
Lecture 10

Proving languages to be non-context
free

In this lecture we will study a method through which certain languages can be
proved to be non-context free. The method will appear to be quite familiar, because
it closely resembles the one we discussed in Lecture 5 for proving certain languages
to be nonregular.

10.1 The pumping lemma for context-free languages

Along the same lines as the method we discussed in Lecture 5 for proving some
languages to be nonregular, we will start with a variant of the pumping lemma
that holds for context-free languages.

The proof of this lemma is, naturally, different from the proof of the pumping
lemma for regular languages, but there are similar underlying ideas. The main
idea is that if you have a parse tree for the derivation of a particular string by some
context-free grammar, and the parse tree is sufficiently deep, then there must be a
variable that appears multiple times on some path from the root to a leaf—and by
modifying the parse tree in certain ways, one obtains a similar type of pumping
effect that we had in the case of the pumping lemma for regular languages.

Lemma 10.1 (Pumping lemma for context-free languages). Let Σ be an alphabet and
let A ⊆ Σ∗ be a context-free language. There exists a positive integer n (called a pumping
length of A) that possesses the following property. For every string w ∈ A with |w| ≥ n,
it is possible to write w = uvxyz for some choice of strings u, v, x, y, z ∈ Σ∗ such that

1. vy 6= ε,

2. |vxy| ≤ n, and

3. uvixyiz ∈ A for all i ∈N.

97

CS 360 Introduction to the Theory of Computing

1

2

3

4

5

m

m + 1

Figure 10.1: At least one path from the root to a leaf in a CNF parse tree for a string
of length 2m or more must have m + 1 or more variable nodes. If this were not
so, the total number of variable nodes (which are collectively represented by the
shaded region) would be at most 2m − 1, contradicting the fact that there must be
at least 2m variable nodes.

Proof. Given that A is context free, we know that there must exist a CFG G in
Chomsky normal form such that A = L(G). Let m be the number of variables in
G. We will prove that the property stated in the lemma holds for n = 2m.

Suppose that a string w ∈ A satisfies |w| ≥ n = 2m. As G is in Chomsky normal
form, every parse tree for w has exactly 2|w| − 1 variable nodes and |w| leaf nodes.
Hereafter let us fix any one of these parse trees, and let us call this tree T. For
the sake of this proof, what is important about the size of T is that the number of
variable nodes is at least 2m. This is true because 2|w| − 1 ≥ 2 · 2m− 1 ≥ 2m. In fact,
the last inequality must be strict because m ≥ 1, but this makes no difference to
the proof. Because the number of variable nodes in T is at least 2m, there must exist
at least one path in T from the root to a leaf along which there are at least m + 1
variable nodes—for if all such paths had m or fewer variable nodes, there could be
at most 2m − 1 variable nodes in the entire tree.

Next, choose any path in T from the root to a leaf having the maximum possible
length. (There may be multiple choices, but any one of them is fine.) We know
that at least m + 1 variable nodes must appear in this path, as argued above—and
because there are only m different variables in total, there must be at least one
variable that appears multiple times along this path. In fact, we know that some

98

Lecture 10

S

X

X

TT1T2

u v x y z

Figure 10.2: An illustration of the subtrees T1 and T2 of T.

variable (let us call it X) must appear at least twice within the m + 1 variable nodes
closest to the leaf on the path we have selected. Let T1 and T2 be the subtrees of T
rooted at these two bottom-most occurrences of this variable X, with T2 being the
smaller of these two trees. By the way we have chosen these subtrees, we know
that T2 is a proper subtree of T1, and T1 is not very large: every path from the root
of the subtree T1 to one of its leaves can have at most m + 1 variable nodes, and
therefore T1 has no more than 2m = n leaf nodes.

Now, let x be the string for which T2 is a parse tree (starting from the variable X)
and let v and y be the strings formed by the leaves of T1 to the left and right,
respectively, of the subtree T2, so that vxy is the string for which T1 is a parse tree
(also starting from the variable X). Finally, let u and z be the strings represented
by the leaves of T to the left and right, respectively, of the subtree T1, so that w =
uvxyz. Figure 10.2 provides an illustration of the strings u, v, x, y, and z and how
they related to the trees T, T1, and T2.

It remains to prove that u, v, x, y, and z have the properties required by the
statement of the lemma. Let us first prove that uvixyiz ∈ A for all i ∈ N. To see
that uxz = uv0xy0z ∈ A, we observe that we can obtain a valid parse tree for uxz
by replacing the subtree T1 with the subtree T2, as illustrated in Figure 10.3. This
replacement is possible because both T1 and T2 have root nodes corresponding to
the variable X. Along similar lines, we have that uv2xy2z ∈ A because we can
obtain a valid parse tree for this string by replacing the subtree T2 with a copy
of T1, as suggested by Figure 10.4. By repeatedly replacing T2 with a copy of T1, a
valid parse tree for any string of the form uvixyiz is obtained.

99

CS 360 Introduction to the Theory of Computing

S

X

T2

u

x

z

Figure 10.3: By replacing the subtree T1 by the subtree T2 in T, a parse tree for the
string uxz = uv0xy0z is obtained.

S

X

X

X

T1T2

u v

x

y z

v y

Figure 10.4: By replacing the subtree T2 by the subtree T1 in T, a parse tree for the
string uv2xy2z is obtained. By repeatedly replacing T2 with T1 in this way, a parse
tree for the string uvixyiz is obtained for any positive integer i ≥ 2.

100

Lecture 10

Next, the fact that vy 6= ε follows from the fact that every parse tree for a string
corresponding to a CFG in Chomsky normal form has the same size. It therefore
cannot be that the parse tree suggested by Figure 10.3 generates the same string
as the one suggested by Figure 10.2, as the two trees have differing numbers of
variable nodes. This implies that uvxyz 6= uxz, so vy 6= ε.

Finally, we have |vxy| ≤ n because the subtree T1 has at most 2m = n leaf nodes,
as was already argued above.

10.2 Using the context-free pumping lemma

Now that we have the pumping lemma for context-free languages in hand, we can
prove that certain languages are not context free. The methodology is very similar
to what we used in Lecture 5 to prove some languages to be nonregular. Some
examples, stated as propositions, follow.

Proposition 10.2. Let Σ = {0, 1, 2} and let A be a language defined as follows:

A =
{

0m1m2m : m ∈N
}

. (10.1)

The language A is not context free.

Proof. Assume toward contradiction that A is context free. By the pumping lemma
for context-free languages, there must exist a pumping length n for A. We will fix
such a pumping length n for the remainder of the proof.

Let
w = 0n1n2n. (10.2)

We have that w ∈ A and |w| = 3n ≥ n, so the pumping lemma guarantees that
there must exist strings u, v, x, y, z ∈ Σ∗ so that w = uvxyz and the three properties
in the statement of that lemma hold: (i) vy 6= ε, (ii) |vxy| ≤ n, and (iii) uvixyiz ∈ A
for all i ∈N.

Now, given that |vxy| ≤ n, it cannot be that the symbols 0 and 2 both appear
in the string vy; the 0s and 2s are too far apart for this to happen. On the other
hand, at least one of the symbols of Σ must appear within vy, because this string is
nonempty. This implies that the string

uv0xy0z = uxz (10.3)

must have strictly fewer occurrences of either 1 or 2 than 0, or strictly fewer occur-
rences of either 0 or 1 than 2. That is, if the symbol 0 does not appear in vy, then it
must be that either

|uxz|1 < |uxz|0 or |uxz|2 < |uxz|0, (10.4)

101

CS 360 Introduction to the Theory of Computing

and if the symbol 2 does not appear in vy, then it must be that either

|uxz|0 < |uxz|2 or |uxz|1 < |uxz|2. (10.5)

This, however, is in contradiction with the fact that uv0xy0z = uxz is guaranteed
to be in A by the third property.

Having obtained a contradiction, we conclude that A is not context free, as
claimed.

In some cases, such as the following one, a language can be proved to be non-
context free in almost exactly the same way that it can be proved to be nonregular.

Proposition 10.3. Let Σ = {0} and recall the language

SQUARE =
{

0m2
: m ∈N

}
(10.6)

defined in Lecture 5. The language SQUARE is not context free.

Proof. Assume toward contradiction that SQUARE is context free. By the pumping
lemma for context-free languages, there must exist a pumping length n ≥ 1 for
SQUARE for which the property stated by that lemma holds. We will fix such a
pumping length n for the remainder of the proof.

Define
w = 0n2

. (10.7)

We see that w ∈ SQUARE and |w| = n2 ≥ n, so the pumping lemma tells us that
there exist strings u, v, x, y, z ∈ Σ∗ so that w = uvxyz and the following conditions
hold:

1. vy 6= ε,

2. |vxy| ≤ n, and

3. uvixyiz ∈ SQUARE for all i ∈N.

There is only one symbol in the alphabet Σ, so it is immediate that vy = 0k for
some choice of k ∈N. Because vy 6= ε and |vy| ≤ |vxy| ≤ n it must be the case that
1 ≤ k ≤ n. Observe that

uvixyiz = 0n2+(i−1)k (10.8)

for each i ∈N. In particular, if we choose i = 2, then we have

uv2xy2z = 0n2+k. (10.9)

102

Lecture 10

However, because 1 ≤ k ≤ n, it cannot be that n2 + k is a perfect square. This is
because n2 + k is larger than n2, but the next perfect square after n2 is

(n + 1)2 = n2 + 2n + 1, (10.10)

which is strictly larger than n2 + k because k ≤ n. The string uv2xy2z is there-
fore not contained in SQUARE, which contradicts the third condition stated by the
pumping lemma, which guarantees us that uvixyiz ∈ SQUARE for all i ∈N.

Having obtained a contradiction, we conclude that SQUARE is not context free,
as claimed.

Remark 10.4. We will not discuss the proof, but it turns out that every context-free
language over a single-symbol alphabet must be regular. By combining this fact
with the fact that SQUARE is nonregular, we obtain a different proof that SQUARE
is not context free.

Here is one more example of a proof that a particular language is not context
free using the pumping lemma for context-free languages. For this one things get
a bit messy because there are multiple cases to worry about as we try to get a
contradiction, which turns out to be fairly common when using this method. Of
course, one has to be sure to get a contradiction in all of the cases in order to have
a valid proof by contradiction, so be sure to keep this in mind.

Proposition 10.5. Let Σ = {0, 1, #} and define a language B over Σ as follows:

B = {r#s : r, s ∈ {0, 1}∗, r is a substring of s}. (10.11)

The language B is not context free.

Proof. Assume toward contradiction that B is context free. By the pumping lemma
for context-free languages, there exists a pumping length n for B. We will fix such
a pumping length n for the remainder of the proof.

Let
w = 0n1n# 0n1n. (10.12)

It is the case that w ∈ B (because 0n1n is a substring of itself) and |w| = 4n + 1 ≥ n.
The pumping lemma therefore guarantees that there exist strings u, v, x, y, z ∈ Σ∗

so that w = uvxyz and the three properties in the statement of that lemma hold:
(i) vy 6= ε, (ii) |vxy| ≤ n, and (iii) uvixyiz ∈ B for all i ∈N.

There is just one occurrence of the symbol # in w, so it must appear in one of
the strings u, v, x, y, or z. We will consider each case separately:

103

CS 360 Introduction to the Theory of Computing

Case 1: the # lies within u. In this case we have that all of the symbols in v and y
appear to the right of the symbol # in w. It follows that

uv0xy0z = 0n1n# 0n−j1n−k (10.13)

for some choice of integers j and k with j + k ≥ 1, because by removing v and y
from w we must have removed at least one symbol to the right of the symbol #
(and none from the left of that symbol). The string (10.13) is not contained in B,
even though the third property guarantees it is, and so we have a contradiction in
this case.

Case 2: the # lies within v. This is an easy case: because the # symbol lies in v, the
string uv0xy0z = uxz does not contain the symbol # at all, so it cannot be in B. This
is in contradiction with the third property, which guarantees that uv0xy0z ∈ B, and
so we have a contradiction in this case.

Case 3: the # lies within x. In this case, we know that vxy = 1j#0k for some choice of
integers j and k for which j+ k ≥ 1. The reason why vxy must take this form is that
|vxy| ≤ n, so this substring cannot both contain the symbol # and reach either the
first block of 0s or the last block of 1s, and the reason why j + k ≥ 1 is that vy 6= ε.
If it happens that j ≥ 1, then we may choose i = 2 to obtain a contradiction, as

uv2xy2z = 0n1n+j# 0n+k1n, (10.14)

which is not in B because the string to the left of the # symbol has more 1s than the
string to the right of the # symbol. If it happens that k ≥ 1, then we may choose
i = 0 to obtain a contradiction: we have

uv0xy0z = 0n1n−j# 0n−k1n (10.15)

in this case, which is not contained in B because the string to the left of the # symbol
has more 0s than the string to the right of the # symbol.

Case 4: the # lies within y. This case is identical to case 2—the string uv0xy0z cannot
be in B because it does not contain the symbol #.

Case 5: the # lies within z. In this case we have that all of the symbols in v and y
appear to the left of the symbol # in w. Because vy 6= ε, it follows that

uv2xy2z = r#0n1n (10.16)

for some string r that has length strictly larger than 2n. The string (10.16) is not
contained in B, even though the third property guarantees it is, and so we have a
contradiction in this case.

Having obtained a contradiction in all of the cases, we conclude that there must
really be a contradiction—so B is not context free, as claimed.

104

Lecture 10

10.3 Non-context-free languages and
closure properties

In the previous lecture it was stated that the context-free languages are not closed
under either intersection or complementation. That is, there exist context-free lan-
guages A and B such that neither A ∩ B nor A are context free. We can now verify
these claims.

First, let us consider the case of intersection. Suppose we define languages A
and B as follows:

A =
{

0n1n2m : n, m ∈N
}

,

B =
{

0n1m2m : n, m ∈N
}

.
(10.17)

These are certainly context-free languages—a CFG generating A is given by

S→ X Y
X → 0 X 1

∣∣ ε

Y → 2 Y
∣∣ ε

(10.18)

and a CFG generating B is given by

S→ X Y
X → 0 X

∣∣ ε

Y → 1 Y 2
∣∣ ε

(10.19)

On the other hand, the intersection A∩ B is not context free, as our first proposition
from the previous section established.

Having proved that the context-free languages are not closed under intersec-
tion, it follows immediately that the context-free languages are not closed under
complementation. This is because we already know that the context-free languages
are closed under union, and if they were also closed under complementation we
would conclude that they must also be closed under intersection by De Morgan’s
laws.

Finally, let us observe that one can sometimes use closure properties to prove
that certain languages are not context free. For example, consider the language

D =
{

w ∈ {0, 1, 2}∗ : |w|0 = |w|1 = |w|2
}

. (10.20)

It would be possible to prove that D is not context free using the pumping lemma
in a similar way to the first proposition from the previous section. A simpler way to
conclude this fact is as follows. We assume toward contradiction that D is context
free. Because the intersection of a context-free language and a regular language

105

CS 360 Introduction to the Theory of Computing

must always be context free, it follows that D ∩ L(0∗1∗2∗) is context free (because
L(0∗1∗2∗) is the language matched by a regular expression and is therefore regu-
lar). However,

D ∩ L(0∗1∗2∗) =
{

0m1m2m : m ∈N
}

, (10.21)

which we already know is not context free. Having obtained a contradiction, we
conclude that D is not context free, as required.

106

