APPROXIMATION OF A PLANE WAVE BY SUPERPOSITIONS OF PLANE WAVES OF GIVEN DIRECTIONS

B. A. Vostrecov and m. a. Kreines

Let $\mathrm{x}=\left(x_{1}, \cdots, x_{n}\right)$ be a point of the Euclidean space R_{n}, and let D be a certain domain in this space. Further, let $a=\left(a_{1}, \cdots, a_{n}\right)$ be a point of the $(n-1)$-dimensional real projective space Π_{n-1}, with given homogeneous coordinates a_{1}, \cdots, a_{n}. In the space Π_{n-1}, we choose a set of points M_{n-1} and any point a. Let $f(t)$ be an arbitrary function which is continuous in the interval

$$
\begin{equation*}
\inf _{\mathbf{x} \in D}(\mathbf{a x}) \cdot<t<\sup _{\mathbf{x} \in D}(\mathbf{a x}), \quad \mathrm{ax}=a_{1} x_{1}+\ldots+a_{n} x_{n} \tag{1}
\end{equation*}
$$

We will derive a necessary and sufficient condition that every function $f(\mathbf{a x}), x \in D$, can be approximated uniformly on the compact subsets of the domain D by a summation of the form

$$
\begin{equation*}
\sum_{i=1}^{N} \varphi_{i}\left(\mathrm{a}_{i} \mathrm{x}\right) \tag{2}
\end{equation*}
$$

where N is an arbitrary natural number, a_{i} is a point of the set M and $\phi_{i}\left(t_{i}\right)$ is a function continuous in the interval

$$
\inf _{\mathbf{x} \in D}\left(\mathbf{a}_{i} \mathrm{x}\right)<t_{i}<\sup _{\mathrm{x} \in D}\left(\mathbf{a}_{i} \mathbf{x}\right), \quad \mathbf{a}_{\mathbf{i}} \mathbf{x}=a_{i 1} x_{1}+\ldots+a_{i n} x_{n}
$$

Toward that end, we will consider an arbitrary homogeneous polynomial $P(\mathrm{y})=P\left(y_{1}, \cdots, y_{n}\right)$ in the variables y_{1}, \cdots, y_{n} with real coefficients, and we will introduce the following definition.

Definition. We will say that the point a, a $\in \Pi_{n-1}$ is algebraically related to the set M, if every polynomial containing the set M (i.e. vanishing at each of the points of M), contains also the point a.

Theorem. In order that an arbitrary continuous function $f(a x), x \in D$, can be uniformly approximated on the compact subsets of the domain D, by a summation of the form (2), it is necessary and sufficient that the point $\mathrm{a}=\left(a_{1}, \cdots, a_{n}\right)$ be algebraically related to the set M.

Proof of the necessity. We assume that the arbitrary continuous function f (ax) can be uniformly approximated on the compact subsets of the domain D by a summation of the form (2). Let $P\left(y_{1}, \cdots, y_{n}\right)$ be an arbitrary polynomial of degree m containing the set M. We choose any closed sphere \bar{K} lying together with its boundary in the domain D. We denote by $v_{\bar{K}}$ the class of all functions $v(x)$ which are m times continuously differentiable in the sphere \bar{K}, and which vanish together with their partial derivatives up to the $(m-1)$ st order inclusively, on the boundary of the sphere \bar{K}. For the class of functions $v_{\bar{K}}$, we define the functional

$$
(u, v)=\int_{K}^{j} u(\mathrm{x}) P\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right) v(\mathrm{x}) d \mathrm{x}
$$

Where $u(\mathbf{x})$ is an arbitrary function which is continuous in the sphere \bar{K}. The functional (u, v) is additive in u and v and, for a fixed function $v(x)$, is continuous in the sense of uniform convergence
within the class of all functions $u(x)$ which are continuous in the sphere \bar{K}. We can easily see also that, if $P\left(a_{01}, \cdots, a_{0 n}\right)=0$, then $\left(\phi\left(a_{0} \mathbf{x}\right), v\right)=0$ for functions of the class v_{K}, whatever be the continuous function $\phi\left(a_{0} x\right), x \in \bar{K}$. From this, and because of the relatively suitable function $f(a x)$ assumed, it follows that $(f(a x), v)=0$ if $v(x) \in v_{\bar{K}}$. Since the function $f(t)$ is arbitrary, we choose it such that, in the interval $\underset{x \in \bar{K}}{\inf }$ (ax) $\leq t \leq \sup _{x \in \bar{K}}$ (ax), it possesses a continuous arbitrary $f^{(m)}(t)$,

$$
x \in \bar{K}
$$

where $f^{(m)}(t) \neq 0$ in this interval. Integrating by parts, we obtain

$$
(f, v)=(-1)^{m} \int_{D} f^{(m)}(\mathbf{a x}) P\left(a_{1}, \ldots, a_{n}\right) v(\mathbf{x}) d \mathbf{x}=0
$$

from which, by virtue of the arbitrariness of the function $v(x) \in v_{\bar{K}}$, it follows that

$$
f^{(m)}(\mathbf{a x}) P\left(a_{1}, \ldots, a_{n}\right) \equiv 0, \quad \mathrm{x} \in \bar{K}
$$

i.e. $P\left(a_{1}, \cdots, a_{n}\right)=0$ and the point $a=\left(a_{1}, \cdots, a_{n}\right)$ is algebraically related to the set M.

Proof of the sufficiency. Since any continuous function in the interval (1) can be uniformly approximated by a polynomial on the compact subsets of this interval, it is enough for the proof of our statement to show, for any natural number m, the possibility of the representation

$$
\begin{equation*}
(\mathbf{a x})^{m}=\sum_{i=1}^{k} \lambda_{l}\left(\mathbf{a}_{i} x\right)^{m}, \quad \mathbf{a}_{l} \in M, \tag{3}
\end{equation*}
$$

where k is some natural number and $\lambda_{1}, \cdots, \lambda_{k}$ are real numbers.
It is obvious that the number λ_{i} should satisfy the system of equations

$$
\begin{align*}
& a_{1}^{m_{1}} a_{2}^{m_{2}} \ldots a_{n}^{m_{n}}=\sum_{i=1}^{k} a_{i 1}^{m_{1}} a_{i 2}^{m_{2}} \ldots a_{i n}^{m_{n}} \lambda_{i}, \tag{4}\\
& m_{J} \geqslant 0, m_{1}+m_{2}+\ldots+m_{n .}=m .
\end{align*}
$$

We choose $k=C_{m+n-1}^{n-1}$ and consider the determinant obtained from the system (4)

$$
\Delta\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right)=\left|a_{i 1}^{m_{1}} a_{i 2}^{m_{2}} \ldots a_{i n}^{m_{n}}\right|
$$

for the totality of points belonging to the set M. If for a given m, there is no polynomial of degree m containing the set M, other than the identically vanishing one, then it is easily se en that the totality of points of the set $M a_{i}^{*}, i=1, \cdots, k$, for which $\Delta\left(a_{1}^{*}, \cdots, a_{k}^{*}\right) \neq 0$ are chosen and the possibility of the representation (3) for this m is proved. If, however, some nontrivial polynomial does exist, then $\Delta\left(a_{1}, \cdots, a_{k}\right)=0$, whatever be the totality of points ($\left.a_{i}, i=1, \cdots, k\right)$, from the set M. In this case the choice is made from among the minors of the determinant Δ (a_{1}, \cdots, a_{k}) if only one minor $\Delta\left(\mathrm{a}_{i_{1}}, \cdots, \mathrm{a}_{i_{s}}\right), s<k$ and only one system of points $a_{i_{1}}^{*}, \cdots, \mathrm{a}_{i_{s}}^{*}$ exist such that $\Delta\left(\mathrm{a}_{i_{1}^{*}}, \cdots, \mathrm{a}_{i_{s}}\right) \neq 0$, while all the minors of the determinant $\Delta\left(a_{1}, \cdots, a_{k}\right)$ which are of higher order will be equal to zero at all the points of M.

If among the rows of the minor $\Delta\left(a_{i_{1}}^{*}, \cdots, a_{i_{s}}^{*}\right)$, there is no row of the form $a_{i_{1}}^{m_{1}^{0}} a_{i_{2}}^{m} \cdots a_{i_{n}}^{0}$, $m_{1}^{0}+m_{2}^{0}+\cdots+m_{n}^{0}=m, m_{j}^{0} \geq 0$, then we augment the minor $\Delta\left(a_{i_{1}^{*}}^{*}, \cdots, a_{i_{s}}^{*}\right)$ by the elements of that row and the elements of any column of the original determinant, taken at the arbitrary point $a_{i} \in M$. We obtain some minor $\Delta\left(a_{i}^{*}, \cdots, a_{i_{s}}^{*}, a_{i}\right)$. We fix the points $a_{i}^{*}, \cdots, a_{i}^{*}$ and let the point a_{i} run through all the points of the set M, thus tracing each time $\Delta\left(a_{i_{1}}^{*}, \cdots, a_{i_{s}}^{*}, a_{i}\right)=0$. Expanding this minor about the elements of the added column, we find that on the set M there is a linear relationship
beeween the power $a_{1}^{m} a_{1}^{0} a_{1}^{m} a_{2}^{0} \ldots a_{i}^{m} n$ and the powers corresponding to the rows of the minor
$\Lambda\left(n_{1}^{0}, \cdots, n_{i}^{*}\right)$, the power $a_{i_{1}}^{m_{1}^{0}} a_{i_{2}}^{m} \ldots a_{i_{n}}^{m}{ }_{n}^{m}$ being linearly expressed in terms of the rest of the mentioned
powers. We put the obtained linear combination into the corresponding homogeneous polynomial
$p\left(y_{1}, \cdots, y_{n}\right)$, replacing, in the determinant $\Lambda\left(n_{i_{1}}^{*}, \cdots, n_{i,}^{*}, a_{i}\right)$, the components $a_{i_{1}}, a_{i_{2}}, \cdots, a_{i_{n}}$ the set M, it will necessarily contain the point a also, by the statement of follows that the function $u=(a x)^{m}$ satisfies the equation in the partial derivatives

$$
P\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right) u=0 .
$$

Substituting the power ($\mathbf{n x})^{m}$ in this equation, we find that exactly the same relationship that was found above for the point $n_{i} \in M$, exists between the power $a_{1}^{m}{ }_{1}^{0} a_{2}^{m}{ }_{2}^{0} \cdots a_{n}^{m}{ }_{n}^{0}$ and the powers corresponding to the rows of the minor $\Delta\left(n_{i}^{*}, \cdots, n_{i s}^{*}\right)$ taken at the point a. Since the chosen row of the form $a_{i_{1}}^{m_{1}^{0}} a_{i_{2}}^{m_{2}^{0}} \cdots a_{i_{n}}^{m} n_{n}^{0}$ does not enter in the composition of the rows of the determinant $\Delta\left(a_{i_{1}}^{*}, \cdots, a_{i_{s}}^{*}\right)$, which is arbitrary, the solvability of the system (4) in terms of λ_{i} follows from the proof and thus the possibility of the representation (3).

The mentioned theorem allows the notion of the algebraic relationship of a point to the set M to be formulated as follows:

The point a $\in \Pi_{n-1}$ is algebraically related to the set M, if it exists in the domain D in such a manner that the arbitrary function $f(\mathbf{a x}), \mathbf{x} \in D(f(t)$ continuous in the interval (1)), can be uniformly approximated on the compact subsets of D by a summation of the form (2).

Received 20/JAN/62
Translated by:
Adnan Ifram

