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~L The fundarnental minimax theorem of von Neumann in the 
theory of games[LZJ has been generalized in various manners, all of 
which require strong algebraic hypothesis on the strategy spaces or 
the payoff functions or both, namely, linearity or convexity 
sense (cf. e. g. [ 13-14]). The present note furnishes 
tion which is, however, purely topological in 
to all the known generalizations, especia 11 y to that vVeyl, 
which is purely algebraic in character In our proof of the theorem, 
only elementary facts about point neither fixed point theorems 
or the like nor theorems about convex arc used. 

Let R be a closed in terva] which, as is well k 11own, may be 
characterized topologically as a continuum with all but two 110n
cut points, which are the end points of R. On R an order relation 
may then be established in just two manners so that for any subset 
E of R, the g. l. b. inf E and the l. u. b. sup E may be well-defined 
with respect to a chosen order relation < and > on R. For any 
point J.. ER, we shall denote by , , R-; and the subsets of R 
consisting of points z for which ·'' ~ J., z > },, z <A and ·c. ,_,;; }, respec
tively with regard to the above chosen order which wi 11 be fixed 
henceforth. For any spaces X, Y and any mapping f, continuous or 
110t, of XxY in R, we shall write f(x,y)=fx(y) fy(x), xEX, yE 
vVe shall say that the mapping f is strongly CO!l/lected in if it 
possesses the following two properties: 

(P1) For any a, b EX, there exists a continuous mapp111g h of 
the closed interval I with end points ii, b in X such that h (ii) a, 
lz (b) =b, and for any y E Y and any J.. ER, h- 1 

/;
1 (Rt) is a connected 

set, if not empty. (This implies that X should be arcwise conncc¢ 
tcd) 
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following 

Let Y be a compact separable space ttJlzile 
connected. If f: x Y-+R is strongly connected in X and 

. . 
ZS arcttJ!SC 

fy are 
colltimtotts for any x E: X, y E: then 

Inf {Supfy(X)/yE:Y} Sup {Inff.lY)/~: E: X}. ( l) 

The proof of the theorem depends on the following lemmas: 

1. Let X be a closed interval with end points a, b, 
Y be a scparab le space. Let ). be a fixed point of R and f be a 
mapping of Xx Y in R such that for any x E:: X and y E f ; 1 

and f; 1 (R";) arc connected if not empty, f.,., f Y are all continuous, 
and f; 1(Ri) contains either a or b. Then there exists a point E; E: 
such that fi;(Y) 

Proof. Let _}Ii, y2, • • ·, Yn, · · · be a countable dense set Put 
f;=f;. 1(Rt), then /; contains either a or b and is connected so that 
it is' an interval containing, or a point reducing to, a or b. 
11 fixed and suppose that / 1 n · · · n / 11 is empty. Then for some 
integers a, f3 of the set {l, 2, · ·., n}, we should have la n 113 4' so 
that x,, EX exists with f Ya (xJ EK;, f Yfl (x,,) ER-;. Hence f = f;,,1 (R-;) 
contains both Ya and y 8, and is by hypothesis connected. Say a E 
Then a~lri, bE/13, b~la, and fa=f nf; 1(Ri) contains Ya while f/3= 

f n /; 1(Rt) contains Yil· By hypothesis fa, ff3 are closed in J 
fa U f fl= f. It follows that fa n / 13 cp. Take r; E fa n f fl c /. Then 
I = f; 1 (Ri) contains both a and b. As I is connected, it coincides 
with X. 'Whence x,,El=f; 1(Ri), or r;Et;,;CR.i), contrary to r;E/= 

f;,,1 (RA). Therefore 11 n · · · n /,, 4', and we may take r;,,E/1 n · · · n I,, 
so that /Y;(r;,,) E , i = 1, 2, · · ·, 11. Let r; be a limiting point of 
r;,,,n=l, 2, · · ·, then we should have /Yi(r;) (y;) E , for all i. As 
the set {y;} is dense in Y we have f;;(y) E for all y E: Y, q. e. d. 

Let Y be a separable space, while is 
connected. Let). be a fixed point of R and f: Xx Y-+ R be a mapping 
strongly connected jn X. If f.,, fy are continuous for all x EX, y E Y 
and if there exist n points a1, • • ·, a,, EX such that (Ri) U • • • 
U /a-I (Rt) = Y, then there exists a point t; EX w1th /1;(Y) C 

" 
Proof. We shall use induction on n. The lemma is trivial 

n = 1. Suppose the lemma is true for n -1, n ~ 2. Put Y' =f;,,1 

Then the hypotheses in Lemma 1 for the pair of spaces 
the point J. ER, the mapping f /Xx Y', and the set of points ai, 
a,1-1 E: X arc verified and hence there a point t/ EX with 



such that 
1s a for any y E 
hypotheses of 1 are 
the point J.. ER, and the mapping J: Ix Y R by f(x, 
= fy h(x), x E J, y E Y. Hence there exists a point 1; EI with h(Y) c 

t;=h(l;), we have then f<(Y) C , as required. 

§4. Our theorem follows now easily by usual arguments. Suppose 
m fact that (1) is not true so that 

Inf {Supfy(X)/yEY} >Sup {Inffi E 

Then l. ER exists with 

Inf {Sup fy(X)/y E Y} >}.,>Sup {Inf f,.C EX}. (2) 

For any y E: Y there exists then a point Xy E with E As 
each set UY= f;/ (Rt) c Y is open, the compactness implies 

existence of a finite number of points Yi, • · ·, y,, E Y with such 

= f;.1 (Rt), tt fortiori f,;. 1 
), i = 1, 2, · · ·, 11, cover Y. The 

I I 

hypotheses of Lemma 2,, are then satisfied with respect to the pair 
of spaces , Y, the point ). E: R, the mapping /, and the system of 
points ai, ···,a,, E: X. Hence there exists a point t; E with /"(Y) C 

It would follow that Sup {Inf f, (Y) / x E } ~). in contradiction to 
(2). Hence (1) must be true and our theorem is proved. 

§5. Examples and Renuzrk._s. 

(A) Let X', Y' be spaces and /': X'x Y'--;.R be a mapping verify
ing the conditions of our theorem. Let X, Y be any spaces homeo
morphic to X', Y' under the homeomorphisms rp and t/; respectively 
and h any order-preserving topological transformation of R. Define 
f: XxY_..,R by f(x, y) =!zf'(rp(x), f(y)), xEX, yE Then (X,Y,f) 
verify also the conditions of our theorem. This shows the pure 
topological character of the above generalized von Neumann's 
theorem. 

(B) If X, Y are convex subsets of linear topological spaces and 
f a real-valued function on X >< Y which is quasi-concave in X and 
quasi¢convex in Y in the sense of Nikaido[121

, then f is strongly 
connected in X. Hence our theorem contains the generalizations of 
von Neumann's theorem by Nikaido on the further hypothesis about 
separability of the space Y and also those of Ville, Wald, Kneser, 
etc. On the other hand, it is independent of all other known 
generalizations, since no algebraic hypotheses are ;issumed in our 
theorem while all others do make them. 



requirements 
1mbed torus 
rectangular coordinates (x, y, 
torus is the x--axis and the parallel 

x (y), y E The z-coordinate then defines a real-valued fu 
f on x Y which satisfies the conditions of our theorem. 
optimal strategy may be seen to correspond to one of the two 
points of the function f. H we define the function by means of 
x--coordinate, then the set of optimal strategies is seen to 
to a circle on the torus. 

(D) That certain co11nectivity hypotheses about the spaces 
and the function f should be assumed in order to ensure the 
(1) without imposing any algebraic conditions, is quite 
However, the following exarnpJc shows our conditions on connec-
tivity arc rather too strong. Let Y be as 
us represent the torus Xx Y as a square ABCD with 
sides identified. Take a real-valued continuous function f on x 
such that f = 0 on the four sides as well as its diagonal AC of 
square ABCD, and f > 0 respectively f < 0 in the interior of 
triangle ABC respectively ACD, with a single maximum respectively 
a single minimum in their interior, the level lines f c being 
triangles with sides parallel to those of ABC or ACD, according as 
c > 0 or c < 0. Then the condition (PJ of the strong connectedness 
is satisfied bl,t (P1) is not. However, the equality (1) still 
with the set of optimal strategies reduced to a single point corres
ponding to the four vertices of the square and the value of 
game is equal to zero. The same is true, if in the first example 
(c) the roles of X and Y are interchanged. 
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