rangle+\langle\mathrm{b}, \mathrm{y}\rangle$
- $\langle\mathrm{a}, \mathrm{tb}\rangle=\langle\mathrm{ta}, \mathrm{b}\rangle=t(\mathrm{a}, \mathrm{b}\rangle$
$\cdot\langle\mathbf{w}, A \mathbf{z}\rangle=\left\langle A^{\top} \mathbf{w}, \mathbf{z}\right\rangle,\langle A \mathbf{w}, \mathbf{z}\rangle=\left\langle\mathbf{w}, A^{\top} \mathbf{z}\right\rangle$

Example: Quadratic function

Consider the quadratic function $f(\mathrm{w})=\langle\mathrm{w}, A \mathrm{w}+\mathrm{b}\rangle+c$.

$$
\begin{aligned}
f(\mathbf{w}+t \mathbf{z}) & =\langle\mathbf{w}+t \mathbf{z}, A(\mathbf{w}+t \mathbf{z})+\mathbf{b}\rangle+c \\
& =t^{2}\langle\mathbf{z}, A \mathbf{z}\rangle+t\langle\mathbf{w}, A \mathbf{z}\rangle+t\langle\mathbf{z}, A \mathbf{w}+\mathbf{b}\rangle+\langle\mathbf{w}, A \mathbf{w}+\mathbf{b}\rangle+c \\
\frac{\mathrm{~d} f(\mathbf{w}+t \mathbf{z})}{\mathrm{d} t} \Gamma_{t=0} & =\langle\mathbf{w}, A \mathbf{z}\rangle+\langle\mathbf{z}, A \mathbf{w}+\mathbf{b}\rangle=\left\langle A^{\top} \mathbf{w}+A \mathbf{w}+\mathbf{b}, \mathbf{z}\right\rangle,
\end{aligned}
$$

i.e., $\nabla f(\mathrm{w})=\left(A^{\top}+A\right) \mathrm{w}+\mathrm{b}$.

- $\langle\mathrm{a}+\mathrm{b}, \mathrm{x}+\mathrm{y}\rangle=\langle\mathrm{a}, \mathrm{x}\rangle+\langle\mathrm{a}, \mathrm{y}\rangle+\langle\mathrm{b}, \mathrm{x}\rangle+\langle\mathrm{b}, \mathrm{y}\rangle$
- $\langle\mathrm{a}, \mathrm{tb}\rangle=\langle\mathrm{ta}, \mathrm{b}\rangle=t\langle\mathrm{a}, \mathrm{b}\rangle$
$\cdot\langle\mathbf{w}, A \mathbf{z}\rangle=\left\langle A^{\top} \mathbf{w}, \mathbb{z}\right\rangle,\langle A \mathbf{w}, \mathbb{z}\rangle=\left\langle\mathbf{w}, A^{\top} \mathbb{Z}\right\rangle$

Example: Quadratic function

Consider the quadratic function $f(\mathrm{w})=\langle\mathrm{w}, A \mathrm{w}+\mathrm{b}\rangle+c$.

$$
\begin{aligned}
f(\mathbf{w}+t \mathbf{z}) & =\langle\mathbf{w}+t \mathbf{z}, A(\mathbf{w}+t \mathbf{z})+\mathbf{b}\rangle+c \\
& =t^{2}\langle\mathbf{z}, A \mathbf{z}\rangle+t\langle\mathbf{w}, A \mathbf{z}\rangle+t\langle\mathbf{z}, A \mathbf{w}+\mathbf{b}\rangle+\langle\mathbf{w}, A \mathbf{w}+\mathbf{b}\rangle+c \\
\frac{\mathrm{~d} f(\mathbf{w}+t \mathbf{z})}{\mathrm{d} t} \Gamma_{t=0} & =\langle\mathbf{w}, A \mathbf{z}\rangle+\langle\mathbf{z}, A \mathbf{w}+\mathbf{b}\rangle=\left\langle A^{\top} \mathbf{w}+A \mathbf{w}+\mathbf{b}, \mathbf{z}\right\rangle,
\end{aligned}
$$

i.e., $\nabla f(\mathrm{w})=\left(A^{\top}+A\right) \mathrm{w}+\mathrm{b}$.

- $\langle\mathrm{a}+\mathrm{b}, \mathrm{x}+\mathrm{y}\rangle=\langle\mathrm{a}, \mathrm{x}\rangle+\langle\mathrm{a}, \mathrm{y}\rangle+\langle\mathrm{b}, \mathrm{x}\rangle+\langle\mathrm{b}, \mathrm{y}\rangle$
- $\langle\mathrm{a}, \mathrm{tb}\rangle=\langle t \mathrm{a}, \mathrm{b}\rangle=t\langle\mathrm{a}, \mathrm{b}\rangle$
- $\langle\mathrm{w}, A \mathrm{z}\rangle=\left\langle A^{\top} \mathrm{w}, \mathrm{z}\right\rangle,\langle A \mathrm{w}, \mathrm{z}\rangle=\left\langle\mathrm{w}, A^{\top} \mathrm{z}\right\rangle$

Optimality Condition

Theorem: Fermat's necessary condition for extremity
If w is a minimizer (or maximizer) of a differentiable function f over an open set, then $f^{\prime}(\mathrm{w})=0$.

Optimality Condition

Theorem: Fermat's necessary condition for extremity
If w is a minimizer (or maximizer) of a differentiable function f over an open set, then $f^{\prime}(\mathrm{w})=0$.

Solving Linear Regression

$$
\begin{aligned}
\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{\mathbf{F}}^{2} & =\langle\mathbf{W} \mathbf{X}-\mathbf{Y}, \mathbf{W} \mathbf{X}-\mathbf{Y}\rangle \\
& =\left\langle\mathbf{W}, \mathbf{W} \mathbf{X} \mathbf{X}^{\top}-2 \mathbf{Y} \mathbf{X}^{\top}\right\rangle+\langle\mathbf{Y}, \mathbf{Y}\rangle
\end{aligned}
$$

- Taking derivative w.r.t. W and setting to zero:

$$
\text { Normal equation } \mathbf{W} \mathbf{X} \mathbf{X}^{\top}=\mathbf{Y} \mathbf{X}^{\top} \Longrightarrow \mathbf{W}=\mathbf{Y} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{X}^{\top}\right)^{-1}=\mathbf{Y} \mathbf{X}^{\dagger}
$$

hence $X X$
a solution alwavs exists

- Even when invertible,
- Instead, solve the linear system or apply iterative gradient algorithm

Solving Linear Regression

$$
\begin{aligned}
\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{\mathbf{F}}^{2} & =\langle\mathbf{W} \mathbf{X}-\mathbf{Y}, \mathbf{W} \mathbf{X}-\mathbf{Y}\rangle \\
& =\left\langle\mathbf{W}, \mathbf{W} \mathbf{X} \mathbf{X}^{\top}-2 \mathbf{Y} \mathbf{X}^{\top}\right\rangle+\langle\mathbf{Y}, \mathbf{Y}\rangle
\end{aligned}
$$

- Taking derivative w.r.t. W and setting to zero:

$$
\text { Normal equation } \mathbf{W} \mathbf{X} \mathbf{X}^{\top}=\mathbf{Y} \mathbf{X}^{\top} \Longrightarrow \mathbf{W}=\mathbf{Y} \mathbf{X}^{\top}\left(\mathbf{X X}^{\top}\right)^{-1}=\mathbf{Y} \mathbf{X}^{\dagger}
$$

-

hence XX
a solution always exists

- Even when invertible,
- Instead, solve the linear system or apply iterative gradient algorithm

Solving Linear Regression

$$
\begin{aligned}
\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{\mathbf{F}}^{2} & =\langle\mathbf{W} \mathbf{X}-\mathbf{Y}, \mathbf{W} \mathbf{X}-\mathbf{Y}\rangle \\
& =\left\langle\mathbf{W}, \mathbf{W} \mathbf{X} \mathbf{X}^{\top}-2 \mathbf{Y} \mathbf{X}^{\top}\right\rangle+\langle\mathbf{Y}, \mathbf{Y}\rangle
\end{aligned}
$$

- Taking derivative w.r.t. W and setting to zero:

$$
\text { Normal equation } \mathbf{W} \mathbf{X} \mathbf{X}^{\top}=\mathbf{Y} \mathbf{X}^{\top} \Longrightarrow \mathbf{W}=\mathbf{Y} \mathbf{X}^{\top}\left(\mathbf{X X}^{\top}\right)^{-1}=\mathbf{Y} \mathbf{X}^{\dagger}
$$

- $\mathbf{X} \in \mathbb{R}^{(d+1) \times n}$ hence $\mathbf{X} \mathbf{X}^{\top} \in \mathbb{R}^{(d+1) \times(d+1)}$: may not be invertible if $n \leq d+1$, but a solution always exists
- Even when invertible,
- Instead, solve the linear system or apply iterative gradient algorithm

Solving Linear Regression

$$
\begin{aligned}
\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{\mathbf{F}}^{2} & =\langle\mathbf{W} \mathbf{X}-\mathbf{Y}, \mathbf{W} \mathbf{X}-\mathbf{Y}\rangle \\
& =\left\langle\mathbf{W}, \mathbf{W} \mathbf{X} \mathbf{X}^{\top}-2 \mathbf{Y} \mathbf{X}^{\top}\right\rangle+\langle\mathbf{Y}, \mathbf{Y}\rangle
\end{aligned}
$$

- Taking derivative w.r.t. W and setting to zero:

$$
\text { Normal equation } \mathbf{W} \mathbf{X} \mathbf{X}^{\top}=\mathbf{Y} \mathbf{X}^{\top} \Longrightarrow \mathbf{W}=\mathbf{Y} \mathbf{X}^{\top}\left(\mathbf{X X}^{\top}\right)^{-1}=\mathbf{Y} \mathbf{X}^{\dagger}
$$

- $\mathbf{X} \in \mathbb{R}^{(d+1) \times n}$ hence $\mathbf{X} \mathbf{X}^{\top} \in \mathbb{R}^{(d+1) \times(d+1)}$: may not be invertible if $n \leq d+1$, but a solution always exists
- Even when invertible, never compute the inverse directly!
- Instead, solve the linear system or apply iterative gradient algorithm

Solving Linear Regression

$$
\begin{aligned}
\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{\mathbf{F}}^{2} & =\langle\mathbf{W} \mathbf{X}-\mathbf{Y}, \mathbf{W} \mathbf{X}-\mathbf{Y}\rangle \\
& =\left\langle\mathbf{W}, \mathbf{W} \mathbf{X} \mathbf{X}^{\top}-2 \mathbf{Y} \mathbf{X}^{\top}\right\rangle+\langle\mathbf{Y}, \mathbf{Y}\rangle
\end{aligned}
$$

- Taking derivative w.r.t. W and setting to zero:

$$
\text { Normal equation } \mathbf{W} \mathbf{X} \mathbf{X}^{\top}=\mathbf{Y} \mathbf{X}^{\top} \Longrightarrow \mathbf{W}=\mathbf{Y} \mathbf{X}^{\top}\left(\mathbf{X X}^{\top}\right)^{-1}=\mathbf{Y} \mathbf{X}^{\dagger}
$$

- $\mathbf{X} \in \mathbb{R}^{(d+1) \times n}$ hence $\mathbf{X} \mathbf{X}^{\top} \in \mathbb{R}^{(d+1) \times(d+1)}$: may not be invertible if $n \leq d+1$, but a solution always exists
- Even when invertible, never compute the inverse directly!
- Instead, solve the linear system or apply iterative gradient algorithm

Prediction

- Once solved W on the training set (X, Y), can
$\hat{\mathbf{Y}}_{\text {test }}=\mathbf{W} \mathbf{X}_{\mathrm{t}}$
- We may evaluate our test error if true labels were available:
- We may compare to the

$$
\text { where } \hat{\mathbf{Y}}:=\mathbf{W} \mathbf{X}
$$

-
- Sometimes we even evaluate the test error using a different loss Lu(Y

Prediction

- Once solved \mathbf{W} on the training set (\mathbf{X}, \mathbf{Y}), can predict on unseen data $\mathbf{X}_{\text {test }}$:

$$
\hat{\mathbf{Y}}_{\text {test }}=\mathbf{W} \mathbf{X}_{\text {test }}
$$

- We may evaluate our test error if true labels were available:
- We may compare to the
- Sometimes we even evaluate the test error using a different loss $\mathbb{L}(Y$

Prediction

- Once solved \mathbf{W} on the training set (\mathbf{X}, \mathbf{Y}), can predict on unseen data $\mathbf{X}_{\text {test }}$:

$$
\hat{\mathbf{Y}}_{\text {test }}=\mathbf{W} \mathbf{X}_{\text {test }}
$$

- We may evaluate our test error if true labels were available:

$$
\frac{1}{n_{\text {test }}}\left\|\mathbf{Y}_{\text {test }}-\hat{\mathbf{Y}}_{\text {test }}\right\|_{\mathrm{F}}^{2}
$$

- We may compare to the
- Sometimes we even evaluate the test error using a different loss

Prediction

- Once solved \mathbf{W} on the training set (\mathbf{X}, \mathbf{Y}), can predict on unseen data $\mathbf{X}_{\text {test }}$:

$$
\hat{\mathbf{Y}}_{\text {test }}=\mathbf{W} \mathbf{X}_{\text {test }}
$$

- We may evaluate our test error if true labels were available:

$$
\frac{1}{n_{\text {test }}}\left\|\mathbf{Y}_{\text {test }}-\hat{\mathbf{Y}}_{\text {test }}\right\|_{\mathbf{F}}^{2}
$$

- We may compare to the training error:

$$
\frac{1}{n}\|\mathbf{Y}-\hat{\mathbf{Y}}\|_{\mathbf{F}}^{2}, \quad \text { where } \quad \hat{\mathbf{Y}}:=\mathbf{W} \mathbf{X}
$$

- Sometimes we even evaluate the test error using a different loss $\mathbb{L}\left(\mathbf{Y}_{\text {test }}, \mathbf{Y}\right.$

Prediction

- Once solved \mathbf{W} on the training set (\mathbf{X}, \mathbf{Y}), can predict on unseen data $\mathbf{X}_{\text {test }}$:

$$
\hat{\mathbf{Y}}_{\text {test }}=\mathbf{W} \mathbf{X}_{\text {test }}
$$

- We may evaluate our test error if true labels were available:

$$
\frac{1}{n_{\text {test }}}\left\|\mathbf{Y}_{\text {test }}-\hat{\mathbf{Y}}_{\text {test }}\right\|_{\mathrm{F}}^{2}
$$

- We may compare to the training error:

$$
\frac{1}{n}\|\mathbf{Y}-\hat{\mathbf{Y}}\|_{\mathbf{F}}^{2}, \quad \text { where } \quad \hat{\mathbf{Y}}:=\mathbf{W} \mathbf{X}
$$

- Minimizing the training error as a means to reduce the test error
- Sometimes we even evaluate the test error using a different loss $\mathbb{L}\left(Y_{\text {test }}, Y\right.$

Prediction

- Once solved \mathbf{W} on the training set (\mathbf{X}, \mathbf{Y}), can predict on unseen data $\mathbf{X}_{\text {test }}$:

$$
\hat{\mathbf{Y}}_{\text {test }}=\mathbf{W} \mathbf{X}_{\text {test }}
$$

- We may evaluate our test error if true labels were available:

$$
\frac{1}{n_{\text {test }}}\left\|\mathbf{Y}_{\text {test }}-\hat{\mathbf{Y}}_{\text {test }}\right\|_{\mathrm{F}}^{2}
$$

- We may compare to the training error:

$$
\frac{1}{n}\|\mathbf{Y}-\hat{\mathbf{Y}}\|_{\mathbf{F}}^{2}, \quad \text { where } \quad \hat{\mathbf{Y}}:=\mathbf{W} \mathbf{X}
$$

- Minimizing the training error as a means to reduce the test error
- Sometimes we even evaluate the test error using a different loss $\mathbb{L}\left(\mathbf{Y}_{\text {test }}, \hat{\mathbf{Y}}_{\text {test }}\right)$
leads to a beautiful theory of loss calibration

Prediction

- Once solved \mathbf{W} on the training set (\mathbf{X}, \mathbf{Y}), can predict on unseen data $\mathbf{X}_{\text {test }}$:

$$
\hat{\mathbf{Y}}_{\text {test }}=\mathbf{W} \mathbf{X}_{\text {test }}
$$

- We may evaluate our test error if true labels were available:

$$
\frac{1}{n_{\text {test }}}\left\|\mathbf{Y}_{\text {test }}-\hat{\mathbf{Y}}_{\text {test }}\right\|_{\mathrm{F}}^{2}
$$

- We may compare to the training error:

$$
\frac{1}{n}\|\mathbf{Y}-\hat{\mathbf{Y}}\|_{\mathbf{F}}^{2}, \quad \text { where } \quad \hat{\mathbf{Y}}:=\mathbf{W} \mathbf{X}
$$

- Minimizing the training error as a means to reduce the test error
- Sometimes we even evaluate the test error using a different loss $\mathbb{L}\left(\mathbf{Y}_{\text {test }}, \hat{\mathbf{Y}}_{\text {test }}\right)$
- leads to a beautiful theory of loss calibration

III-conditioning

$$
\mathbf{x}=\left[\begin{array}{ll}
0 & \epsilon \\
1 & 1
\end{array}\right], \quad y=\left[\begin{array}{ll}
1 & -1
\end{array}\right]
$$

- Solving linear least squares regression:
- Slight perturbation leads to chaotic behaviour!
- Happens whenever X is ill-conditioned, i.e., (close to) rank deficient

III-conditioning

$$
\mathbf{X}=\left[\begin{array}{ll}
0 & \epsilon \\
1 & 1
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{ll}
1 & -1
\end{array}\right]
$$

- Solving linear least squares regression:

$$
\mathbf{w}=\mathbf{y} \mathbf{X}^{-1}=\left[\begin{array}{ll}
1 & -1
\end{array}\right]\left[\begin{array}{cc}
-1 / \epsilon & 1 \\
1 / \epsilon & 0
\end{array}\right]=\left[\begin{array}{ll}
-2 / \epsilon & 1
\end{array}\right]
$$

- Slight perturbation leads to chaotic behaviour!
- Happens whenever X is ill-conditioned, i.e., (close to) rank deficient

III-conditioning

$$
\mathbf{X}=\left[\begin{array}{ll}
0 & \epsilon \\
1 & 1
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{ll}
1 & -1
\end{array}\right]
$$

- Solving linear least squares regression:

$$
\mathbf{w}=\mathbf{y} \mathbf{X}^{-1}=\left[\begin{array}{ll}
1 & -1
\end{array}\right]\left[\begin{array}{cc}
-1 / \epsilon & 1 \\
1 / \epsilon & 0
\end{array}\right]=\left[\begin{array}{ll}
-2 / \epsilon & 1
\end{array}\right]
$$

- Slight perturbation leads to chaotic behaviour!
- Happens whenever X is ill-conditioned, i.e., (close to) rank deficient

III-conditioning

$$
X=\left[\begin{array}{ll}
0 & \epsilon \\
1 & 1
\end{array}\right], \quad y=\left[\begin{array}{ll}
1 & -1
\end{array}\right]
$$

- Solving linear least squares regression:

$$
\mathbf{w}=\mathbf{y} \mathbf{X}^{-1}=\left[\begin{array}{ll}
1 & -1
\end{array}\right]\left[\begin{array}{cc}
-1 / \epsilon & 1 \\
1 / \epsilon & 0
\end{array}\right]=\left[\begin{array}{ll}
-2 / \epsilon & 1
\end{array}\right]
$$

- Slight perturbation leads to chaotic behaviour!
- Happens whenever X is ill-conditioned, i.e., (close to) rank deficient

Tikhonov Regularization, a.k.a. Ridge Regression

$$
\min _{\mathbf{W}} \frac{1}{n}\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{\mathbb{F}}^{2}+\lambda\|\mathbf{W}\|_{F}^{2}
$$

- Normal equation: $\mathbf{W}\left(\mathbf{X X}^{\top}+\lambda I\right)=\mathbf{Y X}$
- Regularization const λ controls trade-off

- May choose to not regularize offset b
A. N. Tikhonov. "Solution of incorrectly formulated problems and the regularization method". Soviet Mathematics, vol. 4, no. 4 (1963), pp. 1035-1038, A. E. Hoerl and R. W. Kennard. "Ridge regression: Biased estimation for nonorthogonal problems". Technometrics, vol. 12, no. 1 (1970), pp. 55-67.

Tikhonov Regularization, a.k.a. Ridge Regression

$$
\min _{\mathbf{W}} \frac{1}{n}\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{\mathbb{F}}^{2}+\lambda\|\mathbf{W}\|_{F}^{2}
$$

- Normal equation: $\mathbf{W}\left(\mathbf{X X}^{\top}+\lambda I\right)=\mathbf{Y} \mathbf{X}^{\top}$
- Regularization const. λ controls trade-off

- May choose to not regularize offset b
A. N. Tikhonov. "Solution of incorrectly formulated problems and the regularization method". Soviet Mathematics, vol. 4, no. 4 (1963), pp. 1035-1038, A. E. Hoerl and R. W. Kennard. "Ridge regression: Biased estimation for nonorthogonal problems". Technometrics, vol. 12, no. 1 (1970), pp. 55-67.

Tikhonov Regularization, a.k.a. Ridge Regression

$$
\min _{\mathbf{W}} \frac{1}{n}\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{\mathbf{F}}^{2}+\lambda\|\mathbf{W}\|_{\mathbf{F}}^{2}
$$

- Normal equation: $\mathbf{W}\left(\mathbf{X X}^{\top}+\lambda I\right)=\mathbf{Y} \mathbf{X}^{\top}$
- Regularization const. λ controls trade-off

- May choose to not regularize offset b

Tikhonov Regularization, a.k.a. Ridge Regression

$$
\min _{\mathbf{W}} \frac{1}{n}\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{\mathbf{F}}^{2}+\lambda\|\mathbf{W}\|_{\mathbf{F}}^{2}
$$

- Normal equation: $\mathbf{W}\left(\mathbf{X X}^{\top}+\lambda I\right)=\mathbf{Y} \mathbf{X}^{\top}$
- Regularization const. λ controls trade-off
$-\lambda=0$ reduces to ordinary linear regression

- May choose to not regularize offset b
A. N. Tikhonov. "Solution of incorrectly formulated problems and the regularization method". Soviet Mathematics, vol. 4, no. 4 (1963), pp. 1035-1038, A. E. Hoerl and R. W. Kennard. "Ridge regression: Biased estimation for nonorthogonal problems". Technometrics, vol. 12, no. 1 (1970), pp. 55-67.

Tikhonov Regularization, a.k.a. Ridge Regression

$$
\min _{\mathbf{W}} \frac{1}{n}\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{\mathbf{F}}^{2}+\lambda\|\mathbf{W}\|_{\mathbf{F}}^{2}
$$

- Normal equation: $\mathbf{W}\left(\mathbf{X X}^{\top}+\lambda I\right)=\mathbf{Y} \mathbf{X}^{\top}$
- Regularization const. λ controls trade-off
$-\lambda=0$ reduces to ordinary linear regression
$-\lambda=\infty$ reduces to $\mathbf{W} \equiv \mathbf{0}$
- intermediate λ restricts output to be proportional to input

- May choose to not regularize offset b
A. N. Tikhonov. "Solution of incorrectly formulated problems and the regularization method". Soviet Mathematics, vol. 4, no. 4 (1963), pp. 1035-1038, A. E. Hoerl and R. W. Kennard. "Ridge regression: Biased estimation for nonorthogonal problems". Technometrics, vol. 12, no. 1 (1970), pp. 55-67.

Tikhonov Regularization, a.k.a. Ridge Regression

$$
\min _{\mathbf{W}} \frac{1}{n}\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{\mathbf{F}}^{2}+\lambda\|\mathbf{W}\|_{\mathrm{F}}^{2}
$$

- Normal equation: $\mathbf{W}\left(\mathbf{X X}^{\top}+\lambda I\right)=\mathbf{Y} \mathbf{X}^{\top}$
- Regularization const. λ controls trade-off
$-\lambda=0$ reduces to ordinary linear regression
$-\lambda=\infty$ reduces to $\mathbf{W} \equiv \mathbf{0}$
- intermediate λ restricts output to be $\frac{1}{\lambda}$ proportional to input

- May choose to not regularize offset b

[^0]
Tikhonov Regularization, a.k.a. Ridge Regression

$$
\min _{\mathbf{W}} \frac{1}{n}\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{\mathbf{F}}^{2}+\lambda\|\mathbf{W}\|_{\mathrm{F}}^{2}
$$

- Normal equation: $\mathbf{W}\left(\mathbf{X X}^{\top}+\lambda I\right)=\mathbf{Y} \mathbf{X}^{\top}$
- Regularization const. λ controls trade-off
$-\lambda=0$ reduces to ordinary linear regression
$-\lambda=\infty$ reduces to $\mathbf{W} \equiv \mathbf{0}$
- intermediate λ restricts output to be $\frac{1}{\lambda}$ proportional to input

- May choose to not regularize offset b

[^1]
Data Augmentation

$$
\frac{1}{n}\|\mathbf{W X}-\mathbf{Y}\|_{F}^{2}+\lambda\|\mathbf{W}\|_{F}^{2}=\frac{1}{n} \| \mathbf{W} \underbrace{[\mathbf{X} \sqrt{n \lambda} I}_{\mathrm{X}}]-\underbrace{\left[\begin{array}{ll}
\mathbf{Y} & 0
\end{array}\right]}_{\mathrm{Y}} \|_{\mathbb{F}}^{2}
$$

- Augment X with $\sqrt{n \lambda} I$, i.e. p data points X
- Augment Y with zero
- Shrinks W towards origin

Data Augmentation

$$
\frac{1}{n}\|\mathbf{W X}-\mathbf{Y}\|_{F}^{2}+\underbrace{}_{\| \| \mathbf{W} \|_{F}^{2}}=\frac{1}{n}\|\mathbf{W} \underbrace{[\mathbf{X} \sqrt{n \lambda I}]}_{\mathrm{X}}-\underbrace{\left[\begin{array}{ll}
\mathbf{Y} & 0
\end{array}\right]}_{\mathbf{Y}}\|_{\mathrm{F}}^{2}
$$

- Augment X with $\sqrt{n \lambda} I$, i.e. p data points $\mathbf{x}_{j}=\sqrt{n \lambda} \mathrm{e}_{j}, j=1, \ldots, p$
- Augment Y with zero
- Shrinks W towards origin

Data Augmentation

$$
\frac{1}{n}\|\mathbf{W X}-\mathbf{Y}\|_{F}^{2}+\underbrace{}_{\| \| \mathbf{W} \|_{F}^{2}}=\frac{1}{n} \| \mathbf{W} \underbrace{[\mathbf{X} \sqrt{n \lambda I}]}_{\mathrm{X}}-\underbrace{\mathbf{Y} 0}_{\mathbf{Y}} 0] \|_{F}^{2}
$$

- Augment X with $\sqrt{n \lambda} I$, i.e. p data points $\mathbf{x}_{j}=\sqrt{n \lambda} \mathrm{e}_{j}, j=1, \ldots, p$
- Augment Y with zero
- Shrinks W towards origin

Data Augmentation

$$
\frac{1}{n}\|\mathbf{W X}-\mathbf{Y}\|_{F}^{2}+\underbrace{}_{\| \| \mathbf{W} \|_{F}^{2}}=\frac{1}{n}\|\mathbf{W} \underbrace{[\mathbf{X} \sqrt{n \lambda I}]}_{\mathrm{X}}-\underbrace{\left[\begin{array}{ll}
\mathbf{Y} & 0
\end{array}\right]}_{\mathbf{Y}}\|_{\mathrm{F}}^{2}
$$

- Augment X with $\sqrt{n \lambda} I$, i.e. p data points $\mathbf{x}_{j}=\sqrt{n \lambda} \mathrm{e}_{j}, j=1, \ldots, p$
- Augment Y with zero
- Shrinks W towards origin
regularization = data augmentation

Sparsity

- Regularization
constraint:

- Ridge regression \rightarrow dense W
- Lasso (Tibshirani, 1996)

```
min
```

W

- Regularization

R. Tibshirani. "Regression Shrinkage and Selection via the Lasso". Journal of the Royal Statistical Society: Series B, vol. 58, no. 1 (1996), pp. 267-288.

Sparsity

- Regularization \Longleftrightarrow constraint:

$$
\min _{\|\mathbf{W}\|_{F} \leq \gamma} \frac{1}{n}\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{F}^{2}
$$

- Ridge regression \rightarrow dense W
- Lasso (Tibshirani, 1996)
- Regularization

[^2] pp. 267-288.

Sparsity

- Regularization \Longleftrightarrow constraint:

$$
\min _{\|\mathbf{W}\|_{F} \leq \gamma} \frac{1}{n}\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{F}^{2}
$$

- Ridge regression \rightarrow dense \mathbf{W}

[^3] pp. 267-288.

Sparsity

- Regularization \Longleftrightarrow constraint:

$$
\min _{\|\mathbf{W}\|_{F} \leq \gamma} \frac{1}{n}\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{F}^{2}
$$

- Ridge regression \rightarrow dense \mathbf{W}
- more computation / communication
- Lasso (Tibshirani, 1996)
- Regularization

[^4] pp. 267-288.

Sparsity

- Regularization \Longleftrightarrow constraint:

$$
\min _{\|\mathbf{W}\|_{F} \leq \gamma} \frac{1}{n}\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{F}^{2}
$$

- Ridge regression \rightarrow dense W
- more computation / communication
- harder to interpret
- Lasso (Tibshirani, 1996)
- Regularization constraint:

[^5] pp. 267-288.

Sparsity

- Regularization \Longleftrightarrow constraint:

$$
\min _{\|\mathbf{W}\|_{F} \leq \gamma} \frac{1}{n}\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{F}^{2}
$$

- Ridge regression \rightarrow dense W
- more computation / communication
- harder to interpret
- Lasso (Tibshirani, 1996):

$$
\min _{\|\mathbf{W}\|_{1} \leq \gamma} \frac{1}{n}\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{\mathbf{F}}^{2}
$$

- Regularization
constraint:

[^6] pp. 267-288.

Sparsity

- Regularization \Longleftrightarrow constraint:

$$
\min _{\|\mathbf{W}\|_{F} \leq \gamma} \frac{1}{n}\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{F}^{2}
$$

- Ridge regression \rightarrow dense \mathbf{W}
- more computation / communication
- harder to interpret
- Lasso (Tibshirani, 1996):

$$
\min _{\|\mathbf{W}\|_{1} \leq \gamma} \frac{1}{n}\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{\mathbf{F}}^{2}
$$

- Regularization \Longleftrightarrow constraint:

$$
\min _{\mathbf{W}} \frac{1}{n}\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{\mathbf{F}}^{2}+\lambda\|\mathbf{W}\|_{1}
$$

[^7]
Task Regularization

$\min _{\mathbf{W}} \frac{1}{n}\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{\mathbf{F}}^{2}+\lambda\|\mathbf{W}\|_{\mathbf{F}}^{2} \equiv \min _{\mathbf{w}_{\tau}} \frac{1}{n}\left\|\mathbf{w}_{\tau} \mathbf{X}-\mathbf{y}_{\tau}\right\|_{\mathbf{F}}^{2}+\lambda\left\|\mathbf{w}_{\tau}\right\|_{2}^{2}, \forall \tau=1, \ldots, t$

- In other words, the tasks are independent and can be solved separately
- Sometimes lumping tasks together (I HS) is computationally more efficient
- If tasks are related, can consider regularization:


```
where |A||tr is the sum of singular values (i.e., the trace norm).
```

R. Caruana. "Multitask Learning". Machine Learning, vol. 28 (1997), pp. 41-75, A. Argyriou et al. "Convex multi-task feature learning". Machine Learning, vol. 73 (2008), pp. 243-272.

Task Regularization

$$
\min _{\mathbf{W}} \frac{1}{n}\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{\mathbf{F}}^{2}+\lambda\|\mathbf{W}\|_{\mathbf{F}}^{2} \equiv \min _{\mathbf{w}_{\tau}} \frac{1}{n}\left\|\mathbf{w}_{\tau} \mathbf{X}-\mathbf{y}_{\tau}\right\|_{\mathbf{F}}^{2}+\lambda\left\|\mathbf{w}_{\tau}\right\|_{2}^{2}, \forall \tau=1, \ldots, t
$$

- In other words, the tasks are independent and can be solved separately
- Sometimes lumping tasks together (LHS) is computationally more efficient
- If tasks are related, can consider regularization:
where $\mid A \|_{\text {itr }}$ is the sum of singular values (i.e., the
R. Caruana. "Multitask Learning". Machine Learning, vol. 28 (1997), pp. 41-75, A. Argyriou et al. "Convex multi-task feature learning". Machine Learning, vol. 73 (2008), pp. 243-272.

Task Regularization

$$
\min _{\mathbf{W}} \frac{1}{n}\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{\mathbf{F}}^{2}+\lambda\|\mathbf{W}\|_{\mathbf{F}}^{2} \equiv \min _{\mathbf{w}_{\tau}} \frac{1}{n}\left\|\mathbf{w}_{\tau} \mathbf{X}-\mathbf{y}_{\tau}\right\|_{\mathbf{F}}^{2}+\lambda\left\|\mathbf{w}_{\tau}\right\|_{2}^{2}, \forall \tau=1, \ldots, t
$$

- In other words, the tasks are independent and can be solved separately
- Sometimes lumping tasks together (LHS) is computationally more efficient
- If tasks are related, can consider regularization
where $\mid A \|_{\text {itr }}$ is the sum of singular values (i.e., the

Task Regularization

$$
\min _{\mathbf{W}} \frac{1}{n}\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{\mathbf{F}}^{2}+\lambda\|\mathbf{W}\|_{\mathbf{F}}^{2} \equiv \min _{\mathbf{w}_{\tau}} \frac{1}{n}\left\|\mathbf{w}_{\tau} \mathbf{X}-\mathbf{y}_{\tau}\right\|_{\mathbf{F}}^{2}+\lambda\left\|\mathbf{w}_{\tau}\right\|_{2}^{2}, \forall \tau=1, \ldots, t
$$

- In other words, the tasks are independent and can be solved separately
- Sometimes lumping tasks together (LHS) is computationally more efficient
- If tasks are related, can consider regularization:

$$
\min _{\mathbf{W}} \frac{1}{n}\|\mathbf{W} \mathbf{X}-\mathbf{Y}\|_{\mathbf{F}}^{2}+\lambda\|\mathbf{W}\|_{\text {tr }},
$$

where $\|A\|_{\text {tr }}$ is the sum of singular values (i.e., the trace norm).

Cross-validation

Training set
Validation
Test set

Cross-validation

Training set
Validation
Test set

Cross-validation

Cross-validation

Cross-validation

Training set
Test set

Cross-validation

Training set
Test set

For each lambda, perf(lambda) $=\operatorname{perf}_{1}+\operatorname{perf}_{2}+\ldots+\operatorname{perf}_{\mathrm{k}}$

Cross-validation

Training set

Test set

For each lambda, perf(lambda) $=\operatorname{perf}_{1}+\operatorname{perf}_{2}+\ldots+\operatorname{perf}_{\mathrm{k}}$
lambda* $^{*}=$ argmax $_{\text {lambda }}$ perf(lambda)

Cross-validation

Training set

Test set

For each lambda, perf(lambda) $=$ perf $_{1}+\operatorname{perf}_{2}+\ldots+$ perf $_{\mathrm{k}}$
lambda* $=$ argmax $_{\text {lambda }}$ perf(lambda)

Cross-validation

Training set

$\mathrm{W}_{\text {lambda* }}$ Test set

For each lambda, perf(lambda) $=$ perf $_{1}+\operatorname{perf}_{2}+\ldots+$ perf $_{\mathrm{k}}$
lambda* $=$ argmax $_{\text {lambda }}$ perf(lambda)

[^0]: A. N. Tikhonov. "Solution of incorrectly formulated problems and the regularization method". Soviet Mathematics, vol. 4, no. 4 (1963), pp. 1035-1038, A. E. Hoerl and R. W. Kennard. "Ridge regression: Biased estimation for nonorthogonal problems". Technometrics, vol. 12, no. 1 (1970), pp. 55-67.

[^1]: A. N. Tikhonov. "Solution of incorrectly formulated problems and the regularization method". Soviet Mathematics, vol. 4, no. 4 (1963), pp. 1035-1038, A. E. Hoerl and R. W. Kennard. "Ridge regression: Biased estimation for nonorthogonal problems". Technometrics, vol. 12, no. 1 (1970), pp. 55-67.

[^2]: R. Tibshirani. "Regression Shrinkage and Selection via the Lasso". Journal of the Royal Statistical Society: Series B, vol. 58, no. 1 (1996),

[^3]: R. Tibshirani. "Regression Shrinkage and Selection via the Lasso". Journal of the Royal Statistical Society: Series B, vol. 58, no. 1 (1996),

[^4]: R. Tibshirani. "Regression Shrinkage and Selection via the Lasso". Journal of the Royal Statistical Society: Series B, vol. 58, no. 1 (1996),

[^5]: R. Tibshirani. "Regression Shrinkage and Selection via the Lasso". Journal of the Royal Statistical Society: Series B, vol. 58, no. 1 (1996),

[^6]: R. Tibshirani. "Regression Shrinkage and Selection via the Lasso". Journal of the Royal Statistical Society: Series B, vol. 58, no. 1 (1996),

[^7]: R. Tibshirani. "Regression Shrinkage and Selection via the Lasso". Journal of the Royal Statistical Society: Series B, vol. 58, no. 1 (1996), pp. 267-288.

