APPROXIMATION OF CONTINUOUS FUNCTIONS BY SUPERPOSITIONS OF PLANE WAVES

B. A. VOSTRECOV, AND M. A. KREǏNES

A sequence of directions determined by the vectors $1_{i}=\left(a_{i}\right) \neq 0, a_{i}=\left(a_{i 1}, a_{i 2}, \cdots, a_{i n}\right)$, where $a_{i j}$ are real numbers and $i=1,2, \cdots$, will be called basic, if for a certain domain D of the n-dimen. sional euclidean space and an arbitrary function $f(x), x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$, continuous in the domain there are functions $\phi_{i k}\left(t_{i}\right), i=1,2, \cdots, k$, each continuous in the corresponding interval

$$
\inf _{x \in D}\left(a_{i} x\right)<t_{i}<\sup _{x \in D}\left(a_{i} x\right) ; a_{i} x=a_{i 1} x_{1}+\ldots+a_{i n} x_{n}, \quad k=1,2, \cdots,
$$

such that the sequence of sums

$$
\begin{equation*}
\Phi_{k}(x)=\sum_{i=1}^{k} \phi_{i k}\left(a_{i} x\right) \tag{1}
\end{equation*}
$$

converges uniformly inside D to the function $f(x)$.
In this note we give necessary and sufficient conditions satisfied by any basic system of direc. tions.

To formulate these necessary and sufficient conditions we shall consider the coordinates $a_{1}, a_{2}, \cdots, a_{n}$ of a vector $1 \neq 0$ as homogeneous coordinates of a point $A=(a)=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ of the ($n-1$)-dimensional projective space Π_{n-1}.

Theorem. For a sequence of directions determined by the vectors $\mathbf{1}_{\boldsymbol{i}}=\left(a_{i}\right) \neq 0, i=1,2, \cdots$ to be basic it is necessary and sufficient that the sequence of the points $A_{i}=\left(a_{i}\right)$ of the space Π_{n-1} does not belong to any $(n-2)$ dimensional algebraic surface of this space.

From this theorem it follows in particular that a sequence of vectors $\mathbf{l}_{i}=\left(a_{i}\right)$ determining a basic sequence of directions cannot be entirely contained in any hyperplane of the n-dimensional vector space.

1. Proof of the necessity. We will show that if $\left(a_{i}\right) \in M, i=1,2, \cdots$, where M is some $(n-2)$. dimensional algebraic surface of the space Π_{n-1}, then in any domain D of the n-dimensional euclidean space there exist continuous functions which are not uniform limits of any convergent sequence of sums of the form (1).

Let

$$
P\left(a_{1}, a_{2}, \cdots, a_{n}\right)=\underset{m_{1}+m_{2}+\cdots+m_{n}=m}{\Sigma} \quad c_{m_{1}, m_{2}}, \cdots, m_{n}^{a_{1}^{m}} 1_{2}^{m} a_{2}^{m} \ldots a_{n}^{m_{n}}=0,
$$

where $c_{m_{1}}, c_{m_{2}}, \cdots, c_{m_{n}}$ are constants, $m_{j} \geq 0, j=1,2, \cdots, n$, be the equation of the surface M in homogeneous coordinates. We take an arbitrary point $x_{0} \in D$ and choose $\delta>0$ so that the sphere

$$
O_{v}(u)=\iint_{\bar{K}} u(x) L[v(x)] d x, \quad d x=d x_{1} \ldots d x_{n}
$$

where $L=\underline{P}\left(\partial / \partial x_{1}, \partial / \partial x_{2}, \cdots, \partial / \partial x_{n}\right)$ and $v(x)$ is a function m times continuously differentiable in up to the order ($m-1$) inclusive; we shall call such functions admissible.

Every function $u(x)$ continuous in the sphere \bar{K} and of the form $u=\phi(a x),(a) \in M$, annihilates the operator $O_{v}(u)$ for every admissible function $v(x)$. In fact, let us substitute an arbitrary admissible function $v(x)$ and the function $u=\phi(a x)$ in the operator $O_{v}(u)$ and, assuming that $a_{1} \neq 0$ (which does not restrict generality) let us make under the integral sign in the operator L a change of variable setting

$$
\begin{equation*}
y_{1}=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}, \quad y_{2}=x_{2}, \cdots, y_{n}=x_{n} . \tag{2}
\end{equation*}
$$

Tre shall have

$$
\begin{equation*}
\iint_{\bar{K}} \varphi(a x) L[v(x)] d x=\frac{1}{\left|a_{1}\right|} \iint_{K^{\prime}} \varphi\left(y_{1}\right) \bar{L}[\bar{v}(y)] d y, \tag{3}
\end{equation*}
$$

where \bar{K}^{\prime} is the image of the sphere \bar{K} and \bar{L} results from transforming the operator L by means of the formulas (2).

Since

$$
\bar{L}\left[\phi\left(y_{1}\right)\right]=L[\phi(a x)]=P\left(a_{1}, a_{2}, \cdots, a_{n}\right) \phi^{(m)}(a x)=0
$$

for any m times differentiable function ϕ, it is easy to see that the coefficient of $\partial^{m} / \partial y_{1}^{m}$ in the operator \bar{L} is equal to 0 . Furthermore let us observe that the function $\bar{v}(y)=v(x)$ vanishes on the boundary of the domain \bar{K}^{\prime} together with all its partial derivatives. Using this and applying in the right side of (3) a single termwise integration with respect to a variable not coinciding with y_{1} we see the validity of the equation

$$
O_{v}[\phi(a x)]=0
$$

for any admissible function $v(x)$.
From this and the additiveness of the integral and the possibility of passing to the limit in the operator $O_{v}(u)$ for a fixed function $v(x)$ it follows that if the functions $\phi_{i k}\left(a_{i} x\right), i=1,2, \cdots, k$; $k=1,2, \cdots$, are continuous in the sphere \bar{K}, then every function $f(x)$ which is the limit of a sequence of sums of the form (1) uniformly converging in \bar{K} also annihilates the operator $O_{v}{ }^{(u)}$ for every admissible function $v(x)$.

To complete the proof it is necessary to show the existence of a function $u=u_{0}(x)$ continuous in the domain D and not annihilating the operator $O_{v}(u)$ for any admissible function $v(x)$.

If c
$m_{1}^{0}, m_{2}^{0}, \cdots, m_{n}^{0}$ is a nonzero coefficient of the polynomial $P\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ then such a func${ }^{\text {tion }}$ will be, for example, the function $u_{0}(x)=x_{1}{ }_{1}{ }_{1}^{0} x_{2}^{m}{ }_{2}^{0} \cdots x_{n}^{m}$. For it and the function

We shall have

$$
v_{0}(x)=\left[\delta^{2}-\sum_{i=1}^{n}\left(x_{i}-x_{0 i}\right)^{2}\right]^{m}
$$

$$
O_{v}\left(u_{0}\right) \neq 0
$$

and thus the necessity of the conditions of the theorem is established.
2. Proof of the necessity. Let a sequence of directions determined by the vectors

$$
1_{i}=\left(a_{i}\right) \neq 0, \quad i=1,2, \cdots,
$$

be such that the corresponding sequence of points

$$
\begin{equation*}
A_{i}=\left(a_{i}\right) \tag{4}
\end{equation*}
$$

of the space Π_{n-1} does not belong to any ($n-2$)-dimensional algebraic surface. We may, obviously, consider the vectors $1_{i}, i=1,2, \cdots$, as pairwise noncollinear.

For any natural number m and any aggregate of points $\left\{\left(a k_{r}\right)\right\} \subset\left\{\left(a_{i}\right)\right\}$, where k_{r} is a natural number, $r=1,2, \cdots, N, N=c_{m+n}^{n}, i=1,2, \cdots$, let us consider the identities

$$
\begin{gather*}
\quad \sum_{m_{1}+m_{1}+\ldots+N l_{n}=m} \frac{\left(a_{k_{r} 1} x_{1}+a_{k_{r} 2} x_{2}+\ldots+a_{k_{r} n} x_{n}\right)^{m}=}{m_{1}!m_{2}!\ldots m_{n}!} a_{k_{r} 1}^{m_{1}} a_{k_{r} r_{2}}^{m_{2}} \ldots a_{k_{r} n}^{m_{n}} x_{1}^{m_{1}} x_{2}^{m_{2}} \ldots x_{n}^{m_{n}}, \\
m_{j} \geqslant 0, \quad j \quad 1,2, \ldots, n \tag{5}
\end{gather*}
$$

which we shall treat as a system of linear equations in the quantities

$$
\begin{equation*}
\frac{m!}{m_{1}!m_{2}!\ldots m_{n}!} x_{1}^{m_{1}} x_{2}^{m_{2}} \ldots x_{n}^{m_{n}} \tag{6}
\end{equation*}
$$

The determinant of this system is equal to

$$
\begin{gathered}
\Delta\left(a_{k_{1}}, \ldots, a_{k_{N}}\right)=\left|a_{k_{r} 1}^{m_{1}} a_{k_{r} 2}^{m_{2}} \ldots a_{k_{r} n}^{m_{n}}\right| \\
m_{1}+m_{2}+\ldots+m_{n}=m, \quad m_{j} \geqslant 0, j:=1,2, \ldots, n
\end{gathered}
$$

We shall call a system $\left\{\left(a_{k_{r}}\right)\right\}, r=1,2, \cdots, N$ for which $\Delta\left(a_{k_{1}}, \cdots, a_{k_{N}}\right) \neq 0$, a nondegenerate sys. tem of points of order m.

Let now $n=2$. In this case for the sequence $l_{i}, i=1,2, \cdots$, we may take any sequence of pairwise noncollinear vectors. It is also easy to see that when $n=2$ any sequence of distinct points of the sequence (4) contaning $m+1$ points is a nondegenerate system of order $m, m=1,2, \cdots$. Hence putting $k_{r}=r, r=1,2, \cdots, m+1$ and solving the system (5) with respect to the unknowns (6) we find that every product $x_{1}^{m} x_{2}^{m}, m_{1}+m_{2}=m, m_{1}, m_{2} \geq 0$, and consequently any homogeneous polynomial of degree m in the variables x_{1}, x_{2}, is representable as a linear combination of the powers $\left(a_{i} x\right)^{m}, i=1,2, \cdots, m+1$. From this and the arbitrariness of m it follows that every polynomial $P_{k}(x)$ of degree k is representable in the form

$$
\begin{equation*}
P_{k}(x)=\sum_{i=1}^{k+1} \phi_{i}\left(a_{i} x\right) \tag{7}
\end{equation*}
$$

where the functions $\phi_{i}(t)$ are also polynomials of degree k in t.
Hence taking a sequence of polynomials $\left\{P_{k}(x)\right\}, k=1,2, \cdots$, uniformly approximating the function $f(x)$ in D, and using the equation (7) we obtain the proof of sufficiency in the case $n=2$.

For $n>2$ an arbitrary system of points $\left\{\left(a_{k_{r}}\right)\right\}, r=1,2, \cdots, N$, from the sequence (4) need not be nondegenerate. Ve shall show, however, that for any natural m there exist nondegenerate systems of points belonging to the indicated sequence. For this end assume the contrary and select from the sequence (4) any system of distinct points $\left\{\left(a_{k_{r}}^{*}\right)\right\}, r=1,2, \cdots, N$. We fix any $N-1$ among these points and make run the remaining point, say $\left(a_{k_{j}}^{*}\right)_{r}$ through all the points of the sequence $\left(a_{i}\right), i=1,2, \cdots$

By hypothesis, $\Delta\left(a_{k_{1}}^{*}, \cdots, a_{k_{j}}, \cdots, a_{k_{N}}\right)=0$ each time. Since the initial sequence does not belong to any ($n-2$)-dimensional algebraic surface, all minors of the j th row of the determinant $\Delta\left(a_{k}^{*}, \cdots, a_{k_{N}}^{*}\right)$ are equal to 0 . In view of the arbitrariness of the choice of the system of the points $\left\{\left(a_{k}\right)\right\}$ and the variable point $\left(a_{k_{j}}^{*}\right)$ among the points of this system, it follows from the foregoing that, generally, any minor of order $(N-1)$ of the determinant $\Delta\left(a_{k_{1}}, \cdots, a_{k_{N}}\right)$, taken for an arbitrary system of points of the sequence (4) is equal to 0 . Repeating this argument for each minor of order $(N-1)$ we find that all minors of order $(N-2)$ of the determinant under consideration are also equal to 0 for all possible systems of points of our sequence. Continuing in the same way we arrive at the identical vanishing of all minors of order 1 of the determinant $\Delta\left(a_{k_{1}}, \cdots, a_{k_{N}}\right)$ for all points of the sequence $\left(a_{i}\right), i=1,2, \cdots$, and this contradicts the hypothesis since $1_{i} \neq 0, i=1,2, \cdots$.

Hence the sequence $\left(a_{i}\right), i=1,2, \cdots$, contains nondegenerate systems of points of any order m. For each m we fix one such system and substitute the coordinates of the points of this system into the relations (5). If now $P_{k}(x)$ is an arbitrary polynomial of degree k, then solving the so obtained system (5) with respect to the unknowns (6) for $m=1,2, \cdots, k$, and replacing in the polynomial $P_{k}(x)$ the powers $x_{1}^{m} x_{2}^{m} 2 \cdots x_{n}^{m_{n}}, m_{1}+m_{2}+\cdots+m_{n}=m, m_{j} \geq 0$, by the solutions we arrive at the equation

$$
P_{k}(x)=\sum_{i=1}^{N_{k}} \phi_{i}\left(a_{i} x\right),
$$

where $\phi_{i}(t), i=1,2, \cdots, N_{k}$, are certain polynomials in t of degree not exceeding k. The proof of the sufficiency of the conditions of the theorem then reduces to the possibility of a uniform approximation of the function $f(x)$ in the interior of the domain D by polynomials.

Using the preceding result we can, for example, assert the following.
Let $t_{i}, i=1,2, \cdots$, be a sequence consisting of infinitely many distinct real numbers and converging to some number t_{0}. Then the sequence of directions $\left(t_{i}, e^{t_{i}}, 1\right), i=1,2, \ldots$, in the three-dimensional space is basic.

This assertion follows from the fact that the end points of the vectors taken in the plane Π_{2} do not lie on any algebraic curve.

Moscow State Uneversity

