
CPSC 519/619: Quantum Computation John Watrous, University of Calgary

Lecture 9: Phase estimation (continued); the quantum Fourier transform

February 16, 2006

Phase estimation (continued)

In the previous lecture we discussed phase estimation. Recall that the set-up was as follows. We
have a quantum circuit for performing the transformation Λm(U), defined by

Λm(U) |k〉 |φ〉 = |k〉Uk |φ〉 ,

for some unitary transformation U and positive integer m, along with a quantum state |ψ〉 that is
an eigenvector of U . The eigenvalue associated with |ψ〉 is e2πiθ for θ ∈ [0, 1), and the goal is to
approximate θ.

We had devised the following procedure, which works perfectly when θ = j/2m for some
integer j ∈ {0, . . . , 2m − 1}:

U

H⊗m QFT†
2m

|0m〉

|ψ〉

M

Specifically, in the case θ = j/2m, the measurement results in outcome j with probability 1.
We were in the process of analyzing the (more typical) case when θ does not have the form

j/2m for some integer j. We had determined that the probability associated with each possible
outcome j ∈ {0, . . . , 2m − 1} of the measurement was

pj =

∣

∣

∣

∣

∣

1

2m

2m−1
∑

k=0

e2πik(θ−j/2m)

∣

∣

∣

∣

∣

2

.

Because we already dealt with the case that θ = j/2m for some choice of j ∈ {0, . . . , 2m − 1}, we
may now assume this is not the case, and so

e2πi(θ−j/2m) 6= 1

1

for every integer j. Using the same formula for the sum of a geometric series from last time,

n−1
∑

k=0

xk =
xn − 1

x− 1

for x 6= 1, we may then simplify:

pj =
1

22m

∣

∣

∣

∣

e2πi(2mθ−j) − 1

e2πi(θ−j/2m) − 1

∣

∣

∣

∣

2

Let us first consider the probability of obtaining the best possible j, meaning that

e2πiθ = e2πi(j/2m+ε)

for some real number ε with |ε| ≤ 2−(m+1). This is equivalent to saying

θ =
j

2m
+ ε (mod 1)

for |ε| ≤ 2−(m+1), where “equality mod 1” means that the fractional parts of the two sides of
the equation agree. Assuming that j satisfies this equation we may prove a lower bound on pj as
follows. Let

a =
∣

∣e2πi(2mθ−j) − 1
∣

∣ =
∣

∣e2πiε2m − 1
∣

∣ ,

b =
∣

∣e2πi(θ−j/2m) − 1
∣

∣ =
∣

∣e2πiε − 1
∣

∣ ,

so that
pj =

1

22m

a2

b2
.

To get a lower bound on pj we need a lower bound on a and an upper bound on b. To get a lower
bound on a, consider the following picture:

2π |ε| 2m

ae2πi|ε|2m

2

The ratio of the minor arc length to the chord length is at most π/2, so

2π |ε| 2m

a
≤ π

2
,

which implies
a ≥ 4 |ε| 2m.

Along similar lines, we may consider b along with the fact that the ratio of arc length to chord
length is at least 1:

b
2π |ε|

e2πi|ε|

We obtain
2π |ε|
b

≥ 1

so
b ≤ 2π |ε| .

Putting the two bounds together, we obtain

pj ≥
1

22m

16 |ε|2 22m

4π2 |ε|2
=

4

π2
> 0.4.

Although you might not think that 40% is very good, in fact it is amazing in a way—this is the
probability that every single one of the bits you measure is correct, so that your approximation to
θ is good to m bits of precision.

We can use basically the same methods to put upper bounds on the probability of obtaining
inaccurate results. Suppose now that for a given value of j we have

e2πiθ = e2πi(j/2m+ε)

for some real number ε with α
2m

≤ |ε| < 1/2. Here α is an arbitrary positive number that we can
choose later. As before we have

pj =
1

22m

a2

b2

for

a =
∣

∣e2πiε2m − 1
∣

∣ ,

b =
∣

∣e2πiε − 1
∣

∣ .

3

This time we will simply use the fact that a ≤ 2. The bound b ≥ 4 |ε| follows by similar reasoning
to the bound on a from before. Now we have

pj ≤
4

22m(4 |ε|)2
=

1

4α2
.

This implies that highly inaccurate results are very unlikely. For example, if we consider α = 1,
meaning that our assumption is only that |ε| ≥ 2−m, the probability of obtaining the corresponding
value of j is at most 1/4. For worse approximations, implying a larger bound on |ε|, the probability
of obtaining the corresponding value of j quickly becomes very small.

So, what should you do if you want better than a 4/π2 probability of obtaining an approxima-
tion of θ that is good to, say, k bits of precision? One way to do this is to setm = k+2, say, run the
phase estimation procedure several times, and to look for the most commonly appearing outcome.
At least one outcome, which is accurate to k + 2 bits of precision, occurs with probability at least
4/π2. Outcomes with fewer than k bits of precision are much less likely as argued above. If you
now take the most commonly occurring outcome and round it to k bits of precision, the probability
of correctness approaches 1 exponentially fast in the number of times the procedure is repeated.
Notice also that you do not need multiple copies of the state |ψ〉 to perform this process, because
the state |ψ〉 remains on the lower collection of qubits each time the procedure is performed and
can simply be fed into the next iteration.

Efficient implementation of the quantum Fourier transform

Now let us consider how the quantum Fourier transform may be implemented by quantum circuits.
Recall that

QFT2m |j〉 =
1√
2m

2m−1
∑

k=0

e2πijk/2m |k〉 .

Let us generalize some notation we used last time and let

ωN = e2πi/N

for any positive integer N . Let us also define a unitary mapping Q̃FT2m to be the same as QFT2m

except with the output qubits in reverse order. Specifically, if an integer k ∈ {0, . . . , 2m − 1} is
written in binary notation as km−1km−2 · · ·k0 then we define

Q̃FT2m |jm−1jm−2 · · · j0〉 =
1√
2m

2m−1
∑

k=0

ωjk
2m |k0k1 · · ·km−1〉 .

Certainly if we can come up with an efficient implementation of Q̃FT2m , then an efficient imple-
mentation of QFT2m follows—just reverse the order of the output qubits after performing Q̃FT2m .
The reason why we consider Q̃FT2m rather than QFT2m is simply for convenience.

Our description of quantum circuits for performing Q̃FT2m for any given value of m is essen-
tially recursive. Let us start with the base case, which is m = 1. The transformation Q̃FT2 is just

4

a fancy name for a Hadamard transform:

Q̃FT2 |j〉 =
1√
2

1
∑

k=0

ωjk
2 |k〉 =

1√
2
|0〉 +

1√
2
(−1)j |1〉 = H |j〉 .

For general m ≥ 2, the following circuit computes Q̃FT2m+1 :

ω2m+1 ω2m ω4

|jm〉
|jm−1〉

|j1〉

|j0〉

Q̃FT2m

H

Of course the diagram assumes you know how to implement the transformation Q̃FT2m , but using
the fact that Q̃FT2 is the same as a Hadamard transform we can easily unwind the recursion if we
want an explicit description of a circuit.

Now let us show that the circuit works correctly. It suffices as usual to show that it works
correctly on classical states. We wish to show that

Q̃FT2m+1 |jm jm−1 · · · j0〉 =
1√

2m+1

2m+1−1
∑

k=0

ωjk
2m+1 |k0 k1 · · · km〉

for each j ∈ {0, . . . , 2m+1 − 1}.
Let us write

j ′ = jm jm−1 · · · j1 = bj/2c,
k′ = km−1 km−2 · · · k0 = k − km2m.

The initial state |j〉 may therefore be written |j ′〉 |j0〉, and the operation Q̃FT2m maps this state to

1√
2m

2m−1
∑

k′=0

ωj′k′

2m |k′0 k′1 · · · k′m−1〉 |j0〉 .

The controlled phase-shifts then transform this state to

1√
2m

2m−1
∑

k′=0

ωj′k′

2m ω
j0k′

0

2m+1ω
j0k′

1

2m · · ·ωj0k′

m−1

4 |k′0 k′1 · · · k′m−1〉 |j0〉 .

5

Using the fact that ωN = ωr
rN for any choice of positive integers N and r, we may simplify the

above expression and conclude that the state of the circuit after the controlled phase shifts is

1√
2m

2m−1
∑

k′=0

ω
2j′k′+j0k′

0
+j0(2k′

1
)+···j0(2m−1k′

m−1
)

2m+1 |k′0 k′1 · · · k′m−1〉 |j0〉

=
1√
2m

2m−1
∑

k′=0

ωjk′

2m+1 |k′0 k′1 · · · k′m−1〉 |j0〉 .

Finally, the Hadamard transform maps this state to

1√
2m+1

2m−1
∑

k′=0

1
∑

km=0

ωjk′

2m+1(−1)kmj0 |k′0 k′1 · · · k′m−1〉 |km〉 .

Notice that
(−1)kmj0 = (−1)kmj = ω

j(2mkm)

2m+1 ,

which implies that the final state is

1√
2m+1

2m−1
∑

k′=0

1
∑

km=0

ω
jk′+j(2mkm)

2m+1 |k′0 k′1 · · · k′m−1〉 |km〉 =
1√

2m+1

2m+1−1
∑

k=0

ωjk
2m+1 |k0 k1 · · · km〉

as required.
How many gates are required in the above circuit? Letting g(m) denote the number of gates

needed to perform Q̃FT 2m , we have the following recurrence:

g(1) = 1

g(m+ 1) = g(m) + (m+ 1).

The solution to this recurrence is

g(m) =

m
∑

j=1

j =

(

m+ 1

2

)

.

Thus, we need only O(m2) gates to compute the quantum Fourier transform on m qubits. In
fact there are better bounds known that are based on fast multiplication methods. However, these
constructions are much more complicated and would probably not be practical (assuming we had
a quantum computer) until m is quite large.

6

