
Exploiting Structure in Backtracking Algorithms for
Propositional and Probabilistic Reasoning

by

Wei Li

A thesis

presented to the University of Waterloo
in fulfilment of the

thesis requirement for the degree of
Doctor of Philosophy

in
Computer Science

Waterloo, Ontario, Canada, 2010
c© Wei Li 2010



I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Wei Li

ii



Abstract

Boolean propositional satisfiability (SAT) and probabilistic reasoning represent
two core problems in AI. Backtracking based algorithms have been applied in both
problems. In this thesis, I investigate structure-based techniques for solving real world
SAT and Bayesian networks, such as software testing and medical diagnosis instances.

When solving a SAT instance using backtracking search, a sequence of decisions
must be made as to which variable to branch on or instantiate next. Real world prob-
lems are often amenable to a divide-and-conquer strategy where the original instance
is decomposed into independent sub-problems. Existing decomposition techniques
are based on pre-processing the static structure of the original problem. I propose
a dynamic decomposition method based on hypergraph separators. Integrating this
dynamic separator decomposition into the variable ordering of a modern SAT solver
leads to speedups on large real world SAT problems.

Encoding a Bayesian network into a CNF formula and then performing weighted
model counting is an effective method for exact probabilistic inference. I present two
encodings for improving this approach with noisy-OR and noisy-MAX relations. In
our experiments, our new encodings are more space efficient and can speed up the
previous best approaches over two orders of magnitude.

The ability to solve similar problems incrementally is critical for many proba-
bilistic reasoning problems. My aim is to exploit the similarity of these instances by
forwarding structural knowledge learned during the analysis of one instance to the
next instance in the sequence. I propose dynamic model counting and extend the dy-
namic decomposition and caching technique to multiple runs on a series of problems
with similar structure. This allows us to perform Bayesian inference incrementally as
the evidence, parameter, and structure of the network change. Experimental results
show that my approach yields significant improvements over previous model counting
approaches on multiple challenging Bayesian network instances.
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Chapter 1

Introduction

In this chapter, I introduce my research area: knowledge representation and reasoning,
a subfield of artificial intelligence. I then informally present and motivate the specific
problems addressed in this thesis. Finally, I summarize the contributions of the thesis
and give an outline of the remainder of the thesis.

1.1 Knowledge Representation and Reasoning

Knowledge representation and reasoning have been central to the field of artificial
intelligence since its inception. The central insight is that many interesting prob-
lems can be solved by explicitly representing declarative knowledge in some language
and answering queries using a general purpose inference engine. The applications
of knowledge representation and reasoning systems are numerous and include soft-
ware and hardware verification, planning, scheduling, autonomous vehicles, medical
diagnosis, and computer troubleshooting (see, for example, [83, 85, 102], and the refer-
ences therein). Many knowledge representation languages and inference mechanisms
have been proposed. In this thesis, we are concerned with knowledge representation
and reasoning systems based on propositional logic and logical inference and systems
based on probabilities and probabilistic inference. For probabilistic inference, my
focus is on a convenient graphical representation called Bayesian networks.

The general problem that I address in this thesis is improving the efficiency of
inference in these types of knowledge representation and reasoning systems. Unfor-
tunately, inference in propositional logic and Bayesian networks is NP-Hard or worse
(see [45, 72]). That is the bad news. More fortunately, much progress has been made
over the years and inference engines for propositional logic and Bayesian networks
can now solve significantly-sized real-world instances (see [72, 102]). It is my aim
here to contribute to this progress.

1.2 Contributions of the Thesis

In general terms, the contributions of the thesis are techniques and algorithms for
exploiting the structure of real-world instances within backtracking algorithms for
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query answering. Together my results increase the efficiency and improve the scala-
bility of query answering in knowledge representation and reasoning systems, and so
increases their applicability in practice. Below I give a more detailed overview of my
results. The discussion is divided according to the reasoning task being solved.

For the task of determining whether a propositional CNF formula is satisfiable,
the main results are as follows.

Determining whether a propositional formula is satisfiable is most often done
with a backtracking algorithm. Previous studies have demonstrated that backtrack-
ing search algorithms can be considerably improved if they take advantage of the
internal structure of propositional formulas to decompose an instance into indepen-
dent subproblems. However, most existing decomposition techniques are static and
performed prior to search. I propose a dynamic decomposition method based on
hypergraph separators. Integrating the separator decomposition into the variable or-
dering of a modern SAT solver leads to speedups on large real-world satisfiability
problems. In comparison to static decomposition based variable orderings, my ap-
proach does not need time to construct the full decomposition prior to search, which
sometimes needs more time than the solving process itself. Furthermore, my dynamic
method can solve hard instances not solvable by previous static approaches within an
acceptable amount of time.

For the task of answering a general probabilistic query of the form P (Q | E) from
a Bayesian network, the main results are as follows.

Previous studies have demonstrated that encoding a Bayesian network into a
SAT formula and then performing weighted model counting using a DPLL-based al-
gorithm can be an effective method for exact inference, where DPLL is a backtracking
algorithm specialized for SAT that includes unit propagation, conflict recording and
backjumping [89]. I present techniques for improving this weighted model counting
approach for Bayesian networks with noisy-OR and noisy-MAX relations. In par-
ticular, I present space efficient CNF encodings for noisy-OR and noisy-MAX which
exploit their structure or semantics. In my encodings, I pay particular attention to
reducing the treewidth of the CNF formula and to directly encoding the effect of unit
propagation on evidence into the CNF formula, without actually performing unit
propagation. I also explore alternative search ordering heuristics for the DPLL-based
backtracking algorithm. I experimentally evaluated my techniques on large-scale real
and randomly generated Bayesian networks. On these benchmarks, my techniques
gave speedups of up to two orders of magnitude over the best previous approaches
for Bayesian networks with noisy-OR relations and scaled up to networks with larger
numbers of random variables. My techniques extend the model counting approach
for exact inference to networks that were previously intractable for the approach.

Further, many real world Bayesian network applications need to update their
networks incrementally as new data becomes available. For example, the capability
of updating a Bayesian network is crucial for building adaptive systems. I present
techniques for improving the efficiency of exact inference in incrementally updated
Bayesian networks by exploiting common structure. In particular, I propose and
formalize the concept of dynamic weighted model counting and present an algorithm
for performing dynamic model counting. The techniques I propose provide a general

2



approach for reusing partial results generated from answering previous queries based
on the same or a similar Bayesian network. My focus is to improve the efficiency
of exact inference when the network structure or the parameters or the evidence is
updated. I show that my approach can be used to significantly improve inference
on multiple challenging Bayesian network instances and other problems encoded as
dynamic model counting problems.

A large part of the material in this thesis originates from the following publications.

• Wei Li and Peter van Beek. Guiding Real-World SAT Solving with Dynamic Hy-
pergraph Separator Decomposition. In Proceedings of the Sixteenth IEEE Inter-
national Conference on Tools with Artificial Intelligence, Boca Raton, Florida,
542–548, November, 2004.

• Wei Li, Peter van Beek, and Pascal Poupart. Performing Incremental Bayesian
Inference by Dynamic Model Counting. In Proceedings of the 21st National Con-
ference on Artificial Intelligence (AAAI), Boston, Massachusetts, 1173–1179,
July, 2006.

• Wei Li, Pascal Poupart, and Peter van Beek. Exploiting Causal Independence
Using Weighted Model Counting. In Proceedings of the 23rd AAAI Conference
on Artificial Intelligence, Chicago, Illinois, 337–343, July, 2008.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 introduces the concepts and
definitions that are fundamental for understanding the thesis. In Chapter 3, I consider
a knowledge base expressed in propositional logic and the inference engine is based
on model finding. In this chapter, I present my work on dynamically decomposing
propositional formulas during the backtracking search. In Chapters 4 & 5, I consider a
knowledge base expressed as a Bayesian network and the inference engine is based on
weighted model counting. In Chapter 4, I present my work on extending the weighted
model counting approach to exact inference to Bayesian networks that contain the
widely used noisy-OR and noisy-MAX relations. In Chapter 5, I present my work
on improving the efficiency of exact inference in incrementally updated Bayesian
networks. Chapter 6 concludes the thesis and suggests some possible future work.
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Chapter 2

Background

In this chapter, I review the necessary background in knowledge representation and
reasoning (KRR). A KRR system consists of a formal language for expressing declar-
ative knowledge, a semantics which specifies the meaning of sentences in the lan-
guage, and a reasoning or inference procedure for answering queries (see, e.g., Poole,
Mackworth, and Goebel [83]). In the first half of this chapter, I review the case
where the formal language of the KRR system is propositional logic and the inference
procedure is based on backtracking search for determining satisfiability and model
counting. Such systems are suitable for expressing and querying definite knowledge.
In the second half of this chapter, I review the case where the formal language of the
KRR system is based on probabilities, or more specifically, Bayesian networks. Such
systems are suitable for expressing and querying indefinite or uncertain knowledge.
For Bayesian networks, various algorithms are available for probabilistic inference.
Of particular interest here are inference algorithms that take advantage of a relation-
ship between model counting in propositional satisfiability and inference in Bayesian
networks. (For more background on these topics, see van Harmelen, Lifschitz, and
Porter [102], Darwiche [25], Koller and Friedman [72], Poole, Mackworth, and Goebel
[83], Pearl [82], and Freuder [41].)

2.1 Propositional Logic and Logical Inference

In many real world tasks, such as planning and scheduling, the problem specification
and the solution criteria can be expressed succinctly as a set of constraints derived
either from expert knowledge or axioms. A problem that allows constraints to be ex-
plicitly stated can be naturally formulated and represented as a constraint satisfaction
problem (CSP).

Definition 2.1 (CSP). A constraint satisfaction problem consists of a set of variables
X = {x1, . . . , xn}; a set of values D = {a1, ..., ad}, where each xi ∈ X has an associ-
ated finite domain dom(xi) ⊆ D of possible values; and a collection of constraints.

Each constraint C is a relation—a set of tuples—over some set of variables, de-
noted by vars(C). The size of the set vars(C) is called the arity of the constraint. A
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binary constraint is a constraint of arity two; a non-binary constraint is a constraint
of arity greater than two. A solution to a CSP is an n-tuple ((x1, a1), . . . , (xn, an)),
where each variable is instantiated—i.e., assigned a value—from its domain such that
all the constraints are simultaneously satisfied. If there is no solution the CSP is said
to be unsatisfiable.

A special case of CSPs is where the variables are Boolean—i.e., each variable has
the Boolean domain {true, false}—and the constraints are specified in propositional
logic. I assume that the constraints are in conjunctive normal form (CNF) and are
thus written as clauses. A literal is a Boolean variable (also called a proposition) or
its negation and a clause is a disjunction of literals. A clause with one literal is called
a unit clause and the literal in the unit clause is called a unit literal. A propositional
formula F is in conjunctive normal form if it is a conjunction of clauses. Each clause
corresponds to a constraint which must be satisfied.

Example 2.1. For example, (x ∨ ¬y) is a clause, and the formula,

F = (x ∨ ¬y) ∧ (x ∨ y ∨ z) ∧ (y ∨ ¬z ∨ w) ∧ (¬w ∨ ¬z ∨ v) ∧ (¬v ∨ u),

is in CNF, where u, v, w, x, y, and z are propositions.

Without loss of generality, we assume that no clause contains both a positive
literal and a negative literal of the same proposition and that the literals in a clause
are unique.

Definition 2.2 (SAT). Given a propositional formula in conjunctive normal form,
the problem of determining whether there exists a variable assignment that makes the
formula evaluate to true, or ∃x1, . . . , ∃xn(F (x) = 1)?, is called the Boolean satisfia-
bility problem or SAT.

A variable assignment that makes a formula evaluate to true is also called a model.
The problem of counting the number of models of a formula is called model counting
(MC) or #SAT.

2.1.1 Backtracking Search and DPLL

Constraint satisfaction and propositional satisfiability are often solved using back-
tracking search. A backtracking search for a solution to a CSP or SAT instance can
be seen as performing a depth-first traversal of a search tree. The search tree is
generated as the search progresses and represents alternative choices that may have
to be examined in order to find a solution or prove that no solution exists. Explor-
ing a choice is also called branching and the order that choices are explored is also
called the branching strategy or the variable ordering heuristic. Since the first formal
statements of backtracking algorithms over 45 years ago [26, 48], many techniques for
improving the efficiency of a backtracking algorithm have been suggested and evalu-
ated (see, e.g., [101]). Below I describe the important improvements for backtracking
algorithms with respect to SAT solving.
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When specialized to SAT solving, backtracking algorithms are often referred to as
being DPLL-based (see Algorithm 2.1), in honor of Davis, Putnam, Logemann, and
Loveland, the authors of some of the earliest work in the field [27, 26]. DPLL-based
SAT solvers can handle large propositional formulas and are widely applied in such
problems as planning [71], scheduling [77], and hardware design verifications [11].

Algorithm 2.1: DPLL(F )

input : Propositional formula F in conjunctive normal form
output: Returns true if F is satisfiable; false otherwise

if F is an empty clause set then
return true;

if F contains the empty clause then
return false;

if F contains a unit clause then
F = BCP(F );

choose an uninstantiated variable v in F using a variable ordering heuristic;
return (DPLL(F |v=false) or DPLL(F |v=true))

Let F denote a propositional formula. I use the value 0 interchangeably with
the Boolean value false and the value 1 interchangeably with the Boolean value true.
The notation F |v=false (F |v=true) represents a new formula, called the residual formula
obtained by replacing the variable v with false (true) in F and simplifying.

Definition 2.3 (Residual formula). Given a formula F and a variable v in F , the
residual formula F |v=false (F |v=true) is obtained from F by,

• removing all clauses that contain v and evaluate to true, and

• deleting literal v (in case v = false) or ¬v (in case v = true), from all clauses.

Let s be a set of instantiated variables in F . The residual formula F |s is obtained by
cumulatively reducing F by each of the variables in s.

Example 2.2. Consider once again the propositional formula F given in Exam-
ple 2.1. Suppose x is assigned false. The residual formula is given by,

F |x=0 = (¬y) ∧ (y ∨ z) ∧ (y ∨ ¬z ∨ w) ∧ (¬w ∨ ¬z ∨ v) ∧ (¬v ∨ u).

2.1.2 Boolean Constraint Propagation

As is clear, a CNF formula is satisfied if and only if each of its clauses is satisfied
and a clause is satisfied if and only if at least one of its literals is equivalent to 1. In
a unit clause, there is no choice and the value of the literal is said to be forced or
implied. The process of Boolean constraint propagation (BCP) or unit propagation
assigns all unit literals to the value 1. As well, the formula is simplified by removing
the variables of the unit literals from the remaining clauses and removing clauses that
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evaluate to true (i.e., the residual formula is obtained). This process keeps looking
for new unit clauses and updating the formula until no unit clause remains. BCP
and backtracking search are core operations for modern SAT solvers. Most (if not
all) current state-of-the-art SAT solvers are based on BCP. In practice, for most SAT
problems, a major portion of the run time is spent in the BCP process.

Algorithm 2.2: BCP(F )

input : Propositional formula F in conjunctive normal form
output: Returns simplified formula where no unit clauses remain

while there exists a unit clause c in F , where c is of the form (v) or (¬v) do
remove c from F ;
if clause c is of the form (v) then

remove ¬v from remaining clauses of F ;
remove every remaining clause that has v;

else
remove v from remaining clauses of F ;
remove every remaining clause that has ¬v;

return simplified formula F ;

The procedure BCP(F ) returns the simplified formula, where no more unit clauses
remain. In the pseudo-code from Algorithm 2.2, v is a unit literal. BCP performs
unit propagation until there are no further implications. A conflict occurs when
implications for setting the same variable to both true and false are produced.

Example 2.3. Consider again the propositional formula F |x=0 given in Example 2.2,
where x has been assigned false. The unit clause (¬y) forces y to be assigned false.
The residual formula is given by,

F |x=0,y=0 = (z) ∧ (¬z ∨ w) ∧ (¬w ∨ ¬z ∨ v) ∧ (¬v ∨ u).

In turn, the unit clause (z) forces z to be assigned true. Similarly, the assignments
w = 1, v = 1, and u = 1 are forced.

2.1.3 Conflict Clause Learning

Most modern SAT solvers improve the basic DPLL algorithm through the use of
conflict clause learning (or nogood recording) [28, 97]. Conflict clause learning is the
process of recording information in the form of a new clause when a conflict is found.
Consider the following CNF formula,

(¬x ∨ ¬y) ∧ (x ∨ ¬z) ∧ (y ∨ z).

If the variables x and y in the above formula have both been set to false, the result
is the following formula: ¬z ∧ z. This is an obvious contradiction and thus it can be
determined that the variables x and y cannot both be set to false. Therefore we can
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modify the original formula to be: (¬x∨¬y)∧ (x∨¬z)∧ (y ∨ z)∧ (x∨ y). When the
solver returns to this formula and sets the variable x to false next time, it will then
be faced with the unit clause that forces y to be true.

Adding conflict clauses can make an instance easier to solve because it prunes
parts of the search tree. However, additional clauses can also slow down the search
process. First, the additional clauses can introduce an additional overhead in the
variable ordering heuristic. This overhead can be significant when a large number
of clauses are added. Second, the addition of non-effective clauses can prevent the
formation of more effective clause by pruning the sub-tree in which the other clause
would have been created.

2.1.4 Variable Ordering Heuristics for DPLL

Variable ordering heuristics for solving SAT can be either static or dynamic, depend-
ing on when the ordering is created. A static ordering is created before the search
begins and used without modification during DPLL. A dynamic ordering is created
during the search and takes into account dynamic and local characteristics of the
search space. Empirical evidence shows that dynamic variable ordering heuristics
consistently outperform static variable ordering heuristics, even though they intro-
duce additional overhead into the search. Both static and dynamic heuristics are
based on various guiding principles.

1. Fail-first principle. The idea of the fail-first principle is to pick the most con-
strained variable so as to detect failure as early as possible. The Maximum
Occurrence of Clauses of Minimal Size (MOM) family of heuristics [38] are
examples of heuristics that follow this principle.

2. Propagation-first principle. Heuristics guided by this principle give preference
to a variable that can create a simple sub-problem through facilitation of unit
propagation. An example is the the two sided J-W heuristic [60].

3. Conflict analysis based principle. This strategy can be viewed as attempting to
satisfy the most recent conflict clauses. It is dynamic, since it gives preference to
information received recently and therefore adjusts itself quickly to changes in
the formula. It also has low overhead, since the statistics can be updated during
conflict analysis. The conflict analysis based principle has been successfully
applied in many SAT solvers, including the heuristics used in zChaff (Variable
State Independent Decaying Sum ordering, or VSIDS) [104] and BerkMin [47].

2.1.5 Model Counting

Given a Boolean propositional formula F in CNF, the model counting problem
(#SAT) is to determine the number of distinct assignments to variables for which
the formula evaluates to true. For example, the number of models of F in Exam-
ple 2.2 is 18.

8



The model counting problem can be solved with two different classes of algo-
rithms: DPLL-based backtracking search and local search (see, e.g., [49] and ref-
erences therein). Both methods have been applied in SAT. However, DPLL-based
approaches determine the exact number of models, while local search approaches es-
timate the number of models with or without a correctness guarantee. Here, we focus
on exact methods using DPLL-based exhaustive search. Algorithm 2.3 extends DPLL
for SAT by adding the number of satisfiable instantiations together.

Algorithm 2.3: DPLL MC(F )

input : Propositional formula F in conjunctive normal form
output: Returns the number of models of F

if F is an empty clause set then
return 1;

else if F contains the empty clause then
return 0;

else
choose an uninstantiated variable v in F using a variable ordering heuristic;
return ( DPLL MC(F |v=false) + DPLL MC(F |v=true))

However, the simple extended DPLL algorithm shown above would not scale up
to real world tasks. To avoid counting solutions of the same subproblems, component
caching is applied in most modern model counting engines [9, 88, 100].

The definition of “component” is tightly related with the graph representation and
tree decomposition of CNFs. Every CNF formula F is associated with an underlying
hypergraph H = (V, E), where V is the set of variables appearing in F and each
clause generates a hyperedge in E containing the variables of the clause.

The primal graph of a hypergraph H is a graph G where V is the same set of
variables in H and there exists an edge between the pair (v, w), v 	= w, such that v
and w are in the same hyperedge.

Definition 2.4 (Tree decomposition of a primal graph [84, 13]). A tree decomposition
of a graph, G = (V, E), is a triple (N, F, M), where

• N is a set of nodes and F ⊂ N × N is a set of arcs such that (N, F ) forms a
tree,

• M : N → 2V forms a subset of vertices with each tree node,

• ⋃n∈N M(n) = V ,

• for every edge e ∈ E, there is a node n ∈ N , such that e ⊆ M(n),

• for every n1, n2, n3 ∈ N , if n2 is on the (unique) path between n1 and n3, then
M(n1) ∩ M(n3) ⊆ M(n2).
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Figure 2.1: Tree decomposition of CNF formula F of Example 2.4.

The treewidth of a tree decomposition (N, F, M) is maxn∈N |M(n)| − 1. The
treewidth of a graph G is the minimum treewidth over all possible tree decompositions
of G. Tree decompositions and treewidth can be generalized to hypergraphs in a
straightforward manner; and the treewidth of a hypergraph is equal to the treewidth
of its primal graph [1].

Example 2.4. For example, consider the formula,

F = (b∨¬c∨e)∧(b∨c∨g)∧(c∨d∨¬g)∧(¬a∨b∨c)∧(a∨b∨¬d)∧(¬c∨e∨h)∧(c∨¬d∨f).

A tree decomposition of the hypergraph associated with formula F is shown in Fig-
ure 2.1. The treewidth of the decomposition is 3.

The best decomposition leads to a time complexity in O(n · dw+1), where w is the
treewidth of the network [84]. Because of the inefficiency of the approach, tree decom-
position is often used when searching for all the solutions, such as model counting.
Sang et al. [88] proposed to used component caching to reduce the required space in
decomposition.

A rooted tree decomposition of a graph G is a tree decomposition (N, F, M) of
G where some node n ∈ N has been designated to be the root. An important
property of a rooted tree decomposition of a graph G that has a small treewidth is
that the graph G has small separators. The separator of a node n ∈ N in a rooted
tree decomposition is the set S = M(n) ∩ M(parent(n)), where parent(n) denotes
the parent of node n in the rooted tree. Instantiating the Boolean variables in the
separator S decomposes the initial formula into separate subproblems or components
which can then be solved independently. The first subproblem is given by the node n
and all of its descendants. The second subproblem is given by the remaining nodes.
In component caching, disjoint components of the formula, generated dynamically
during a DPLL search, are cached so that they only have to be solved once.

Definition 2.5 (Component). A component of a CNF formula F is a set of clauses
Φ, the variables of which are disjoint from the variables in the remaining clauses
F − Φ.

Example 2.5. Consider once again the tree decomposition introduced in Example 2.4
and let the node labeled C in Figure 2.1 be designated the root of the tree. The
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separator of node D is given by,

S = M(D) ∩ M(parent(D))

= {b, c, e} ∩ {a, b, c, d}
= {b, c}.

Instantiating the variables in {b, c} gives two components defined by the sets of vari-
ables {e, h} and {a, d, f, g}.

2.1.6 Stochastic Local Search

Constraint satisfaction and propositional satisfiability are also often solved using
stochastic local search. A stochastic local search for a solution to a CSP or SAT
instance can be seen as performing a traversal of a search graph. The search graph
is generated as the search progresses and each node most often represents a com-
plete assignment to each of the variables. A cost function, which applies to nodes, is
then used to guide the search to a low cost or satisficing solution. A common cost
function measures how many of the constraints or clauses are not satisfied by the
current assignments to the variables. Many techniques for improving the efficiency of
a stochastic local search algorithm have been suggested and evaluated (see, e.g., [63]
and references therein).

Stochastic local search algorithms have several advantages including finding high
quality solutions to optimization problems and sometimes quickly finding satisficing
solutions, if they exist. Unfortunately, stochastic local search is not suitable for
showing unsatisfiability and not as suitable for counting solutions. Our interest is
in backtracking search algorithms and exact methods. Nevertheless, stochastic local
search is an interesting and useful approach in CSP and SAT.

2.2 Bayesian Networks and Probabilistic Inference

In many real world tasks, such as diagnosis and classification, one must deal with
significant uncertainty about the state of the world and our own observations of that
world. For example, in medical diagnosis the patient’s true disease may be only
indirectly inferred through limited observations of symptoms and those symptoms
may have unclear causal relationships with the possible diseases. In such application
domains, a knowledge representation and reasoning system based on probabilistic
models and probabilistic inference can often be used to advantage. Here our focus
is on Bayesian networks [82], which are a fundamental building block of many AI
applications.

For our purposes, a probabilistic model of an application domain consists of a set
of random variables X = {X1, . . . , Xn}; a set of values D = {a1, ..., ad}, where each
Xi ∈ X has an associated finite domain dom(Xi) ⊆ D of possible values; and a joint
probability distribution P (X1, . . . , Xn) over the possible assignments to the variables
in X. One can view an assignment of a value to each random variable in the model as
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a complete specification of a state of the domain and the joint probability distribution
as giving the probability of that state of the domain.

Example 2.6. Consider a probabilistic model with four random variables, A, B,
C, and D, where dom(A) = {a1, a2}, . . . , dom(D) = {d1, d2}. One possible joint
probability distribution is shown in Table 2.1.

Table 2.1: Joint probability distribution over the possible assignments to the random
variables A, B, C, and D, where dom(A) = {a1, a2}, . . . , dom(D) = {d1, d2}.

A B C D P (A, B, C, D)
a1 b1 c1 d1 0.00135
a1 b1 c1 d2 0.00015
a1 b1 c2 d1 0.00280
a1 b1 c2 d2 0.00070
a1 b2 c1 d1 0.00855
a1 b2 c1 d2 0.01995
a1 b2 c2 d1 0.00665
a1 b2 c2 d2 0.05985

A B C D P (A, B, C, D)
a2 b1 c1 d1 0.09113
a2 b1 c1 d2 0.01013
a2 b1 c2 d1 0.02700
a2 b1 c2 d2 0.00675
a2 b2 c1 d1 0.17213
a2 b2 c1 d2 0.40163
a2 b2 c2 d1 0.01913
a2 b2 c2 d2 0.17213

Give a joint probability distribution, one can answer probabilistic queries of in-
terest, such as conditional probability queries of the form P (Q | E), where E is a
subset of the random variables called the evidence variables and Q is a subset of
the random variables called the query variables. Unfortunately, as shown the joint
probability grows exponentially in the sizes of the domains of the random variables.
This has led to methods for compactly representing a joint probability distribution,
such as Bayesian networks.

Definition 2.6 (Bayesian network). A Bayesian network representation of a prob-
abilistic model is a directed acyclic graph where the nodes are the random variables
and each node is labeled with a conditional probability table (CPT) which specifies the
strengths of the influences of the parent nodes on the child node.

Example 2.7. Consider once again the probabilistic model with four random vari-
ables, A, B, C, and D, where dom(A) = {a1, a2}, . . . , dom(D) = {d1, d2}. Figure 2.2
shows a Bayesian network representation of the joint probability distribution given in
Table 2.1.

One can view a Bayesian network as a factorized representation of the joint prob-
ability distribution as any entry in the joint probability distribution can be expressed
as the product,

P (X1, . . . , Xn) =

n∏
i=1

P (Xi | parents(Xi)), (2.1)
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where n is the size of the Bayesian network and parents(Xi) is the set of parents of
Xi in the directed graph. One can also view a Bayesian network as an encoding of
a collection of conditional independence assumptions or postulates. It is the condi-
tional independence assumptions that allow the factorization and lead to a compact
encoding of the joint probability distribution.

P (A = a1) P (A = a2)
0.1 0.9

A P (B = b1 | A)
a1 0.05
a2 0.15

A P (B = b2 | A)
a1 0.95
a2 0.85

 

D 

C 

A 

B 

A P (C = c1 | A)
a1 0.30
a2 0.75

A P (C = c2 | A)
a1 0.70
a2 0.25

B C P (D = d1 | B, C) P (D = d2 | B, C)
b1 c1 0.9 0.1
b1 c2 0.8 0.2
b2 c1 0.3 0.7
b2 c2 0.1 0.9

Figure 2.2: A Bayesian network over random variables A, B, C, and D, where
dom(A) = {a1, a2}, . . . , dom(D) = {d1, d2}.

2.2.1 Variable Elimination

The two standard exact algorithms for Bayesian networks are variable elimination and
junction tree. Junction tree algorithms are often preferred as they pre-compute results
and so can answer queries faster. However, there are large real-world networks that
junction tree cannot deal with due to time and space complexities. In such networks,
variable elimination can sometimes still answer queries because it permits pruning of
irrelevant variables.

The brute-force method approach of computing the joint probability of a Bayesian
network is to multiply all the conditional probabilities of the network. Then other
marginal or conditional probability can be obtained from it. However, the complexity
of this method grows exponentially with the size of the network. One of the ways of
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Figure 2.3: Junction tree of the Bayesian network shown in Figure 2.2.

avoiding this problem is to sum out some variables before multiplying all the factors.
This is the intuition behind variable elimination algorithms.

Example 2.8. Consider once again the Bayesian network shown in Figure 2.2. Given
the evidence D = d1, the posteriori probability of A can be computed using variable
elimination [5] as follows:

P (a, d1) =
∑

b

∑
c

P (a, b, c, d1)

=
∑

b

∑
c

P (a) · P (b | a) · P (c | a) · P (d1 | b, c)

= P (a) ·
∑

b

P (b | a) ·
∑

c

P (c | a) · P (d1 | b, c)

P (a | d1) =
P (a, d1)

P (d1)
=

P (a, d1)∑
a P (a, d1)

Variable elimination requires an elimination ordering—an ordering in which to
eliminate or process the random variables. The elimination ordering can have a great
impact on the efficiency of the algorithm. Good heuristics exist for selecting an
elimination ordering (see, e.g., [72] and references therein).

2.2.2 Junction Trees

Variable elimination algorithms are inefficient if the undirected graph underlying the
Bayesian network contains cycles. We can avoid cycles if we turn highly-interconnected
subsets of the nodes into independent nodes. A junction tree is an undirected tree in
which a set of random variables have a Markov property: a tree decomposition maps
a Bayesian network into a tree whose nodes contains all the nodes of the graph; for
each node pair u, v of tree nodes with intersection S, all tree nodes on the path be-
tween u and v contain S. For example, Figure 2.3 shows the junction tree of Bayesian
network in Figure 2.2. A node in the junction tree corresponds to the other variables
required to remove a variable during variable elimination. An arc in the junction
tree shows the flow of data in the elimination computation. The width of a junction
tree is the maximum size of the set V (n) over all the nodes of the tree minus 1. For
example, the width of the junction tree shown in Figure 2.3 is 2. The treewidth of
a Bayesian network is the minimum width of any junction tree for that network. It
is NP hard to determine treewidth. However, good heuristics exist for constructing
junction trees of small width (see, e.g., [72] and references therein).
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2.2.3 Recursive Conditioning

The basic idea of recursive conditioning is to recursively decompose a Bayesian net-
work reasoning problem by branching on variables [22]. Recursive conditioning de-
termines a static variable ordering before branching starts. Once a subproblem is
created, recursive conditioning attempts to allocate enough space to cache the results
of all evaluated subproblems. Unique features of the algorithm are that it can use as
much space as is available and it offers a smooth tradeoff between time and space.

2.2.4 Weighted Model Counting

There are natural polynomial-time reductions between the Bayesian inference problem
and model counting problems [4]. Darwiche has described a method for compiling
Bayesian networks as a set of multi-linear functions [24]. As well, recent work on
inference in Bayesian networks reduces the problem to weighted model counting of
CNFs [23, 76, 89]. Weighted model counting is a generalization of model counting.

Definition 2.7. A weighted model counting problem consists of a CNF formula F
and for each variable v in F , a weight for each literal: weight(v) and weight(¬v).
Let s be an assignment of a value to every variable in the formula F that satisfies
the formula; i.e., s is a model of the formula. The weight of s is the product of the
weights of the literals in s. The solution of a weighted model counting problem is the
sum of the weights of all satisfying assignments; i.e.,

weight(F ) =
∑

s

∏
l∈s

weight(l),

where the sum is over all possible models and the product is over the literals in that
model.

Any backtracking algorithm for SAT can be easily extended to count the number
of models by simply forcing it to backtrack whenever a solution is found [4]. Algo-
rithm 2.4, the basic weighted model counting algorithm, shows that a DPLL-based
backtracking search algorithm can also easily be extended to determine the weighted
model count of a CNF formula F [89].

Algorithm 2.4: BWMC(F )

input : Propositional formula F in conjunctive normal form
output: Returns sum of the weights of all models of F

if F is an empty clause set then
return 1;

if F contains the empty clause then
return 0;

choose an uninstantiated variable v in F using a variable ordering heuristic;
return BWMC(F |v=0) × weight(¬v) + BWMC(F |v=1) × weight(v);
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Darwiche [23, 19] proposed an encoding of a Bayesian network into weighted model
counting of a propositional formula in conjunctive normal form. Darwiche’s encoding
proceeds as follows. At each step, I illustrate the encoding using the Bayesian network
shown in Figure 2.2. To improve clarity, I refer to the random variables in the Bayesian
network as “nodes” and reserve the word “variables” for the Boolean variables in the
resulting propositional formula.

• For each value of each node in the Bayesian network, an indicator variable is
created,

A : Ia1 , Ia2 , C : Ic1, Ic2 ,
B : Ib1 , Ib2 , D : Id1 , Id2 .

• For each node, indicator clauses are generated which ensure that in each model
exactly one of the corresponding indicator variables for each node is true,

A : (Ia1 ∨ Ia2) ∧ (¬Ia1 ∨ ¬Ia2), C : (Ic1 ∨ Ic2) ∧ (¬Ic1 ∨ ¬Ic2),
B : (Ib1 ∨ Ib2) ∧ (¬Ib1 ∨ ¬Ib2), D : (Id1 ∨ Id2) ∧ (¬Id1 ∨ ¬Id2).

• For each conditional probability table (CPT) and for each non-zero parameter
(probability) value in the CPT, a parameter variable is created,

A : Pa1 , Pa2 ,

B : Pb1|a1 , Pb1|a2 ,
Pb2|a1 , Pb2|a2 ,

C : Pc1|a1, Pc1|a2 ,
Pc2|a1

, Pc2|a2
,

D : Pd1|b1,c1, Pd1|b1,c2,
Pd1|b2,c1, Pd1|b2,c2,
Pd2|b1,c1, Pd2|b1,c2,
Pd2|b2,c1, Pd2|b2,c2.

• For each parameter variable, a parameter clause is generated. A parameter
clause asserts that the conjunction of the corresponding indicator variables im-
plies the parameter variable and vice-versa,

A : Ia1 ⇔ Pa1 Ia2 ⇔ Pa2

B : Ia1 ∧ Ib1 ⇔ Pb1|a1 Ia2 ∧ Ib1 ⇔ Pb1|a2

Ia1 ∧ Ib2 ⇔ Pb2|a1
Ia2 ∧ Ib2 ⇔ Pb2|a2

C : Ia1 ∧ Ic1 ⇔ Pc1|a1
Ia2 ∧ Ic1 ⇔ Pc1|a2

Ia1 ∧ Ic2 ⇔ Pc2|a1 Ia2 ∧ Ic2 ⇔ Pc2|a2

D : Ib1 ∧ Ic1 ∧ Id1 ⇔ Pd1|b1c1 Ib2 ∧ Ic1 ∧ Id1 ⇔ Pd1|b2c1

Ib1 ∧ Ic2 ∧ Id1 ⇔ Pd1|b1c2 Ib2 ∧ Ic2 ∧ Id1 ⇔ Pd1|b2c2

Ib1 ∧ Ic1 ∧ Id2 ⇔ Pd2|b1c1 Ib2 ∧ Ic1 ∧ Id2 ⇔ Pd2|b2c1

Ib1 ∧ Ic2 ∧ Id2 ⇔ Pd2|b1c2 Ib2 ∧ Ic2 ∧ Id2 ⇔ Pd2|b2c2.
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• A weight is assigned to each literal in the propositional formula. Each positive
literal of a parameter variable is assigned a weight equal to the corresponding
probability entry in the CPT table,

A : weight(Pa1) = P (a1) weight(Pa2) = P (a2)

B : weight(Pb1|a1) = P (b1 | a1) weight(Pb1|a2) = P (b1 | a2)
weight(Pb2|a1

) = P (b2 | a1) weight(Pb2|a2
) = P (b2 | a2)

C : weight(Pc1|a1
) = P (c1 | a1) weight(Pc1|a2

) = P (c1 | a2)
weight(Pc2|a1) = P (c2 | a1) weight(Pc2|a2) = P (c2 | a2)

D : weight(Pd1|b1,c1) = P (d1 | b1, c1) weight(Pd1|b1,c2) = P (d1 | b1, c2)
weight(Pd1|b2,c1) = P (d1 | b2, c1) weight(Pd1|b2,c2) = P (d1 | b2, c2)
weight(Pd2|b1,c1) = P (d2 | b1, c1) weight(Pd2|b1,c2) = P (d2 | b1, c2)
weight(Pd2|b2,c1) = P (d2 | b2, c1) weight(Pd2|b2,c2) = P (d2 | b2, c2)

All other literals (both positive and negative) are assigned a weight of 1. I.e.,
weight(Ia1) = weight(¬Ia1) = · · · = weight(Id2) = weight(¬Id2) = 1 and
weight(¬Pa1) = · · · = weight(¬Pd2|b2,c2) = 1.

Sang, Beame, and Kautz [89] (hereafter, just Sang) introduced an alternative
encoding of a Bayesian network into weighted model counting of a CNF formula.
Sang’s encoding creates fewer variables and clauses, but the size of generated clauses
of multi-valued variables can be larger. As with Darwiche’s encoding presented above,
I illustrate Sang’s encoding using the Bayesian network shown in Figure 2.2.

• As in Darwiche’s encoding, for each node, indicator variables are created and
indicator clauses are generated which ensure that in each model exactly one of
the corresponding indicator variables for each node is true.

• Assume that the values of the nodes are linearly ordered. For each CPT entry
P (Y = y | X) such that y is not the last value in the domain of Y , a parameter
variable Py|X is created; e.g.,

A : Pa1 ,

B : Pb1|a1 , Pb1|a2 ,

C : Pc1|a1, Pc1|a2 ,

D : Pd1|b1,c1, Pd1|b1,c2,
Pd1|b2,c1, Pd1|b2,c2.

• For each CPT entry P (Y = yi | X), a parameter clause is generated. Let the
ordered domain of Y be {y1, . . . , yk} and let X = x1, . . . , xl. If yi is not the last
value in the domain of Y , the clause is given by,

Ix1 ∧ · · · ∧ Ixl
∧ ¬Py1|X ∧ · · · ∧ ¬Pyi−1|X ∧ Pyi|X ⇒ Iyi

.
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If yi is the last value in the domain of Y , the clause is given by,

Ix1 ∧ · · · ∧ Ixl
∧ ¬Py1|X ∧ · · · ∧ ¬Pyk−1|X ⇒ Iyk

.

For my running example, the following parameter clauses would be generated,

A : Pa1 ⇒ Ia1 ¬Pa1 ⇒ Ia2

B : Ia1 ∧ Pb1|a1
⇒ Ib1 Ia1 ∧ ¬Pb1|a1

⇒ Ib2

Ia2 ∧ Pb1|a2 ⇒ Ib1 Ia2 ∧ ¬Pb1|a2 ⇒ Ib2

C : Ia1 ∧ Pc1|a1 ⇒ Ic1 Ia1 ∧ ¬Pc1|a1 ⇒ Ic2

Ia2 ∧ Pc1|a2 ⇒ Ic1 Ia2 ∧ ¬Pc1|a2 ⇒ Ic2

D : Ib1 ∧ Ic1 ∧ Pd1|b1,c1 ⇒ Id1 Ib1 ∧ Ic1 ∧ ¬Pd1|b1,c1 ⇒ Id2

Ib1 ∧ Ic2 ∧ Pd1|b1,c2 ⇒ Id1 Ib1 ∧ Ic2 ∧ ¬Pd1|b1,c2 ⇒ Id2

Ib2 ∧ Ic1 ∧ Pd1|b2,c1 ⇒ Id1 Ib2 ∧ Ic1 ∧ ¬Pd1|b2,c1 ⇒ Id2

Ib2 ∧ Ic2 ∧ Pd1|b2,c2 ⇒ Id1 Ib2 ∧ Ic2 ∧ ¬Pd1|b2,c2 ⇒ Id2 .

• A weight is assigned to each literal in the propositional formula. As in Dar-
wiche’s encoding, the weight of literals for indicator variables is always 1. The
weight of literals for each parameter variable Py|X is given by,

weight(Py|X) = P (y | X),

weight(¬Py|X) = 1 − P (y | X).

Let F be the CNF encoding of a Bayesian network (either Darwiche’s encoding
or Sang’s encoding). A general query P (Q | E) on the network can be answered by,

weight(F ∧ Q ∧ E)

weight(F ∧ E)
, (2.2)

where Q and E are propositional formulas which enforce the appropriate values for
the indicator variables that correspond to the known values of the random variables.
For example, given the query P (A = a2 | C = c2, D = d1), we would calculate,
weight(F ∧ Ia2 ∧ Ic2 ∧ Id1)/weight(F ∧ Ic2 ∧ Id1).

In this section, I compared variable elimination, junction tree, recursive condi-
tioning and weighted model counting. In general, “good” variable orderings are the
fundamental of all the approaches. For example, the process of “ordering” the factors
and the sums often results in a more efficient computation for the variable elimination
algorithm (see Example 2.8). Naturally, in networks with loops, the main difficulty
of variable elimination consists is finding the optimal elimination order. The ability
to manage the cache dynamically is also of crucial importance for space efficiency
during the computation. Table 2.2 shows that weighted model counting is one of the
only reasoning approaches that can use a dynamic strategy for both variable ordering
and cache management.
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Table 2.2: A comparison of algorithms for answering probabilistic queries.

cache cache cache
algorithm branch ordering space ‘good’ ‘nogood’
variable elimination dynamic dynamic yes yes
junction tree static none no no
recursive conditioning static static yes no
weighted model counting dynamic dynamic yes yes

Encoding inference in a Bayesian network as weighted model counting on a CNF
formula has several advantages over traditional reasoning approaches: it allows ad-
vances in SAT solving techniques—such as non-chronological backtracking, clause
learning and efficient variable selection heuristics—to be used; it provides a standard
framework for evaluating different approaches and ideas, and it allows for dynamic
decompositions and unit propagation.

2.3 Summary

In this chapter, I described the necessary background in knowledge representation
and reasoning (KRR) systems based on propositional logic and KRR systems based
on Bayesian networks and I reviewed algorithms for answering queries in both types
of systems.

In the next chapter, I present my work on dynamically decomposing propositional
formulas in CNF, for improving the efficiency of SAT solvers and SAT model counters.
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Chapter 3

Exploiting Structure in
Propositional Reasoning:
Dynamic Decomposition

The general solution of satisfiability problems is NP-Complete. Although state-of-
the-art SAT solvers can efficiently obtain the solutions of many real-world instances,
there are still a large number of real-world SAT families which cannot be solved in a
reasonable amount of time. Much effort has been devoted to devising techniques for
taking advantage of the internal structure of SAT instances. However, most exist-
ing decomposition techniques are based on preprocessing the static structure of the
original problem. In this chapter, I present a dynamic decomposition method based
on hypergraph separators. Integrating the separator decomposition into the variable
ordering of a modern SAT solver leads to speedups on large real-world satisfiability
problems. In comparison to static decomposition based variable orderings (such as,
for example, Huang and Darwiche’s [64] dTree method), my approach does not need
time to construct the full tree decomposition, which sometimes takes more time than
the solving process itself.

My primary focus is to achieve speedups on large real-world satisfiability prob-
lems. I combined the state-of-the-art SAT solver zChaff [104] with dynamic hyper-
graph separator decomposition and empirically evaluated it on SAT 2002 competition
benchmarks. My results show that the new solver can significantly outperform both
regular zChaff and zChaff integrated with dTree decomposition in solving real-world
problems. Furthermore, the new solver solved more hard instances than the dTree
decomposition within a given cutoff time limit.

3.1 Structure in CSP and SAT instances

In this section, I review the definitions and concepts for capturing the structure of
real-world CSP and SAT instances (for more background on this topic, see Dechter
[29]). The term “structure” means the instance’s structural properties, which can
be represented as properties of the constraint graph or constraint hypergraph. Many
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real world problems can be broken up and separated into disconnected components
or subproblems by various decomposition approaches based on their following nature.

• Real-world applications are built and designed in a modular way. Modular-
ization with minimal inter-connectivity is encouraged in industrial design and
development.

• Each module uses distinct name spaces and variables.

• Small sets of variables are designed to control an application.

The underlying structure of a propositional CNF formula can be captured using
what are called the primal graph and primal hypergraph representations.

Definition 3.1 (Primal graph). Given a propositional formula F in CNF, its primal
graph representation G = (V, E) is a graph whose vertex set V consists of the variables
in F , and an edge connects each pair of nodes whose variables appear in the same
clause.

Let H = (V, E) be a hypergraph with vertex set V and edge set E. A hypergraph
is a generalization of a graph where a hyperedge can be any non-empty subset of V .

Definition 3.2 (Primal hypergraph). Given a propositional formula F in CNF, its
primal hypergraph representation H = (V, E) is a hypergraph whose vertex set V
consists of the variables in F , and there is a hyperedge for each clause in F which
consists of the set of all the variables that appear in that clause.

Example 3.1. Let F be the following propositional formula,

F = (x ∨ y ∨ z) ∧ (y ∨ ¬z ∨ w) ∧ (¬w ∨ ¬z ∨ v) ∧ (¬v ∨ u),

Figure 3.1 shows both the primal graph and the primal hypergraph of formula F , where
the hyperedges are {x, y, z}, {y, z, w}, {w, z, v}, and {v, u}.

The underlying structure of a propositional CNF formula can also be captured
using what are called the dual graph and dual hypergraph representations.

Definition 3.3 (Dual graph). Given a propositional formula F in CNF, its dual
graph representation G = (V, E) is a graph whose vertex set V consists of the clauses
in F , and an edge connects each pair of nodes whose clauses share a variable.

Definition 3.4 (Dual hypergraph). Given a propositional formula F in CNF, its dual
hypergraph representation H = (V, E) is a hypergraph whose vertex set V consists
of the clauses in F , and there is a hyperedge for each Boolean variable in F which
consists of the set of all the clauses (vertices) that contain that variable.
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Figure 3.1: (a) Primal graph and (b) primal hypergraph of the propositional formula
F = (x∨ y ∨ z)∧ (y ∨¬z ∨w)∧ (¬w ∨¬z ∨ v)∧ (¬v ∨ u) in Example 3.1. The edges
in the primal hypergraph are {x, y, z}, {y, z, w}, {w, z, v}, and {v, u}.

Example 3.2. Once again, let F be the following propositional formula,

F = (x ∨ y ∨ z) ∧ (y ∨ ¬z ∨ w) ∧ (¬w ∨ ¬z ∨ v) ∧ (¬v ∨ u),

Figure 3.2 shows both the dual graph and the dual hypergraph of formula F . Let c1,
c2, c3, and c4 be the four clauses in the formula. The dual hypergraph H = (V, E) has
V = {c1, c2, c3, c4} and E = {{c1}, {c1, c2}, {c1, c2, c3}, {c2, c3}, {c3, c4}, {c4}}, corre-
sponding to the clauses in which x, y, z, w, v, and u appear, respectively.

In an undirected graph G, two vertices u and v are called connected if G contains
a path from u to v. Otherwise, they are called disconnected. A graph is called
connected if every pair of distinct vertices in the graph can be connected through
some path. A cut or vertex cut of a connected graph G is a set of vertices whose
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Figure 3.2: (a) Dual graph and (b) dual hypergraph of the propositional formula
F = (x∨ y ∨ z)∧ (y ∨¬z ∨w)∧ (¬w ∨¬z ∨ v)∧ (¬v ∨ u) in Example 3.2. The edges
in the dual hypergraph are {c1}, {c1, c2}, {c1, c2, c3}, {c2, c3}, {c3, c4}, and {c4}

removal renders G disconnected. The connectivity of G is the size of a smallest vertex
cut. A graph is called k-connected if its connectivity is k or greater. 2-connectivity is
also called biconnectivity and 3-connectivity is also called tri-connectivity. A vertex
whose removal disconnects a connected graph is called an articulation point. A graph
without any articulation point is biconnected. The biconnected components of a graph
are the maximal biconnected subgraphs.

A path in a hypergraph connecting vertex x and y is a sequence x = x1, E1, x2, . . . ,
xi, Ei, xi+1, . . . , Ep, xp+1 = y with xi, xi+1 ∈ Ei. In a hypergraph H , two vertices x
and y are called connected if H contains a path from x to y. H is called connected
if every pair of distinct vertices in the hypergraph can be connected through some
path. A separator of a hypergraph G is a set of hyperedges whose removal chops G
into disjoint sub-hypergraphs whose sizes stand in some sought relation.

My focus is on how to decompose a SAT instance into independent subproblems by
analyzing its hypergraph. Existing decomposition techniques are based on preprocess-
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ing the static structure of the original problem. I propose a dynamic decomposition
method based on hypergraph separators. Integrating this dynamic separator decom-
position into the variable ordering of a modern SAT solver leads to speedups on large
real world SAT instances. I also observe that previously proposed conflict-guided vari-
able ordering heuristics do not work well when combined with static decomposition
strategies.

3.2 Related Work

In this section, I relate my work to previously proposed methods for using structure
to guide backtracking search in CSPs and SAT.

As explained above, a CSP/SAT instance can be represented as a graph. Such
graphical representations form the basis of structure-guided variable ordering heuris-
tics. Real problems often do contain much structure and on these problems the
advantages of structure-guided heuristics include that structural parameters can be
used to bound the worst-case of a backtracking algorithm and structural goods and
nogoods can be recorded and used to prune large parts of the search space. Unfor-
tunately, a current limitation of these heuristics is that they can break down in the
presence of constraints or clauses that encompass all or nearly all of the variables,
which can be common in practice. A further disadvantage is that structure-guided
heuristics are usually static or nearly static.

Freuder [39] may have been the first to propose a structure-guided variable order-
ing heuristic. Consider the constraint graph where there is a vertex for each variable in
the CSP and there is an edge between two vertices x and y if there exists a constraint
C such that both x ∈ vars(C) and y ∈ vars(C).

Definition 3.5 (Width). Let the vertices in a constraint graph be ordered. The width
of an ordering is the maximum number of edges from any vertex v to vertices prior
to v in the ordering. The width of a constraint graph is the minimum width over all
orderings of that graph.

Consider the static variable ordering corresponding to an ordering of the vertices
in the graph. Freuder [39] shows that the static variable ordering is backtrack-free if
the level of strong k-consistency (a form of constraint propagation) is greater than
the width of the ordering. Freuder [39] also shows that there exists a backtrack-free
static variable ordering if the level of strong consistency is greater than the width of
the constraint graph. Freuder [40] generalizes these results to static variable orderings
which guarantee that the number of nodes visited in the search can be bounded a
priori.

Dechter and Pearl [31] propose a static variable ordering which first instantiates
variables which cut cycles in the constraint graph. Once all cycles have been cut,
the constraint graph is a tree and can be solved quickly using a form of constraint
propagation called arc consistency [39]. Sabin and Freuder [87] refine and test this
proposal within an algorithm that maintains arc consistency. They show that, on
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random binary problems, a variable ordering that cuts cycles can out perform state-
of-the-art heuristics.

As a further example of a structure-guided variable ordering heuristic, Moskewicz
et al. [79], in their Chaff solver for SAT, propose that the choice of variable should
be biased towards variables that occur in recently recorded nogoods.

A well-known technique in algorithm design on graphs is divide-and-conquer using
graph separators.

Definition 3.6 (Separator). A separator of a graph is a subset of the vertices or the
edges which, when removed, separates the graph into disjoint subgraphs.

A graph can be recursively decomposed by successively finding separators of the
resulting disjoint subgraphs leading to a tree of separators or a decomposition tree.
The technique has been widely applied in constraint graphs and graphical models
such as Bayesian networks (see, e.g., [32, 12, 65]). Since the solution of both CSP
and SAT problems are NP-Complete, tree decomposition plays an important role to
bound their runtime. The worst-case complexity of solving SAT problems using the
original DPLL is O(m2n), where m is the number of clauses and n is the number
of variables. So an efficient general algorithm is not expected to be found. In order
to improve this worst-case complexity, a variety of structural decomposition methods
have been investigated. The best known tree decomposition leads to a time complexity
in O(n2w+1), where w is the width of the hypergraph representation of the SAT
problem.

The idea of decomposing a CSP into smaller pieces with limited interconnections
was first explored by Freuder [40]. Freuder showed that a binary CSP (a CSP with
only constraints over pairs of variables) can be decomposed into smaller “biconnected
components” and solved separately. Gyssens [51] extended this idea to hypergraphs
by introducing hinge decomposition. Freuder’s approach [40] is to obtain a static
variable ordering by finding the articulation nodes and constructs a tree whose nodes
are biconnected components of the original constraint graph. An articulation node is
a separator of size one; i.e., it consists of a single vertex. In this process, the original
constraint graph is assumed to be connected; if it is not, each piece can simply
be considered separately. After finding all the articulation nodes and biconnected
components, one can construct a decomposition tree whose nodes are the biconnected
components (see Algorithm 3.1). Then we can generate a static variable ordering—
an ordering for the backtracking algorithm—by traversing the decomposition tree in
pre-order [40].

Freuder and Quinn [42] propose a static variable ordering heuristic based on a
recursive decomposition of the constraint graph. The idea is that the separators
(called cutsets in [42]) give groups of variables which, once instantiated, decompose
the CSP and the disconnected components can then be solved independently. Freuder
and Quinn also propose a special-purpose backtracking algorithm to correctly use the
variable ordering to get additive behavior rather than multiplicative behavior when
solving the independent problems.

Once all of the variables in a separator have been instantiated, the backtracking
algorithm has a choice of which subproblem to work on next. Amir and McIlraith [3]
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Algorithm 3.1: Construct a Tree With Biconnected Components

input : A constraint satisfaction problem (CSP)
output: A decomposition tree

choose one of the components as the root and put it in a queue Q;
while Q is not empty do

remove a component c from Q;
for each component d which shares an articulation point with c and is not
already in the tree do

make d a child of c in the tree;
put d in Q;

present a heuristic that solves the most constrained subproblem first. However, no
experimental evaluation is performed. Various methods have also been proposed for
recursively decomposing the constraint graph. Aloul, Markov and Sakallah [2] present
a static variable ordering based on a recursive min-cut bisection of the hypergraph
for a SAT instance and show that this can improve the performance of SAT solvers.
However, most modern SAT solvers use a dynamic variable ordering because they are
overwhelmingly more effective.

Huang and Darwiche [64] present a recursive decomposition technique called dTree.
Further, Huang and Darwiche [64] show that the special-purpose backtracking algo-
rithm proposed by Freuder and Quinn [42] is not needed; a regular backtracking
algorithm with a technique called backjumping incorporated is sufficient. This is
an interesting result as backjumping is now standard in all SAT solvers. Because
the separators in Freuder and Quinn’s approach are found prior to search, the pre-
established variable groupings never change during the execution of the backtracking
search. However, Huang and Darwiche note that within these groupings the variable
ordering can be dynamic and any one of the existing variable ordering heuristics can
used. Huang and Darwiche [64] show that their divide-and-conquer approach can be
effective on hard SAT problems. Independently Bjesse et al. [12] present a proposal
similar in substance to Huang and Darwiche. However, no experimental evaluation
is performed.

My work on exploiting structure in propositional reasoning takes as its starting
point Freuder and Quinn’s [42] idea of constructing a variable ordering heuristic by
recursively decomposing the hypergraph of a SAT instance. However, all previous
work [42, 3, 2, 64, 12] has only considered static decomposition methods; i.e., the
decomposition tree is fully constructed prior to the backtracking search. In my work
I consider dynamic decomposition where the decomposition can happen during the
backtracking search. The consequences are twofold. First, with static decomposition
methods, the pre-established variable groupings never change during the backtrack-
ing search. The result is that the variable ordering heuristic is limited to be quite
static. My experimental work shows that the result is that these heuristics sometimes
considerably reduce the amount of Boolean constraint propagation and in such cases
do not improve the efficiency of solving real world instances. Using a dynamic de-
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composition can lead to considerably more propagation earlier in the tree. Second,
a static decomposition technique constructs the whole decomposition tree prior to
backtracking search, and this preprocessing time can be considerable. Using a dy-
namic decomposition, the separator based decomposition is done on-the-fly and can
stop at any time during the decomposition process, thus avoiding unnecessary work.

3.3 Dynamic Tree Decomposition for Variable Or-

dering Heuristics

In this section, I present techniques for taking advantage of structure for improv-
ing solvers for propositional satisfiability. In particular, I present several techniques
for dynamically recognizing and incorporating structural information into the search
algorithms and the variable orderings which guide the search algorithms.

I begin by providing the intuitions behind why my proposals based on dynamic
structural information can have an advantage over previous proposals based on static
decompositions.

3.3.1 Static Decomposition versus Dynamic Decomposition

The structure of a SAT encoded real world problem changes dramatically during
the running time of DPLL. A disadvantage of static decomposition is that one can
always expect a better result if one analyzes the structure dynamically; i.e., during
the backtracking search.

The visualization approach proposed in [95] provides an empirical tool to observe
and analyze the structure of real-world SAT problems dynamically. It shows that
long implication chains often exist in these instances. Unit propagation is a look-
ahead strategy for all of the cutting-edge SAT solvers. Since most of the variables
on the implication chains are instantiated after making a relatively small number of
decisions, the internal structure of real-world instances often change dramatically in
different parts of the search tree.

Example 3.3. Figure 3.3(a) shows the primal graph of the bounded model check-
ing instance dp05s05, which is from the dining philosophers problem. Figure 3.3(b)
shows the result after setting proposition 1283 to false and performing unit propa-
gation. In Figures 3.3(b)–3.3(d), independent subproblems are naturally occurring.
Figures 3.6(a)–3.6(d) show the corresponding dual graph of dp05s05. The snapshots
are from applying zChaff to the instance, where zChaff is using the Variable State
Independent Decaying Sum branching heuristic. It can be seen that the problem can
be decomposed into quite large independent subproblems after instantiating just 10
variables. Thus, small separators that would not be discovered statically before search
can be discovered dynamically during the search.

The second disadvantage of statically decomposing a SAT instance is that a static
structure-guided heuristic can limit Boolean constraint propagation (BCP) and break
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(c) (d)

Figure 3.3: (a) Primal graph of original dp05s05 problem; (b) primal graph at decision
level 1 after one variable has been instantiated; (c) primal graph at decision level 10;
and (d) decomposed primal graph at decision level 10.

the implication chains. An implication chain is an assignment of a set of variables
v0, v1, . . . , vk, where v0 is a decision variable, vi is given an implied value before vj

whenever 0 < i < j, and for each i < k, vi appears in the antecedent clause ci+1 of
vi+1. It is very common to observe noticeably many implication chains of considerable
length in real-world instances. However, when an instance is decomposed into several
subproblems during search, BCP cannot pass from one subproblem to another.

Example 3.4. Consider the following CNF formula,

(¬A ∨ B) ∧ (¬B ∨ C) ∧ (¬C ∨ D) ∧ (¬D ∨ E),

where A, B, C, D and E are in the implication chain with variable A being assigned
the value 1 (see Figure 3.4(a)). Compare 3.4(a), which is the implication chain of the
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Figure 3.4: Comparison of the maximum length of the implication chains with differ-
ent decomposition methods for the CNF formula, (¬A∨B)∧ (¬B ∨C)∧ (¬C ∨D)∧
(¬D ∨ E), in Example 3.4.

above CNF formula without decomposition, to Figure 3.4(b) and Figure 3.4(c). The
latter two figures show that a variable ordering heuristic that focuses on separators
and decomposing the instance can result in shorter implication chains and so cause
more decisions to be made in the search for a solution.

Thus, there is a trade-off between decomposition and BCP. By continually apply-
ing unit propagation and updating the formula until no unit clauses remain, BCP
can instantiate an ordered variable sequence or implication chain. Every implication
chain has a start clause. When a problem is decomposed into several subproblems, it
is hoped that the subproblem with which we begin contains all the start clauses and
that the implication chains are not cut by any subproblem. Otherwise, BCP cannot
“activate” all the unit clauses along the chain.

Example 3.5. Consider once again the formula F = (x∨y∨z)∧(y∨¬z∨w)∧(¬w∨
¬z ∨ v)∧ (¬v ∨ u), of Example 3.1. Figure 3.1 shows the corresponding primal graph
and primal hypergraph and Figure 3.5 shows one possible tree decomposition for this
hypergraph. The decomposed problem can be solved using many possible subproblem
orderings. The following table shows four of the possible orderings and the resulting
maximum number of implications and minimum number of decisions needed to find a
solution when using DPLL to solve each subproblem in the given order.

subproblem ordering max #implications min #decisions
A → B → C → D 3 3
B → A → C → D 5 1
C → A → B → D 2 4
D → C → A → B 1 5
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As the example demonstrates, the ordering in which the subproblems are solved can
have a significant influence on the amount of work needed to find a solution.

 

y, z, w A 

x, y, z B w, z, v C 

v, u D 

(a)

A B C D
↓ ↓ ↓ ↓
B A A C
↓ ↓ ↓ ↓
C C B A
↓ ↓ ↓ ↓
D D D B

(b)

Figure 3.5: (a) A rooted tree decomposition of the hypergraph shown in Figure 3.1.
(b) As discussed in Example 3.5, the subproblems can be solved in different possible
orders.

Unfortunately, none of the existing static decomposition approaches can avoid
shortening implication chains. Here, I propose several dynamic decomposition meth-
ods that can help keep implication chains safe.

3.3.2 A Dynamic Structure-guided Variable Ordering Heuris-
tic for SAT

Since the structure of a SAT problem changes dramatically during the running time of
DPLL, here I propose to use a dynamic decomposition method based on finding vertex
separators of the residual primal graph. Finding vertex separators naturally leads to
a divide-and-conquer strategy. The separator becomes the root of the corresponding
tree structure, while the subtrees become the subproblems induced by the separator.

Definition 3.7 (Residual primal graph). The residual primal graph G(φ) = (V (φ), E(φ))
is based on the residual formula φ = F |s, where F is the original formula and s is
the current partial assignment. Each node in G(φ) represents a variable which has
not been instantiated in φ = F |s. If φ2 = F |s2 can be extended from φ1 = F |s1, then
G(φ2) is a subgraph of G(φ1), where V (φ2) ⊆ V (φ1) and E(φ2) ⊆ E(φ1).

To find a vertex separator of the residual primal graph, I find a hyperedge separator
of the dual hypergraph representation of the residual formula φ = F |s. A separator
of a hypergraph G is a set of hyperedges whose removal chops G into disjoint sub-
hypergraphs whose sizes stand in some sought relation. The formal basis for this is
given by the following lemma.

Lemma 3.1. A hyperedge separator of a dual hypergraph is also a vertex separator
of the primal graph.
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(a) (b)

(c) (d)

Figure 3.6: (a) Dual graph of original dp05s05 problem; (b) dual graph at decision
level 1 after one variable has been instantiated; (c) dual graph at decision level 10;
and (d) decomposed dual graph at decision level 10.

I next discuss the motivation for finding a vertex separator of the primal graph by
finding a hyperedge separator of the dual hypergraph. The primary reason is that the
dual hypergraph is a compact representation of a propositional formula. To explain,
let n be the number of variables in the formula and m be the number of clauses. In
most formulas, m is much larger than n. Table 3.1 shows example statistics for the
benchmarks I used in my experiments. As a result, the dual hypergraph, which has a
hyperedge for each variable, has a relatively small number of hyperedges compared to
the number of dual variables. As well, the dual hypergraph works well with current
hypergraph partitioning technology such as the multi-level refinement method (see,
e.g., [69, 70]). In contrast, directly finding a vertex separator on the primal graph
works less well for two reasons. First, the primal graph is missing some structural
information because some of the clause information is lost when represented as a
regular graph. Second, the primal graph is quite dense and has many more edges
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Table 3.1: Mean of the clause/variable ratio for each of the selected benchmarks.

benchmark ratio
bmc1 2.4
bmc2 3.2
bart 4.8
homer 5.1
lisa 5.5
cmpadd 2.8
matrix 3.3
fpga routing 16.0
graph coloring 7.7
onestep rand net 2.9
multistep rand net 2.9
ezfact 6.4
qg 29.0

than the dual hypergraph. Together, but perhaps primarily for the first reason, the
multi-level refinement methods work much less well when applied to the primal graph
for a CNF formula.

Most of the current hypergraph partition tools focus on optimizing the following
quality measures [69, 70]:

• Hyperedge Cut : A hyperedge cut is the number of the hyperedges that span
multiple partitions.

• Sum of External Degrees: The external degree of a partition is defined as the
number of hyperedges, that are incident but not fully inside this partition.

• Scaled Cost : The scaled cost is defined as the sum of the vertex weights of a
partition.

Definition 3.8 (Dynamic separator). Given a connected residual primal graph G(φ),
where φ = F |s0, a dynamic separator is a set S1 ⊂ V (φ) such that the residual primal
graph G(φ′) induced by φ′ = F |s0∪s1 is no longer a connected graph.

To explore the problem structure dynamically, I propose a dynamic variable
ordering heuristic based on dynamic separator decomposition. Once we have the
hypergraph representation of a formula F , the entire formula can be decomposed
into smaller subgraphs (subproblems) giving a divide-and-conquer strategy (see Fig-
ure 3.7).

My algorithm is presented as Algorithm 3.2. DSD DPLL() takes three inputs:
the propositional formula F , corresponding primal graph G, and S, the separator
of G, whose initial value is empty. After unit propagation, we create and maintain
a separator of G. The next variable is chosen from S until all the variables are
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instantiated and F is decomposed into several subproblems. The separator created
after unit propagations is based on the residual graph of the current partial solution.
F is true when all its subproblems are true, otherwise it is false.

Algorithm 3.2: DSD DPLL(F, S, G)

input : Propositional formula F , corresponding primal graph G, and the
current separator S

output: Returns true if F is satisfiable; false otherwise

if F is an empty clause set then
return true;

if F contains an inconsistent clause then
return false;

if F contains a unit clause C then
F = Unit Propagation(F ,C);

if S is empty then
S = Separator(G);

if there is no uninstantiated variable in S then
for each constraint graph partition Gi do

if DSD DPLL(F, φ, Gi) = false then
return false;

return true;

else
choose an uninstantiated variable v from S;
return DSD DPLL(F |v=0, S, G) or DSD DPLL(F |v=1, S, G);

3.3.3 Multiple Principle Guided Variable Ordering Heuris-
tics

The dynamic way of decomposition is a form of reasoning by cases or assumptions.
To solve a complicated SAT or MC problem, we try to simplify it by considering a
number of residual formulas and the residual primal graphs, which correspond to a set
of mutually exclusive and exhaustive assumptions. We then solve each of the cases
under its corresponding assumption, and combine the results to obtain a solution
to the original problem. The main problem of complete dynamic decomposition is
that a large separator will lead to a blow up in the number of cases that has to be
considered. In Figure 3.7, for example, if the top separator contains k variables, the
decomposition would have to consider 2k cases.

In the process of complete dynamic decomposition process, the complexity de-
pends on the number of decisions. At the same decision level, the more decisions we
make, the more times we need to update old separators. I use the decision distribu-
tion diagram to show that the separator size of real-world instances has an influence
on the complexity of dynamic decomposition. The diagram is generated by recording
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Figure 3.7: Components are created dynamically based on the residual formula, Φ =
F |p, where F is the original formula, p is the partial assignment at a node in the
search tree, p1 ⊂ p2 ⊂ . . . ⊂ pm ⊂ pm+1, and p1 ⊂ p2 represents that p1 is a partial
solution of p2.

the number of decisions made at every decision level of the dynamic decomposition.
Figure 3.8 is the decision distribution diagram of a random circuit checking instance.
This diagram shows that the separator needs to be updated frequently at the root
of the search tree. In contrast, Figure 3.9 shows that bart11, an instance of circuit
model checking, has an easy decision making process at the beginning. Generally, the
second case is more welcome since the easily solvable variables simplify the problem
right before the dynamic decomposition.

A technique in SAT heuristic design is to combine multiple variable ordering
heuristics that are based on different strategies. There are three basic approaches of
combining different heuristics:

1. Weighted Sum Functions: One example of this approach is Variable State Aware
Decaying Sum (VSADS), which is a dynamic heuristic designed for DPLL-based
model counting engines [90]. It combines both Variable State Independent
Decaying Sum Ordering (VSIDS) and the Dynamic Largest Combined Sum
(DLCS). DLCS makes its branching decisions based only on the number of
occurrences of a variable in the residual formula, while VSIDS is based on the
most recently learned conflict clauses. The VSADS score of a variable is the
combined weighted sum of its VSIDS score and its DLCS score,

score(VSADS ) = p × score(VSIDS) +

q × score(DLCS),

where p and q are some given constants. VSADS is the default dynamic variable
ordering heuristic of Cachet.

2. Dominated Heuristic: The dTree group ordering heuristic [64] discussed above
uses a binary decomposition tree to generate ordered variable groups before
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Figure 3.8: The decision distribution diagram of randnet50401 (a random circuit
checking instance) showing the number of decisions made at each level in the DPLL
search tree.

search. The order of variables within a group is then decided dynamically
during search by another dynamic heuristic H . In this case, the structure-
guided heuristic dominates H .

3. Dynamic Selection of Heuristics: Herbstritt [57] proposed the idea that not to
apply one branching heuristic during the whole search process, but to give each
heuristic the possibility to make a decision assignment from time to time. This
method has not been implemented in modern SAT solvers.

It is widely accepted that the application of a “good” variable ordering heuristic is
essential for solving a SAT problem. Here, I focus on the impact of two variable order-
ing heuristics based on different guiding principles: “conflict analysis based guiding
principle” and “structure guiding principle”. I propose several approaches which can,
(i) apply several dynamic variable ordering heuristics, and (ii) use structural infor-
mation to dynamically select a heuristic after each decision during the whole search
process. I show that my approach can result in faster and more robust behavior for
SAT algorithms.

I propose a structural variable ordering heuristic, enhanced static decomposition
(ESD), which is based on the static decomposition tree. My approach follows the
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Figure 3.9: The decision distribution diagram of BART11 (an instance of circuit
model checking) showing the number of decisions made at each level in the DPLL
search tree.

ideas behind the weight sum method of combining various heuristics into one heuristic.
ESD first decomposes the CNF formula before backtracking search using the same
approach as in [64]: given the hypergraph separator decomposition, ESD generates a
decomposition tree. Each node in the decomposition tree represents a variable group.
During DPLL, ESD dynamically adds top variables selected by the dynamic variable
ordering heuristics to the current variable group. Whenever the next decision variable
is needed, an uninstantiated variable is chosen from the updated group. Compared
with the completely recursive dynamic decomposition, ESD is more practical and easy
to implement. After adding high ranking variables into the separator and instantiating
them, the long implication chains are “started” at the beginning of the decomposition
tree.

Huang and Darwiche’s [64] heuristic decides the order of variables within a group
dynamically, but the order of groups is determined statically. Cachet [88] uses one
dynamic variable ordering heuristic, while disconnected components are detected pas-
sively. A structure based heuristic that recursively decomposes the SAT problem
cannot avoid breaking the unit propagation chains.

Heuristics guided by conflict analysis have been successfully applied in major

36



Propagation dominate Decomposition dominate

Arti
cu

lat
ion

 p
oin

t g
uid

ed
 D

VO 

Sep
ar

at
ion

 p
air

 g
uid

ed
 D

VO

Dyn
am

ic 
se

pa
ra

to
r g

uid
ed

 D
VO

Dtre
e 

DVO +
 S

VO

Dyn
am

ic 
co

nn
ec

tiv
ity

 te
sti

ng

Dyn
am

ic 
k-

co
nn

ec
tiv

ity
 te

sti
ng

Figure 3.10: Approaches to integrating structure-guided variable ordering heuristics
and propagation-first variable ordering heuristics.

SAT solvers. Here, my goal is to find a more practical and efficient way to integrate
such heuristics into structure-guided heuristics. Figure 3.10 gives several possible
approaches for combining structure-guided variable ordering heuristics and conflict
analysis based variable ordering heuristics.

I can improve my method using the idea of dominated heuristics by limiting the
search tree level to reduce its overhead. By this approach, we only decompose the
residual primal graph when the depth in the search tree is less than some constant.
In my experiments, I use a value of one or two as the cutoff.

3.4 Experimental Evaluation

In this section, I empirically evaluate the effectiveness of my proposals for structure-
guided variable orderings.

In my implementation, a CNF is represented by a dual weighted hypergraph. To
find separators, I use the hMETIS algorithm package [58, 69]. The problem of com-
puting an optimal partition of a hypergraph is NP-complete and hence potentially
time-consuming. The hMETIS package uses a heuristic method, multi-level hyper-
graph partition, to quickly find separators. The basic idea of multi-level algorithms is
to construct a sequence of successively smaller hypergraphs by collapsing appropriate
vertices, then find a partition of the small coarsened hypergraph, and finally obtain
the approximated separator of the original hypergraph from the coarsest hypergraph
step by step. An option to hMETIS is a parameter k, the number of partitions in
which to decompose the hypergraph. In my experiments, I always used k = 2, re-
ferred to here as 2-way partitioning. As well, following Huang and Darwiche’s [64]
work on the dTree method, I chose the balance factor as 15:85, which means that the
percentage of vertices in the two partitions should be in a ratio of 15 to 85 or as close
to this ratio as possible.

Generally, there are two different ways to merge vertices together to form single
vertices in the next level coarse hypergraph: edge coarsening and hyperedge coars-
ening. In hyperedge coarsening, vertices are grouped together that correspond to
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Table 3.2: For the selected benchmarks, total CPU time (sec.) and number of im-
proved instances (impr.) for zChaff compared to the proposed method (Separator)
which uses 2-way ESD + MASF + dynamically adding variables.

benchmark zChaff Separator #solved/#inst. sat/unsat impr.
bmc1 0 0 4/4 unsat 3
bmc2 770 387 5/6 unsat 4
bart 35 44 3/21 sat 1
homer 3164 586 9/15 unsat 9
lisa 1782 996 9/14 sat 6
cmpadd 4 5 8/8 unsat 5
matrix 31 23 2/5 unsat 2
fpga routing 27 38 27/32 mixed 10
graph coloring 11517 11690 150/300 mixed 107
onestep rand net 443 125 15/16 unsat 9
multistep rand net 180 506 2/16 unsat 0
ezfact 1367 1270 31/41 mixed 18
qg 191 162 10/19 mixed 7

hyperedges. In my experiments, I found that the coarsening scheme was an im-
portant factor for producing high quality hypergraph separator decomposition and
preference was given to hyperedge coarsening.

I enhanced the separator decomposition with dynamic variable adding. Before
the variables in the separator are instantiated (zChaff uses the VSIDS heuristic),
a group of variables with highest scores are added to the current separator. After
all the variables in the separator of a hypergraph have been instantiated, the sub-
hypergraphs of the current separator are updated to eliminate variables implied by
the instantiations of the variables in the separator.

I also consider dynamic subproblem ordering heuristics. When there are several
subproblems, the algorithm must decide which subproblem to solve first. Most mod-
ern SAT solvers have a dynamic variable ordering heuristic. For example, zChaff uses
Variable State Independent Decaying Sum (VSIDS) heuristic. To combine VSIDS
with subproblem ordering, each hyperedge is given a weight, which dynamically
changes with VSIDS. Four dynamic subproblem ordering heuristics were tested in
preliminary experiments,

MVSF — subproblem with maximum VSIDS value is solved first,
MASF — subproblem with maximum average VSIDS value is solved first,
SSF — subproblem with the shortest clause is solved first, and
MCSF — subproblem that is most constrained is solved first [3].

The MASF subproblem ordering heuristic was found to work the best in preliminary
experiments and it was used in all of the experiments that I report here.
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Table 3.3: For the selected benchmarks, total CPU time (sec.) and number of im-
proved instances (impr.) for zChaff+dTree compared to the proposed method (Sep-
arator) which uses 2-way ESD + MASF + dynamically adding variables.

zChaff+ dTree #solved/ sat/
benchmark dTree Time Separator #inst. unsat impr.
bmc1 0.01 3 0.01 4/4 unsat 4
bmc2 0.07 2.5 0.04 1/6 unsat 1
bart 150 2 44 3/21 sat 3
homer 216 13 586 9/15 unsat 0
lisa 700 87 1451 11/14 sat 6
cmpadd 0.76 31 4.57 8/8 unsat 8
matrix 90 6 23 2/5 unsat 2
fpga routing 11 2076 8 17/32 mixed 17
graph coloring 40767 230 19761 160/300 mixed 129
one step randnet 240 380 125 15/16 unsat 11
ezfact 759 179 543 31/41 mixed 22
qg 182 503 162 10/19 mixed 7
multistep rand net was omitted as dTree had a stack overflow error on these instances.

The benchmark instances used in my experiments are selected from the industrial
and handmade categories of the SAT Competition 2002 [94, 62]. Experiments were
performed on all of the industrial instances from the competition but I omit from my
experimental results all instances that both dTree and my method could not solve.
The experiments were performed on a PC with a 2.67GHz Pentium 4 processor and
1Gb of RAM. Each runtime is the average of 10 runs with a 15 minute CPU cut-off
limit. All runs that did not complete in the time limit did not contribute to the
average. The time limit is longer than the SAT 2002 competition (see [94]).

In Table 3.2, we compare the runtime of zChaff and enhanced static separator
decomposition (ESD). The times shown represent the total time for the instances
which were solved within the time limit. If a method did not solve an instance,
I charged the maximum time limit. The column which lists the number of solved
instances shows the total number of instances which both methods could solve. For
example, for the benchmark “bmc2”, the benchmark contains six instances, five of
which could be solved by both methods (the column with heading #solved/#inst) and
for four of the instances, our method (Separator) improved over zChaff (the column
with heading impr.) and, conversely, for two of the instances, zChaff performed either
as well or better.

Table 3.3 reports the comparative performance of zChaff+dTree and zChaff+ESD.
The dTree Time reports the time of constructing a dTree and zChaff+dTree reports
the runtime of zChaff with the variable group ordering from the dTree. In contrast,
the runtime of finding the graph separator decomposition is included in the runtime
of solving the instances. My experimental results also show that the separator de-
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Table 3.4: Max decision level (max), number of decisions (dec.), and number of
implications (impl.) for zChaff compared to the proposed method (Separator) which
uses 2-way DSD DPLL + MASF.

zChaff Dynamic Separator
benchmark max dec. impl. max dec. impl.
lisa19 3 a 65 181,568 36,789,189 43 61,296 9,359,648
lisa19 99 a 75 262,798 55,335,471 39 31,149 4,925,937
lisa20 99 a 62 99,361 19,340,591 43 85,672 14,808,291
homer06 124 56,754 1,071,432 103 17,713 212,052
homer07 124 110,607 2,126,296 107 29,398 420,020
homer08 141 134,769,269 8,053 123 73,096 642,087
homer09 178 237,750 5,176,136 150 139,264 1,666,138
homer10 197 283,545 7,590,761 203 387,330 7,285,721
homer11 156 121,239 2,412,764 133 46,633 672,700
homer12 162 242,994 4,871,283 140 123,244 1,871,968
homer13 173 300,403 6,093,351 154 137,859 246,163
homer14 194 588,502 13,377,128 170 315,076 5,790,068
homer15 258 1,127,302 31,367,313 239 629,895 16,626,020
homer16 198 369,264 7,156,381 156 193,118 2,441,261
homer17 203 394,490 7,980,266 170 291,448 5,691,210
Hanoi4 39 4,696 309,408 30 1,508 153,196

composition can solve much harder instances than dTree decomposition. Among the
11 industrial problems, there is only one case—the multi-step Rand-net problem—in
which zChaff is much faster. However, most instances of this problem cannot be
solved by any solver I tested.

In contrast to ESD, a completely dynamic separator decomposition method con-
structs a new separator each time a new decision is made. Because of the overhead
of propagation synchronization, the runtime of the dynamic separator decomposition
is very slow. 70% of instances cannot be solved in 15 minutes. However, the solver
using dynamic separator decomposition often makes many fewer decisions and impli-
cations than zChaff and the static separator decomposition (see Table 3.4). Thus the
completely dynamic method shows some promise, although the implementation still
needs much work. Currently, I generate the dual hypergraph from scratch each time.
A realistic implementation would incrementally maintain the dual hypergraph during
the backtracking search.

3.5 Summary

I presented dynamic decomposition methods based on hypergraph separators. In-
tegrating the hypergraph separator based decomposition into the variable ordering
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of a modern SAT solver led to speedups on large real-world satisfiability problems.
Compared with dTree, my approach does not need time to construct the full tree
decomposition, which sometimes needs more time than the solving process. The dy-
namic separator decomposition shows promise in that it significantly decreases the
number of decisions for some real-world problems.

41



Chapter 4

Exploiting Structure in
Probabilistic Reasoning:
Efficient Encodings

Previous studies have demonstrated that encoding a Bayesian network into a CNF
formula and then performing weighted model counting using a backtracking search
algorithm can be an effective method for exact inference in Bayesian networks. In
this chapter, I present techniques for improving this approach for Bayesian networks
with noisy-OR and noisy-MAX relations—two relations which are widely used in
practice as they can dramatically reduce the number of probabilities one needs to
specify. My techniques extend the weighted model counting approach for exact in-
ference in Bayesian networks to networks that were previously intractable for the
approach. I begin by reviewing the noisy-OR and noisy-MAX relations and previous
approaches for exact inference in Bayesian networks with noisy-OR/MAX relations. I
then present my space efficient CNF encodings for noisy-OR/MAX, which exploit the
structure or semantics of the relations, and prove the correctness of the encodings. I
also explore alternative search ordering heuristics for the DPLL-based backtracking
algorithm. Finally, I present the results of an extensive empirical evaluation of my
proposed encodings on large-scale real and randomly generated Bayesian networks. In
the experiments, my techniques gave speedups of up to two orders of magnitude over
the best previous approaches for Bayesian networks with noisy-OR/MAX relations
and scaled up to networks with larger numbers of random variables.

4.1 Patterns for CPTs: Noisy-OR and Noisy-MAX

In this section, I review noisy-OR and noisy-MAX relations, two common patterns
for conditional probability tables (CPTs).

A Bayesian network consists of a directed acyclic graph where the nodes represent
the random variables and each node is labeled with a conditional probability table
(CPT) which represents the strengths of the influences of the parent nodes on the
child node (see Chapter 2). Assuming Boolean random variables, the CPT of a child
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Figure 4.1: Bayesian networks with noisy-OR/MAX relations. (a) General causal
structure, where causes X1, . . . , Xn lead to effect Y ; and (b) decomposed form for the
noisy-OR and noisy-MAX relations. The node with a double border is a deterministic
node with the designated logical relationship (OR) or arithmetic relationship (MAX).

node with n parents requires one to specify 2n+1 probabilities. More generally, if all
of the random variables have domain size d, one must specify dn+1 probabilities. This
presents a practical difficulty and has led to the introduction of patterns for CPTs
which require one to specify many fewer parameters (e.g., [50, 82, 34]).

The two most widely used patterns in practice are the noisy-OR relation and
its generalization, the noisy-MAX relation [50, 82]. These relations assume a form
of causal independence and allow one to specify a CPT with just n parameters in
the case of the noisy-OR and (d − 1)2n parameters in the case of the noisy-MAX,
where n is the number of parents of the node and d is the size of the domains of the
random variables. The noisy-OR/MAX relations have been successfully applied in
the knowledge engineering of large real-world Bayesian networks, such as the Quick
Medical Reference-Decision Theoretic (QMR-DT) project [78] and the Computer-
based Patient Case Simulation system [81]. As well, Zagorecki and Druzdzel [103]
show that in three real-world Bayesian networks, noisy-OR/MAX relations were a
good fit for up to 50% of the CPTs in these networks and that converting some CPTs
to noisy-OR/MAX relations gave good approximations when answering probabilistic
queries. This is surprising, as the CPTs in these networks were not specified using the
noisy-OR/MAX assumptions and were specified as full CPTs. Their results provide
additional evidence for the usefulness of noisy-OR/MAX relations.

With the noisy-OR relation one assumes that there are different causes X1, . . . ,
Xn leading to an effect Y (see Figure 4.1(a)), where all random variables are assumed
to have Boolean-valued domains. Each cause Xi is either present or absent, and each
Xi in isolation is likely to cause Y and the likelihood is not diminished if more than
one cause is present. Further, one assumes that all possible causes are given and when
all causes are absent, the effect is absent. Finally, one assumes that the mechanism or
reason that inhibits a Xi from causing Y is independent of the mechanism or reason
that inhibits a Xj , j 	= i, from causing Y .
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Figure 4.2: Example of a causal Bayesian network with causes (diseases) Cold, Flu,
and Malaria and effects (symptoms) Nausea and Headache.

Example 4.1. Consider the Bayesian network shown in Figure 4.2. The diseases
cold, flu, and malaria are all likely to cause the symptom of nausea and the likelihood
of having nausea does not diminish if more than one of these diseases is present. As
well, one does not always feel nauseous when one has a cold or the flu and (it may be
assumed that) the physiological mechanism that inhibits a cold from causing nausea is
independent of the physiological mechanism that inhibits the flu from causing nausea.

A noisy-OR relation specifies a CPT using n parameters, q1, . . . , qn, one for each
parent, where qi is the probability that Y is false given that Xi is true and all of the
other parents are false,

P (Y = 0 | Xi = 1, Xj = 0[∀j,j �=i]) = qi. (4.1)

From these parameters, the full CPT representation of size 2n+1 can be generated
using,

P (Y = 0 | X1, . . . , Xn) =
∏
i∈Tx

qi (4.2)

and
P (Y = 1 | X1, . . . , Xn) = 1 −

∏
i∈Tx

qi (4.3)

where Tx = {i | Xi = 1} and P (Y = 0 | X1, . . . , Xn) = 1 if Tx is empty. The last
condition (when Tx is empty) corresponds to the assumptions that all possible causes
are given and that when all causes are absent, the effect is absent; i.e.,

P (Y = 0 | X1 = 0, . . . , Xn = 0) = 1.

These assumptions are not as restrictive as may first appear. One can always intro-
duce an additional random variable X0 that is a parent of Y but itself has no parents.
The variable X0 represents all of the other reasons that could cause Y to occur. The
node X0 and the prior probability P (X0) are referred to as a leak node and the leak
probability, respectively. In what follows, I continue to refer to all possible causes as
X1, . . . , Xn where it is understood that one of these causes could be a leak node.
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Table 4.1: Parameters for the noisy-ORs at node Nausea and at node Headache for
the Bayesian network shown in Figure 4.2, assuming all of the random variables are
Boolean.

P (Nausea = 0 | Cold = 1,Flu = 0,Malaria = 0) = 0.6

P (Nausea = 0 | Cold = 0,Flu = 1,Malaria = 0) = 0.5

P (Nausea = 0 | Cold = 0,Flu = 0,Malaria = 1) = 0.4

P (Headache = 0 | Cold = 1,Flu = 0,Malaria = 0) = 0.3

P (Headache = 0 | Cold = 0,Flu = 1,Malaria = 0) = 0.2

P (Headache = 0 | Cold = 0,Flu = 0,Malaria = 1) = 0.1

Example 4.2. Consider once again the Bayesian network shown in Figure 4.2. Sup-
pose that the random variables are Boolean representing the presence or the absence
of the disease or the symptom, that there is a noisy-OR at node Nausea and at node
Headache, and that the parameters for the noisy-ORs are as given in Table 4.1. The
full CPT for the node Nausea is given by,

C F M P (Nausea = 0 | C, F, M) P (Nausea = 1 | C, F, M)
0 0 0 1.00 0.00
0 0 1 0.40 0.60
0 1 0 0.50 0.50
0 1 1 0.20 = 0.5 × 0.4 0.80
1 0 0 0.60 0.40
1 0 1 0.24 = 0.6 × 0.4 0.76
1 1 0 0.30 = 0.6 × 0.5 0.70
1 1 1 0.12 = 0.6 × 0.5 × 0.4 0.88

where C, F , and M are short for Cold, Flu, and Malaria, respectively.

An alternative way to view a noisy-OR relation is as a decomposed probabilistic
model. In the decomposed model shown in Figure 4.1(b), one only has to specify a
small conditional probability table at each node Yi given by P (Yi | Xi), instead of
an exponentially large CPT given by P (Y | X1, . . . , Xn). In the decomposed model,
P (Yi = 0 | Xi = 0) = 1, P (Yi = 0 | Xi = 1) = qi, and the CPT at node Y is
now deterministic and is given by the OR logical relation. The OR operator can be
converted into a full CPT as follows,

P (Y | Y1, . . . , Yn) =

{
1, if Y = Y1 ∨ · · · ∨ Yn,

0, otherwise.
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The probability distribution of an effect variable Y is given by,

P (Y | X1, . . . , Xn) =
∑

Y =Y1∨···∨Yn

(
n∏

i=1

P (Yi | Xi)

)
,

where the sum is over all configurations or possible values for Y1, . . . , Yn such that the
OR of these Boolean values is equal to the value for Y .

Similarly, in Pearl’s [82] decomposed model, one only has to specify n probabilities
to fully specify the model (see Figure 4.3); i.e., one specifies the prior probabilities
P (Ii), 1 ≤ i ≤ n. In this model, causes always lead to effects unless they are
prevented or inhibited from doing so. The random variables Ii model this prevention
or inhibition. 

 

Y 
OR 

Y1 
AND 

X1 I1 

Yn 
AND 

Xn In 

… 
 

… 
 

Figure 4.3: Pearl’s [82] decomposed form of the noisy-OR relation. Nodes with double
borders are deterministic nodes with the designated logical relationship.

These two decomposed probabilistic models (Figure 4.1(b), and Figure 4.3) can
be shown to be equivalent in the sense that the conditional probability distribution
P (Y | X1, . . . , Xn) induced by both of these networks is just the original distribution
for the network shown in Figure 4.1(a). It is important to note that both of these
models would still have an exponentially large CPT associated with the effect node
Y if the deterministic OR node were to be replaced by its full CPT representation.
In other words, these decomposed models address ease of modeling or representation
issues, but they do not address efficiency of reasoning issues.

The noisy-MAX relation (see [82, 50, 56, 33]) is a generalization of the noisy-OR
to non-Boolean domains. With the noisy-MAX relation, one again assumes that there
are different causes X1,. . . , Xn leading to an effect Y (see Figure 4.1(a)), but now
the random variables may have multi-valued (non-Boolean) domains. The domains of
the variables are assumed to be ordered and the values are referred to as the degree
or the severity of the variable. Each domain has a distinguished lowest degree 0
representing the fact that a cause or effect is absent. As with the noisy-OR relation,
one assumes that all possible causes are given and when all causes are absent, the
effect is absent. Again, these assumptions are not as restrictive as first appears, as
one can incorporate a leak node. As well, one assumes that the mechanism or reason
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that inhibits a Xi from causing Y is independent of the mechanism or reason that
inhibits a Xj , j 	= i, from causing Y .

Example 4.3. Consider once again the Bayesian network shown in Figure 4.2.
Multi-valued domains allow one to model the severity of a symptom. Here, the nau-
sea that sometimes accompanies a cold, the flu, or malaria is likely to be much more
severe in the presence of the flu or malaria and perhaps more mild in the presence of
a cold.

Let dX be the number of values in the domain of some random variable X. For
simplicity of notation and without loss of generality, I assume that the domain of a
variable X is given by the set of integers {0, 1, . . . , dX − 1}. A noisy-MAX relation
with causes X1, . . . , Xn and effect Y specifies a CPT using the parameters,

P (Y = y | Xi = xi, Xj = 0[∀j,j �=i]) = qxi
i,y i = 1, . . . , n, (4.4)

y = 0, . . . , dY − 1,

xi = 1, . . . , dXi
− 1.

If all of the domain sizes are equal to d, a total of (d−1)2n non-redundant probabilities
must be specified. From these parameters, the full CPT representation of size dn+1

can be generated using,

P (Y ≤ y | X) =

n∏
i=1
xi �=0

y∑
y′=0

qxi

i,y′ (4.5)

and

P (Y = y | X) =

{
P (Y ≤ 0 | X) if y = 0,

P (Y ≤ y | X) − P (Y ≤ y − 1 | X) if y > 0.
(4.6)

where X represents a certain configuration of the parents of Y , X = x1, . . . , xn, and
P (Y = 0 | X1 = 0, . . . , Xn = 0) = 1; i.e., if all causes are absent, the effect is absent.

Example 4.4. Consider once again the Bayesian network shown in Figure 4.2. Sup-
pose that the diseases are Boolean random variables and the symptoms Nausea and
Headache have domains {absent = 0, mild = 1, severe = 2}, there is a noisy-MAX at
node Nausea and at node Headache, and the parameters for the noisy-MAX at node
Nausea are as given in Table 4.2. The full CPT for the node Nausea is given by,

C F M P (N = a | C, F, M) P (N = m | C, F, M) P (N = s | C, F, M)
0 0 0 1.000 0.000 0.000
0 0 1 0.100 0.400 0.500
0 1 0 0.500 0.200 0.300
0 1 1 0.050 = 0.5 × 0.1 0.300 0.650
1 0 0 0.700 0.200 0.100
1 0 1 0.070 = 0.7 × 0.1 0.380 0.550
1 1 0 0.350 = 0.7 × 0.5 0.280 0.370
1 1 1 0.035 = 0.7 × 0.5 × 0.1 0.280 0.685
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Table 4.2: Parameters for the noisy-MAX at node Nausea for the Bayesian network
shown in Figure 4.2, assuming the diseases are Boolean random variables and the
symptom Nausea has domain {absent = 0, mild = 1, severe = 2}.

P (Nausea = absent | Cold = 1,Flu = 0,Malaria = 0) = 0.7

P (Nausea = mild | Cold = 1,Flu = 0,Malaria = 0) = 0.2

P (Nausea = severe | Cold = 1,Flu = 0,Malaria = 0) = 0.1

P (Nausea = absent | Cold = 0,Flu = 1,Malaria = 0) = 0.5

P (Nausea = mild | Cold = 0,Flu = 1,Malaria = 0) = 0.2

P (Nausea = severe | Cold = 0,Flu = 1,Malaria = 0) = 0.3

P (Nausea = absent | Cold = 0,Flu = 0,Malaria = 1) = 0.1

P (Nausea = mild | Cold = 0,Flu = 0,Malaria = 1) = 0.4

P (Nausea = severe | Cold = 0,Flu = 0,Malaria = 1) = 0.5

where C, F , M , and N are short for the variables Cold, Flu, Malaria, and Nausea,
respectively, and a, m, and s are short for the values absent, mild, and severe, respec-
tively. As an example calculation, P (Nausea = mild | Cold = 0,Flu = 1,Malaria =
1) = ((0.5+0.2)×(0.1+0.4))−(0.05) = 0.3 As a second example, P (Nausea = mild |
Cold = 1,Flu = 1,Malaria = 1) = ((0.7+0.2)× (0.5+0.2)× (0.1+0.4))− (0.035) =
0.28

As with the noisy-OR relation, an alternative view of a noisy-MAX relation is
as a decomposed probabilistic model (see Figure 4.1(b)). In the decomposed model,
one only has to specify a small conditional probability table at each node Yi given
by P (Yi | Xi), where P (Yi = 0 | Xi = 0) = 1 and P (Yi = y | Xi = x) = qx

i,y. Each
Yi models the effect of the cause Xi on the effect Y in isolation; i.e., the degree or
the severity of the effect in the case where only the cause Xi is not absent and all
other causes are absent. The CPT at node Y is now deterministic and is given by
the MAX arithmetic relation. This corresponds to the assumption that the severity
or the degree reached by the effect Y is the maximum of the degrees produced by
each cause if they were acting independently; i.e., the maximum of the Yi’s. This
assumption is only valid if the effects do not accumulate. The MAX operator can be
converted into a full CPT as follows,

P (Y | Y1, . . . , Yn) =

{
1, if Y = max{Y1, . . . , Yn},
0, otherwise.
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The probability distribution of an effect variable Y is given by,

P (Y | X1, . . . , Xn) =
∑

Y =max{Y1,...,Yn}

(
n∏

i=1

P (Yi | Xi)

)
,

where the sum is over all configurations or possible values for Y1, . . . , Yn such that the
maximum of these values is equal to the value for Y . In both cases, however, making
the CPTs explicit is often not possible in practice, as their size is exponential in the
number of causes and the number of values in the domains of the random variables.

4.2 Related Work

In this section, I relate my work to previously proposed methods for exact inference
in Bayesian networks with noisy-OR/MAX relations.

I am considering here the problem of exact inference in Bayesian networks which
contain noisy-OR/MAX relations. One method for solving such networks is to re-
place each noisy-OR/MAX by its full CPT representation and then use any of the
well-known algorithms for answering probabilistic queries such as variable elimination
or tree clustering/jointree. However, in general—and in particular, for the networks
that I use in my experimental evaluation—this method is impractical. A more fruit-
ful approach for solving such networks is to take advantage of the structure or the
semantics of the noisy-OR/MAX relations to improve both time and space efficiency
(e.g., [52, 80, 20, 55, 105, 98, 35, 17]).

Quickscore [52] was the first efficient exact inference algorithm for Boolean-valued
two-layer noisy-OR networks. Chavira, Allen and Darwiche [17] present a method
for multi-layer noisy-OR networks and show that their approach is significantly faster
than Quickscore on randomly generated two-layer networks. Their approach proceeds
as follows: (i) transform the noisy-OR network into a Bayesian network with full CPTs
using Pearl’s decomposition (see Figure 4.3), (ii) translate the network with full CPTs
into CNF using a general encoding (see Chapter 2), and (iii) compile the CNF into
an arithmetic circuit. In my experiments, I show that my special-purpose encodings
of noisy-OR can be more space and time efficient and scale to much harder problems.

Many alternative methods have been proposed to decompose a noisy-OR/MAX
by adding hidden or auxiliary nodes and then solving using adaptations of variable
elimination or tree clustering (e.g., [80, 20, 55, 98, 35]).

Olesen et al. [80] proposed to reduce the size of the distribution for the OR/MAX
operator by decomposing a deterministic OR/MAX node with n parents into a set
of binary OR/MAX operators. The method, called parent divorcing, constructs a
binary tree by adding auxiliary nodes Zi such that Y and each of the auxiliary nodes
has exactly two parents. Figure 4.4 shows the decomposition tree constructed by
parent divorcing for four causes X1, . . . , X4 and effect Y . Heckerman [53] presented
a sequential decomposition method again based on adding auxiliary nodes Zi and
decomposing into binary MAX operators. Here one constructs a linear decomposi-
tion tree (see Figure 4.5). Both methods require similar numbers of auxiliary nodes
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Z1 Z2 
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OR/MAX 

OR/MAX 

Y1 Y2 Y3 Y4 

Figure 4.4: Example of parent divorcing for a noisy-OR/MAX with four causes
X1, . . . , X4 and effect Y (Olesen et al. [80]).

and similarly sized CPTs. However, as Takikawa and D’Ambrosio [98] note, using
either parent divorcing or sequential decomposition, many decomposition trees can
be constructed from the same original network—depending on how the causes are
ordered—and the efficiency of query answering can vary exponentially when using
variable elimination or tree clustering, depending on the particular query and the
choice of ordering.

 

Xn X1 X2 … 

Y1 Y2 Yn … 

OR/MAX 

Z1 Z2 Y … 

OR/MAX OR/MAX 

Figure 4.5: Example of the sequential decomposition for a Bayesian network with a
noisy-OR/MAX with causes X1, . . . , Xn and effect Y (Heckerman [53]).

To take advantage of causal independence models, Dı́ez [33] proposed an algorithm
for the noisy-MAX/OR. By introducing one auxiliary variable Y ′, Dı́ez’s method leads
to a complexity of O(nd2) for singly connected networks, where n is the number of
causes and d is the size of the domains of the random variables. However, for net-
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works with loops it needs to be integrated with local conditioning. Takikawa and
D’Ambrosio [98] proposed a similar multiplicative factorization approach. The com-
plexity of their approach is O(max(2d, nd2)). However, Takikawa and D’Ambrosio’s
approach allows more efficient elimination orderings in the variable elimination algo-
rithm, while Dı́ez’s method enforces more restrictions on the orderings. More recently,
Dı́ez and Galán [35] proposed a multiplicative factorization which improves on this
previous work, as it has the advantages of both methods. I use their auxiliary graph
as the starting point for one of my CNF encodings. In my experiments, I perform
a detailed empirical comparison of their approach using variable elimination against
my proposals on large Bayesian networks.

In my work, I build upon the DPLL-based weighted model counting approach of
Sang, Beame, and Kautz [89] (see Chapter 2). Their general encoding assumes full
CPTs and yields a parameter clause for each CPT parameter. However, this approach
is impractical for large-scale noisy-OR/MAX networks. Our special-purpose encod-
ings extend the weighted model counting approach for exact inference to networks
that were previously intractable for the approach.

4.3 Efficient Encodings of Noisy-OR into CNF

In this section, I present techniques for improving the weighted model counting ap-
proach for Bayesian networks with noisy-OR relations. In particular, I present two
space efficient CNF encodings for noisy-OR which exploit their semantics. In my en-
codings, I pay particular attention to reducing the treewidth of the CNF formula and
to directly encoding the effect of unit propagation on evidence into the CNF formula,
without actually performing unit propagation. I also take advantage of the Boolean
domains to simplify the encodings. I use as a running example the Bayesian network
shown in Figure 4.2. In the subsequent section, I generalize to noisy-MAX relations.

4.3.1 Weighted CNF Encoding 1: An Additive Encoding

Let there be causes X1, . . . , Xn leading to an effect Y and let there be a noisy-OR
relation at node Y (see Figure 4.1(a)), where all random variables are assumed to
have Boolean-valued domains.

In my first weighted model encoding method (WMC1), I introduce an indicator
variable IY for Y and an indicator variable IXi

for each parent of Y . I also introduce
a parameter variable Pqi

for each parameter qi, 1 ≤ i ≤ n in the noisy-OR (see
Equation 4.1). The weights of these variables are as follows,

weight(IXi
) = weight(IY ) = 1

weight(Pqi
) = 1 − qi

weight(¬Pqi
) = qi
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The noisy-OR relation can then be encoded as the formula,

(IX1 ∧ Pq1) ∨ (IX2 ∧ Pq2) ∨ · · · ∨ (IXn ∧ Pqn) ⇔ IY . (4.7)

The formula can be seen to be an encoding of Pearl’s well-known decomposition for
noisy-OR (see Figure 4.3).

Example 4.5. Consider once again the Bayesian network shown in Figure 4.2 and
the parameters for the noisy-ORs shown in Table 4.1. The WMC1 encoding intro-
duces the five Boolean indicator variables IC, IF , IM , IN , and IH , each with weight
1; and the six parameter variables P0.6, P0.5, P0.4, P0.3, P0.2, and P0.1, each with
weight(Pqi

) = 1 − qi and weight(¬Pqi
) = qi. Using Equation 4.7, the noisy-OR at

node Nausea can be encoded as,

(IC ∧ P0.6) ∨ (IF ∧ P0.5) ∨ (IM ∧ P0.4) ⇔ IN .

To illustrate the weighted model counting of the formula, suppose that nausea and
malaria are absent and cold and flu are present (i.e., Nausea = 0, Malaria = 0,
Cold = 1, and Flu = 1; and for the corresponding indicator variables IN and IM are
false and IC and IF are true). The formula can be simplified to,

(P0.6) ∨ (P0.5) ⇔ 0.

There is just one model for this formula, the model that sets P0.6 to false and P0.5 to
false. Hence, the weighted model count of this formula is weight(¬P0.6)×weight(¬P0.5)
= 0.6×0.5 = 0.3, which is just the entry in the penultimate row of the full CPT shown
in Example 4.4.

Towards converting Equation 4.7 into CNF, I also introduce an auxiliary indicator
variable wi for each conjunction such that wi ⇔ IXi

∧ Pqi
. This dramatically reduces

the number of clauses generated. Equation 4.7 is then transformed into,

(¬IY ∨ ((w1 ∨ . . . ∨ wn) ∧
(¬IX1 ∨ ¬Pq1 ∨ w1) ∧
(IX1 ∨ ¬w1) ∧
(Pq1 ∨ ¬w1)

∧ . . . ∧
(¬IXn ∨ ¬Pqn ∨ wn) ∧
(IXn ∨ ¬wn) ∧
(Pqn ∨ ¬wn))) ∧

(IY ∨ ((¬IX1 ∨ ¬Pq1)

∧ . . . ∧
(¬IXn ∨ ¬Pqn))) (4.8)

The formula is not in CNF, but can be easily transformed into CNF using the distribu-
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tive law. It can be seen that the WMC1 encoding can also easily encode evidence—i.e,
if IY = 0 or IY = 1, the formula can be further simplified—before the final translation
into CNF.

Example 4.6. Consider once again the Bayesian network shown in Figure 4.2. To
illustrate the encoding of evidence, suppose that nausea is present (i.e., Nausea = 1)
and headache is not present (i.e., Headache = 0). The corresponding constraints for
the evidence are as follows.

(IC ∧ P0.6) ∨ (IF ∧ P0.5) ∨ (IM ∧ P0.4) ⇔ 1 (4.9)

(IC ∧ P0.3) ∨ (IF ∧ P0.2) ∨ (IM ∧ P0.1) ⇔ 0 (4.10)

Using Equation 4.8, the above constraints can be converted into CNF clauses. Con-
straint Equation 4.9 gives the clauses,

(w1 ∨ w2 ∨ w3)

∧ (¬IC ∨ ¬P0.6 ∨ w1) ∧ (IC ∨ ¬w1) ∧ (P0.6 ∨ ¬w1)

∧ (¬IF ∨ ¬P0.5 ∨ w2) ∧ (IF ∨ ¬w2) ∧ (P0.5 ∨ ¬w2)

∧ (¬IM ∨ ¬P0.4 ∨ w3) ∧ (IM ∨ ¬w3) ∧ (P0.4 ∨ ¬w3)

and constraint Equation 4.10 gives the clauses,

(¬IC ∨ ¬P0.3) ∧ (¬IF ∨ ¬P0.2) ∧ (¬IM ∨ ¬P0.1).

Correctness

To show the correctness of encoding WMC1 of a noisy-OR, I first show that each
entry in the full CPT representation of a noisy-OR relation can be determined using
the weighted model count of the encoding. As always, let there be causes X1, . . . ,
Xn leading to an effect Y and let there be a noisy-OR relation at node Y , where all
random variables have Boolean-valued domains.

Lemma 4.1. Each entry in the full CPT representation of a noisy-OR at a node Y ,
P (Y = y | X1 = x1, . . . , Xn = xn), can be determined using the weighted model count
of Equation 4.7 created using the encoding WMC1.

Proof. Let FY be the encoding of the noisy-OR at node Y using WMC1 and let s
be the set of assignments to the indicator variables IY , IX1 , . . . , IXn corresponding to
the desired entry in the CPT (e.g., if Y = 0, IY is instantiated to false; otherwise it
is instantiated to true). For each Xi = 0, the disjunct (IXi

∧ Pqi
) in Equation 4.7 is

false and would be removed in the residual formula FY |s; and for each Xi = 1, the
disjunct reduces to (Pqi

). If IY = 0, each of the disjuncts in Equation 4.7 must be
false and there is only a single model of the formula. Hence,

weight(FY |s) =
∏
i∈Tx

weight(¬Pqi
) =

∏
i∈Tx

qi = P (Y = 0 | X),
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where Tx = {i | Xi = 1} and P (Y = 0 | X) = 1 if Tx is empty. If IY = 1, at least
one of the disjuncts in Equation 4.7 must be true and there are, therefore, 2|Tx| − 1
models. It can be seen that if we sum over all 2|Tx| possible assignments, the weight
of the formula is 1. Hence, subtracting off the one possible assignment which is not
a model gives,

weight(FY |s) = 1 −
∏
i∈Tx

weight(¬Pqi
) = 1 −

∏
i∈Tx

qi = P (Y = 1 | X).

A noisy-OR Bayesian network over a set of random variables Z1, . . . , Zn is a
Bayesian network where there are noisy-OR relations at one or more of the Zi and
full CPTs at the remaining nodes. The next step in the proof of correctness is to
show that each entry in the joint probability distribution represented by a noisy-OR
Bayesian network can be determined using weighted model counting. In what follows,
I assume that noisy-OR nodes are encoded using WMC1 and the remaining nodes
are encoded using Sang et al.’s general encoding discussed in Section 2.2.4. Similar
results can be stated using Darwiche’s general encoding.

Lemma 4.2. Each entry in the joint probability distribution, P (Z1 = z1, . . . Zn = zn),
represented by a noisy-OR Bayesian network can be determined using weighted model
counting and encoding WMC1.

Proof. Let F be the encoding of the Bayesian network using WMC1 for the noisy-
OR nodes and let s be the set of assignments to the indicator variables IZ1, . . . , IZn

corresponding to the desired entry in the joint probability distribution. By Equa-
tion 2.1, the entry in the joint probability distribution is determined by multiplying
the corresponding CPT entries at each node in the network. For those nodes with full
CPTs, s determines the correct entry in each CPT by Lemma 2 in Sang et al. [89] and
for those nodes with noisy-ORs, s determines the correct probability by Lemma 4.1
above. Thus, weight(F ∧ s) is the multiplication of the corresponding CPT entries;
i.e., the entry in the joint probability distribution.

The final step in the proof of correctness is to show that queries of interest can be
correctly answered.

Theorem 4.1. Given a noisy-OR Bayesian network, general queries of the form
P (Q | E) can be determined using weighted model counting and encoding WMC1.

Proof. Let F be the CNF encoding of a noisy-OR Bayesian network. A general query
P (Q | E) on the network can be answered by,

P (Q ∧ E)

P (E)
=

weight(F ∧ Q ∧ E)

weight(F ∧ E)
,

where Q and E are propositional formulas which enforce the appropriate values for
the indicator variables that correspond to the known values of the random variables.
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By definition, the function weight computes the weighted sum of the solutions of its
argument. By Lemma 4.2, this is equal to the sum of the probabilities of those sets of
assignments that satisfy the restrictions Q ∧ E and E, respectively, which in turn is
equal to the sum of the entries in the joint probability distribution that are consistent
with Q ∧ E and E, respectively.

As Sang et al. [89] note, the weighted model counting approach supports queries
and evidence in arbitrary propositional form and such queries are not supported by
any other exact inference method.

4.3.2 Weighted CNF Encoding 2: A Multiplicative Encoding

Again, let there be causes X1, . . . , Xn leading to an effect Y and let there be a noisy-
OR relation at node Y (see Figure 4.1(a)), where all random variables are assumed
to have Boolean-valued domains.

My second weighted model encoding method (WMC2) takes as its starting point
Dı́ez and Galán’s [35] directed auxiliary graph transformation of a Bayesian network
with a noisy-OR/MAX relation1. Dı́ez and Galán note that for the noisy-OR relation,
Equation (4.6) can be represented as a product of matrices,(

P (Y = 0 | X)
P (Y = 1 | X)

)
=

(
1 0

−1 1

)(
P (Y ≤ 0 | X)
P (Y ≤ 1 | X)

)
.

Based on this factorization, one can integrate a noisy-OR node into a regular Bayesian
network by introducing a hidden node for each Y ′ for each noisy-OR node Y . The
transformation first creates a graph with the same set of nodes and arcs as the original
network. Then, for each node Y with a noisy-OR relation,

• add a hidden node Y ′ with the same domain as Y ,

• add an arc Y ′ → Y ,

• redirect each arc Xi → Y to Xi → Y ′, and

• associate with Y a factorization table,

Y ′ = 0 Y ′ = 1
Y = 0 1 0
Y = 1 −1 1.

This auxiliary graph is not a Bayesian network as it contains parameters which are less
than 0. So the CNF encoding methods for general Bayesian networks (see Chapter 2)
cannot be applied here.

1The Dı́ez and Galán [35] transformation is a generalization to noisy-MAX of the noisy-OR
transformation of Takikawa and D’Ambrosio [98].
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I introduce indicator variables IY ′ and IY for Y ′ and Y , and an indicator variable
IXi

for each parent of Y ′. The weights of these variables are as follows,

weight(IY ′) = weight(IY ) = weight(IXi
) = 1.

For each arc Xi → Y ′, 1 ≤ i ≤ n, I create two parameter variables P 0
Xi,Y ′ and P 1

Xi,Y ′ .
The weights of these variables are as follows,

weight(P 0
Xi,Y ′) = 1, weight(P 1

Xi,Y ′) = qi,
weight(¬P 0

Xi,Y ′) = 0, weight(¬P 1
Xi,Y ′) = 1 − qi.

For each factorization table, I introduce two variables, uY and wY , where the weights
of these variables are given by,

weight(uY ) = 1, weight(¬uY ) = 0,
weight(wY ) = −1, weight(¬wY ) = 2.

For the first row of a factorization table, we generate the clause,

(¬IY ′ ∨ IY ), (4.11)

and for the second row, we generate the clauses,

(¬IY ′ ∨ ¬IY ∨ uY ) ∧ (IY ′ ∨ ¬IY ∨ wY ). (4.12)

Finally, for every parent Xi of Y ′, we generate the clauses,

(IY ′ ∨ IXi
∨ P 0

Xi,Y ′) ∧ (IY ′ ∨ ¬IXi
∨ P 1

Xi,Y ′). (4.13)

We now have a conjunction of clauses; i.e., CNF.

Example 4.7. Consider once again the Bayesian network shown in Figure 4.2 and
the parameters for the noisy-ORs shown in Table 4.1. The auxiliary graph transfor-
mation is shown in Figure 4.6. The WMC2 encoding introduces the seven Boolean
indicator variables IC, IF , IM , I ′

N , IN , I ′
H , and IH ; the twelve parameter variables,

P 0
C,N ′ P 1

C,N ′ P 0
C,H′ P 1

C,H′

P 0
F,N ′ P 1

F,N ′ P 0
F,H′ P 1

F,H′

P 0
M,N ′ P 1

M,N ′ P 0
M,H′ P 1

M,H′;

and the four factorization variables uN , wN , uH, and wH . The noisy-OR at node
Nausea can be encoded as the set of clauses,

¬IN ′ ∨ IN IN ′ ∨ IC ∨ P 0
C,N ′ IN ′ ∨ ¬IC ∨ P 1

C,N ′

¬IN ′ ∨ ¬IN ∨ uN IN ′ ∨ IF ∨ P 0
F,N ′ IN ′ ∨ ¬IF ∨ P 1

F,N ′

IN ′ ∨ ¬IN ∨ wN IN ′ ∨ IM ∨ P 0
M,N ′ IN ′ ∨ ¬IM ∨ P 1

M,N ′

To illustrate the weighted model counting of the formula, suppose that nausea and
malaria are absent and cold and flu are present (i.e., Nausea = 0, Malaria = 0,
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Malaria Cold Flu 

H’ N’ 

Headache Nausea 

Figure 4.6: Dı́ez and Galán’s [35] transformation of a noisy-OR relation applied to
the Bayesian network shown in Figure 4.2.

Cold = 1, and Flu = 1; and for the corresponding indicator variables IN and IM are
false and IC and IF are true). The formula can be simplified to,

P 1
C,N ′ ∧ P 1

F,N ′ ∧ P 0
M,N ′.

(To see this, note that clauses that evaluate to true are removed and literals that
evaluate to false are removed from a clause. As a result of simplifying the first clause,
IN ′ is forced to be false and is removed from the other clauses.) There is just one
model for this formula, the model that sets each of the conjunctions to true. Hence, the
weighted model count of this formula is weight(P 1

C,N ′)×weight(P 1
F,N ′)×weight(P 0

M,N ′)
= 0.6×0.5×1.0 = 0.3, which is just the entry in the penultimate row of the full CPT
shown in Example 4.4.

Once again, it can be seen that WMC2 can also easily encode evidence into the
CNF formula; i.e., if IY = 0 or IY = 1, the formula can be further simplified.

Example 4.8. Consider once again the Bayesian network shown in Figure 4.2. To
illustrate the encoding of evidence, suppose that nausea is present (i.e., Nausea = 1)
and headache is not present (i.e., Headache = 0). The WMC2 encoding results in the
following set of clauses,

IN ′ ∨ IC ∨ P 0
C,N ′ IN ′ ∨ ¬IC ∨ P 1

C,N ′

¬IN ′ ∨ uN IN ′ ∨ IF ∨ P 0
F,N ′ IN ′ ∨ ¬IF ∨ P 1

F,N ′

IN ′ ∨ wN IN ′ ∨ IM ∨ P 0
M,N ′ IN ′ ∨ ¬IM ∨ P 1

M,N ′

¬IH′ IC ∨ P 0
C,H′ ¬IC ∨ P 1

C,H′

IF ∨ P 0
F,H′ ¬IF ∨ P 1

F,H′

IM ∨ P 0
M,H′ ¬IM ∨ P 1

M,H′
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Correctness

To show the correctness of encoding WMC2 of a noisy-OR, I first show that each
entry in the full CPT representation of a noisy-OR relation can be determined using
the weighted model count of the encoding. As always, let there be causes X1, . . . ,
Xn leading to an effect Y and let there be a noisy-OR relation at node Y , where all
random variables have Boolean-valued domains.

Lemma 4.3. Each entry in the full CPT representation of a noisy-OR at a node Y ,
P (Y = y | X1 = x1, . . . , Xn = xn), can be determined using the weighted model count
of Equations 4.11−4.13 created using the encoding WMC2.

Proof. Let FY be the encoding of the noisy-OR at node Y using WMC2 and let s
be the set of assignments to the indicator variables IY , IX1 , . . . , IXn corresponding to
the desired entry in the CPT. For each Xi = 0, the clauses in Equation 4.13 reduce
to (IY ′ ∨ P 0

Xi,Y ′), and for each Xi = 1, the clauses reduce to (IY ′ ∨ P 1
Xi,Y ′). If IY = 0,

the clauses in Equations 4.11 & 4.12 reduce to (¬IY ′). Hence,

weight(FY |s) = weight(¬IY ′)
∏
i�∈Tx

weight(P 0
Xi,Y ′))

∏
i∈Tx

weight(P 1
Xi,Y ′))

=
∏
i∈Tx

qi

= P (Y = 0 | X),

where Tx = {i | Xi = 1} and P (Y = 0 | X) = 1 if Tx is empty. If IY = 1, the clauses
in Equations 4.11 & 4.12 reduce to (¬IY ′ ∨ uY ) ∧ (IY ′ ∨ wY ). Hence,

weight(FY |s) = weight(¬IY ′)weight(¬uY )weight(wY )
∏
i∈Tx

qi +

weight(¬IY ′)weight(uY )weight(wY )
∏
i∈Tx

qi +

weight(IY ′)weight(uY )weight(¬wY ) +

weight(IY ′)weight(uY )weight(wY )

= 1 −
∏
i∈Tx

qi

= P (Y = 1 | X).

The remainder of the proof of correctness for encoding WMC2 is similar to that
of encoding WMC1.

Lemma 4.4. Each entry in the joint probability distribution, P (Z1 = z1, . . . Zn = zn),
represented by a noisy-OR Bayesian network can be determined using weighted model
counting and encoding WMC2.
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Theorem 4.2. Given a noisy-OR Bayesian network, general queries of the form
P (Q | E) can be determined using weighted model counting and encoding WMC2.

4.4 Efficient Encodings of Noisy-MAX into CNF

Let there be causes X1, . . . , Xn leading to an effect Y and let there be a noisy-MAX
relation at node Y (see Figure 4.1(a)), where the random variables may have multi-
valued (non-Boolean) domains. Let dX be the number of values in the domain of
some random variable X.

The WMC2 multiplicative encoding above can be extended to noisy-MAX by
introducing more indicator variables to represent variables with multiple values. In
this section, I explain the extension and present two noisy-MAX encodings based
on two different weight definitions of the parameter variables. The two noisy-MAX
encodings are denoted MAX1 and MAX2, respectively. I begin by presenting those
parts of the encodings that MAX1 and MAX2 have in common. As with WMC2, these
two noisy-MAX encodings take as their starting point Dı́ez and Galán’s [35] directed
auxiliary graph transformation of a Bayesian network with noisy-OR/MAX. Dı́ez and
Galán show that for the noisy-MAX relation, Equation (4.6) can be factorized as a
product of matrices,

P (Y = y | X) =

y∑
y′=0

MY (y, y′) · P (Y ≤ y′ | X) (4.14)

where MY is a dY × dY matrix given by,

MY (y, y′) =

⎧⎪⎨
⎪⎩

1, if y′ = y,

−1, if y′ = y − 1,

0, otherwise.

For each noisy-MAX node Y , I introduce dY indicator variables IY0 ... IYdY −1
, to

represent each value in the domain of Y , and
(

dY

2

)
+ 1 clauses to ensure that exactly

one of these variables is true. As in WMC2, I introduce a hidden node Y ′ with the
same domain as Y , corresponding indicator variables to represent each value in the
domain of Y ′, and clauses to ensure that exactly one domain value is selected in each
model. For each parent Xi, 1 ≤ i ≤ n, of Y , I define indicator variables Ii,x, where
x = 0, . . . , dXi

− 1, and add clauses that ensure that exactly one of the indicator
variables corresponding to each Xi is true. Each indicator variable and each negation
of an indicator variable has weight 1.

Example 4.9. Consider once again the Bayesian network shown in Figure 4.2 and
the parameters for the noisy-MAX shown in Table 4.2. As the node Nausea has
domain {absent = 0, mild = 1, severe = 2} and the parents Cold, Flu, and Malaria are
Boolean valued, both the MAX1 and MAX2 encodings introduce the Boolean indicator
variables INa, INm, INs, IN ′

a
, IN ′

m
, IN ′

s
, IC0, IC1, IF0, IF1, IM0, and IM1. The weights
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of these variables and their negations are 1. Four clauses are added over the indicator
variables for Nausea,

(INa ∨ INm ∨ INs) ∧ (¬INa ∨ ¬INm)
∧ (¬INa ∨ ¬INs)
∧ (¬INm ∨ ¬INs).

Similar clauses are added over the indicator variables for the hidden node N ′ and over
the indicator variables for the parents Cold, Flu, and Malaria, respectively.

For each factorization table, I introduce two auxiliary variables, uY and wY , where
the weights of these variables are given by,

weight(uY ) = 1, weight(¬uY ) = 0,
weight(wY ) = −1, weight(¬wY ) = 2.

For each factorization table, a clause is added for each entry in the matrix,

MY (y, y′) =

⎧⎪⎨
⎪⎩

1, add (¬Iy′ ∨ ¬Iy ∨ uY ) if y′ = y,

−1, add (¬Iy′ ∨ ¬Iy ∨ wY ) if y′ = y − 1,

0, add (¬Iy′ ∨ ¬Iy ∨ ¬uY ) otherwise.

Example 4.10. Consider once again the Bayesian network shown in Figure 4.2 and
the parameters for the noisy-MAX shown in Table 4.2. As Nausea has domain {absent
= 0, mild = 1, severe = 2}, the factorization table MN is given by,

N ′ = absent N ′ = mild N ′ = severe
N = absent 1 0 0
N = mild −1 1 0
N = severe 0 −1 1.

Auxiliary variables uN and wN are introduced and the following clauses, shown in row
order, would be added for the factorization table MN ,

¬INa ∨ ¬IN ′
a
∨ uN ¬INa ∨ ¬IN ′

m
∨ ¬uN ¬INa ∨ ¬IN ′

s
∨ ¬uN

¬INm ∨ ¬IN ′
a
∨ wN ¬INm ∨ ¬IN ′

m
∨ uN ¬INm ∨ ¬IN ′

s
∨ ¬uN

¬INs ∨ ¬IN ′
a
∨ ¬uN ¬INs ∨ ¬IN ′

m
∨ wN ¬INs ∨ ¬IN ′

s
∨ uN .

That completes the description of those parts of the encodings that are common
to both MAX1 and MAX2.

4.4.1 Weighted CNF Encoding 1 for Noisy-MAX

My first weighted model counting encoding for noisy-MAX relations (MAX1) is based
on an additive definition of noisy-MAX. Recall the decomposed probabilistic model
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for the noisy-MAX relation discussed at the end of Section 4.1. It can be shown that
for the noisy-MAX, P (Y ≤ y | X1, . . . , Xn) can be determined using,

P (Y ≤ y | X1, . . . , Xn) =
∑
Yi≤y

n∏
i=1

P (Yi | Xi) =
∑
Yi≤y

n∏
i=1

Xi �=0

qXi
i,Yi

(4.15)

where the qXi
i,Yi

are the parameters to the noisy-MAX, and the sum is over all the
configurations or possible values for Y1, . . . , Yn, such that each of these values is less
than or equal to the value y. Note that the outer operator is summation; hence, I
refer to MAX1 as an additive encoding. Substituting the above into Equation 4.14
gives,

P (Y = y | X1, . . . , Xn) =

y∑
y′=0

MY (y, y′) ·

⎛
⎜⎜⎝∑

Yi≤y′

n∏
i=1

Xi �=0

qXi
i,Yi

⎞
⎟⎟⎠ . (4.16)

It is this equation that I encode into CNF. The encoding of the factorization table
MY is common to both encodings and has been explained above. It remains to encode
the computation for P (Y ≤ y | X1, . . . , Xn).

For each parent Xi, 1 ≤ i ≤ n, of Y I introduce dY indicator variables, Ii,y, to
represent the effect of Xi on Y , where 0 ≤ y ≤ dY − 1, and add clauses that ensure
that exactly one of the indicator variables correspond to each Xi is true. Note that
these indicators variables are in addition to the indicator variables common to both
encodings and explained above. As always with indicator variables, the weights of
Ii,y and ¬Ii,y are both 1.

For each parameter qx
i,y to the noisy-MAX, I introduce a corresponding parameter

variable P x
i,y. The weight of each parameter variable is given by,

weight(P x
i,y) = qx

i,y weight(¬P x
i,y) = 1

where 1 ≤ i ≤ n, 0 ≤ y ≤ dY − 1, and 1 ≤ x ≤ dXi
− 1. The relation between Xi and

Y is represented by the parameter clauses2,

(Ii,x ∧ Ii,y) ⇔ P x
i,y

where 1 ≤ i ≤ n, 0 ≤ y ≤ dY − 1, and 1 ≤ x ≤ dXi
− 1.

Example 4.11. Consider once again the Bayesian network shown in Figure 4.2 and
the parameters for the noisy-MAX shown in Table 4.2. For the noisy-MAX at node
Nausea, the encoding introduces the indicator variables IC,Na, IC,Nm, IC,Ns, IF,Na,
IF,Nm, IF,Ns, IM,Na, IM,Nm, and IM,Ns, all with weight 1, and the clauses,

2To improve readability, in this section the propositional formulas are sometimes written in a
more natural but non-clausal form. I continue to refer to them as clauses when the translation to
clause form is straightforward.
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IC,Na ∨ IC,Nm ∨ IC,Ns IF,Na ∨ IF,Nm ∨ IF,Ns IM,Na ∨ IM,Nm ∨ IM,Ns

¬IC,Na ∨ ¬IC,Nm ¬IF,Na ∨ ¬IF,Nm ¬IM,Na ∨ ¬IM,Nm

¬IC,Na ∨ ¬IC,Ns ¬IF,Na ∨ ¬IF,Ns ¬IM,Na ∨ ¬IM,Ns

¬IC,Nm ∨ ¬IC,Ns ¬IF,Nm ∨ ¬IF,Ns ¬IM,Nm ∨ ¬IM,Ns

As well, the following parameter variables and associated weights would be introduced,

weight(P 1
C,Na

) = 0.7 weight(P 1
F,Na

) = 0.5 weight(P 1
M,Na

) = 0.1
weight(P 1

C,Nm
) = 0.2 weight(P 1

F,Nm
) = 0.2 weight(P 1

M,Nm
) = 0.4

weight(P 1
C,Ns

) = 0.1 weight(P 1
F,Ns

) = 0.3 weight(P 1
M,Ns

) = 0.5,

along with the following parameter clauses,

(IC1 ∧ IC,Na) ⇔ P 1
C,Na

(IF1 ∧ IF,Na) ⇔ P 1
F,Na

(IM1 ∧ IM,Na) ⇔ P 1
M,Na

(IC1 ∧ IC,Nm) ⇔ P 1
C,Nm

(IF1 ∧ IF,Nm) ⇔ P 1
F,Nm

(IM1 ∧ IM,Nm) ⇔ P 1
M,Nm

(IC1 ∧ IC,Ns) ⇔ P 1
C,Ns

(IF1 ∧ IF,Ns) ⇔ P 1
F,Ns

(IM1 ∧ IM,Ns) ⇔ P 1
M,Ns

It remains to relate (i) the indicator variables, Ii,x, which represent the value
of the parent variable Xi, where x = 0, . . . , dXi

− 1; (ii) the indicator variables,
Ii,y, which represent the effect of Xi on Y , where y = 0, . . . , dY − 1; and (iii) the
indicator variables, IY ′

y′
, which represent the value of the hidden variable Y ′, where

y′ = 0, . . . , dY −1. Causal independent clauses define the relation between (i) and (ii)
and assert that if the cause Xi is absent (Xi = 0), then Xi has no effect on Y ; i.e.,

Ii,x0 ⇒ Ii,y0

where 1 ≤ i ≤ n. Value constraint clauses define the relation between (ii) and (iii)
and assert that if the hidden variable Y ′ takes on a value y′, then the effect of Xi on
Y cannot be that Y takes on a higher degree or more severe value y; i.e.,

IY ′
y′
⇒ ¬Ii,Yy

where 1 ≤ i ≤ n, 0 ≤ y′ ≤ dY − 1, and y′ < y ≤ dY − 1.

Example 4.12. Consider once again the Bayesian network shown in Figure 4.2 and
the parameters for the noisy-MAX shown in Table 4.2. For the noisy-MAX at node
Nausea, the encoding introduces the causal independence clauses,

IC0 ⇒ IC,Na IF0 ⇒ IF,Na IM0 ⇒ IM,Na

the value constraint clauses for N ′ = absent,

IN ′
a
⇒ ¬IC,Nm IN ′

a
⇒ ¬IF,Nm IN ′

a
⇒ ¬IM,Nm

IN ′
a
⇒ ¬IC,Ns IN ′

a
⇒ ¬IF,Ns IN ′

a
⇒ ¬IM,Ns

and the value constraint clauses for N ′ = mild,

IN ′
m
⇒ ¬IC,Ns IN ′

m
⇒ ¬IF,Ns IN ′

m
⇒ ¬IM,Ns

62



4.4.2 Weighted CNF Encoding 2 for Noisy-MAX

My second weighted model counting encoding for noisy-MAX relations (MAX2) is
based on a multiplicative definition of noisy-MAX. Equation 4.5 states that P (Y ≤
y | X1, . . . , Xn) can be determined using,

P (Y ≤ y | X) =
n∏

i=1
xi �=0

y∑
y′=0

qxi
i,y′ . (4.17)

Note that the outer operator is multiplication; hence I refer to MAX2 as a multiplica-
tive encoding. Substituting the above into Equation 4.14 gives,

P (Y = y | X1, . . . , Xn) =

y∑
y′=0

MY (y, y′) ·

⎛
⎜⎜⎝

n∏
i=1
xi �=0

y′∑
y′′=0

qxi
i,y′′

⎞
⎟⎟⎠ . (4.18)

It is this equation that I encode into CNF. The encoding of the factorization table
MY is common to both encodings and has been explained above. It remains to encode
the computation for P (Y ≤ y | X1, . . . , Xn).

For each parameter qx
i,y to the noisy-MAX, I introduce a corresponding parameter

variable P x
i,y. The weight of each parameter variable pre-computes the summation in

Equation 4.17,

weight(P x
i,y) =

y∑
y′=0

qx
i,y′ weight(¬P x

i,y) = 1

where 1 ≤ i ≤ n, 0 ≤ y ≤ dY − 1, and 1 ≤ x ≤ dXi
− 1. The relation between Xi and

Y ′ is represented by the parameter clauses,

(Ii,x ∧ Iy′) ⇔ P x
i,y,

where 0 ≤ y ≤ dY − 1 and 0 ≤ x ≤ dXi
− 1.

Example 4.13. Consider once again the Bayesian network shown in Figure 4.2 and
the parameters for the noisy-MAX shown in Table 4.2. For the noisy-MAX at node
Nausea, the following parameter variables and associated weights would be introduced,

weight(P 1
C,Na

) = 0.7 weight(P 1
F,Na

) = 0.5 weight(P 1
M,Na

) = 0.1
weight(P 1

C,Nm
) = 0.9 weight(P 1

F,Nm
) = 0.7 weight(P 1

M,Nm
) = 0.5

weight(P 1
C,Ns

) = 1 weight(P 1
F,Ns

) = 1 weight(P 1
M,Ns

) = 1,

along with the following parameter clauses,

(IC1 ∧ IN ′
a
) ⇔ P 1

C,Na
(IF1 ∧ IN ′

a
) ⇔ P 1

F,Na
(IM1 ∧ IN ′

a
) ⇔ P 1

M,Na

(IC1 ∧ IN ′
m
) ⇔ P 1

C,Nm
(IF1 ∧ IN ′

m
) ⇔ P 1

F,Nm
(IM1 ∧ IN ′

m
) ⇔ P 1

M,Nm

(IC1 ∧ IN ′
s
) ⇔ P 1

C,Ns
(IF1 ∧ IN ′

s
) ⇔ P 1

F,Ns
(IM1 ∧ IN ′

s
) ⇔ P 1

M,Ns
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As stated so far, the encoding is sufficient for correctly determining each entry in
the full CPT representation of a noisy-MAX relation using weighted model counting.
However, to improve the efficiency of the encoding, I add redundant clauses. The
redundant clauses do not change the set of solutions to the encoding, and thus do not
change the weighted model count. They do, however, increase the propagation and
thus the overall speed of computation in the special case where all of the causes are
absent. To this end, for each noisy-MAX node Y , I introduce an auxiliary variable
IvY

with weights given by,

weight(IvY
) = 1, weight(¬IvY

) = 0,

and I introduce the clauses,(
n∧
i

Ii,0

)
⇒ (IY ′

0
⇒ IvY

),

(
n∧
i

Ii,0

)
⇒ (IY0 ⇒ IvY

),

and the clauses,(
n∧
i

Ii,0

)
⇒ (Iy′ ⇒ ¬IvY

),

(
n∧
i

Ii,0

)
⇒ (Iy ⇒ ¬IvY

),

where 1 ≤ y′ ≤ dY − 1 and 1 ≤ y ≤ dY − 1.

Example 4.14. Consider once again the Bayesian network shown in Figure 4.2.
For the noisy-MAX at node Nausea, an auxiliary variable IvN

is introduced with
weight(IvN

) = 1 and weight(¬IvN
) = 0 along with the following redundant clauses,

(IC0 ∧ IF0 ∧ IM0) ⇒ (IN ′
a
⇒ IvN

) (IC0 ∧ IF0 ∧ IM0) ⇒ (INa ⇒ IvN
)

(IC0 ∧ IF0 ∧ IM0) ⇒ (IN ′
m
⇒ ¬IvN

) (IC0 ∧ IF0 ∧ IM0) ⇒ (INm ⇒ ¬IvN
)

(IC0 ∧ IF0 ∧ IM0) ⇒ (IN ′
s
⇒ ¬IvN

) (IC0 ∧ IF0 ∧ IM0) ⇒ (INs ⇒ ¬IvN
).
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4.5 Experimental Evaluation

In this section, I empirically evaluate the effectiveness of my encodings. I use the
Cachet solver3 as it is currently recognized as one of the fastest weighted model
counting solvers.

I compare against ACE2 [17]. We also implemented Dı́ez and Galán’s [35] ap-
proach, which consists of variable elimination applied to an auxiliary network that
permits exploitation of causal independence. Our implementation uses algebraic de-
cision diagrams [6] as the base data structure to represent conditional probability
tables. Algebraic decision diagrams permit a compact representation by aggregating
identical probability values. They also speed up computation by exploiting context-
specific independence [14], taking advantage of determinism and caching intermediate
results to avoid duplicate computation. The variable elimination heuristic that we
used is a greedy one that first eliminates all variables that appear in deterministic
potentials of one variable (this is equivalent to unit propagation) and then eliminates
the variable that creates the smallest algebraic decision diagram with respect to the
eliminated algebraic decision diagrams. In order to avoid creating an algebraic deci-
sion diagram for each variable when searching for the next variable to eliminate, the
size of a new algebraic decision diagram is estimated by the smallest of two upper
bounds: (i) the cross product of the domain size of the variables of the new algebraic
decision diagram and (ii) the product of the sizes (e.g., the number of nodes) of the
eliminated algebraic decision diagrams.

Good variable ordering heuristics play an important role in the success of mod-
ern DPLL-based model counting solvers. Here, I evaluate two heuristics: Variable
State Aware Decaying Sum (VSADS) and Tree Decomposition Variable Group Or-
dering (dTree). The VSADS heuristic is one of the current best performing dynamic
heuristics designed for DPLL-based model counting engines [90]. It can be viewed as
a scoring system that attempts to satisfy the most recent conflict clauses and makes
its branching decisions based on the number of occurrences of a variable at the same
time. Compared with the VSADS heuristic, the dTree heuristic [64] can be described
as a mixed variable ordering heuristic. DTree first uses a binary tree decomposi-
tion to generate ordered variable groups. The decomposition is done prior to search.
The order of the variables within a group is then decided dynamically during the
backtracking search using a dynamic heuristic.

All of the experiments were performed on a Pentium workstation with 3GHz
hyper-threading CPU and 2GB RAM.

4.5.1 Experiment 1: Random Two-Layer Networks

In my first set of experiments, I used randomly generated two-layer networks to
compare the space efficiency and complexity of the WMC1 and WMC2 encodings.

Both the WMC1 and WMC2 encodings can answer probabilistic queries using
Equation 2.2. Both encodings lead to quick factorization given evidence during the

3http://www.cs.rochester.edu/u/kautz/Cachet/index.htm
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encoding. The clauses from negative evidence can be represented compactly in the
resulting CNF, even with a large number of parents. In the WMC2 encoding, positive
evidence can be represented by three Boolean variables, whereas the WMC1 encoding
requires n Boolean variables, one for each parent. In the WMC2 encoding, we use
two parameter variables (P 0

Xi,Y ′ and P 1
Xi,Y ′) to represent every arc, while the WMC1

encoding only needs one.

Table 4.3: Binary, two layer, noisy-OR networks with 500 diseases and 500 symptoms.
Effect of increasing amount of positive evidence (P+) on number of variables in
encoding (#var.), treewidth of the encoding (width), average time to solve (sec.),
and number of instances solved within a cutoff of one hour (solv.), where the test
set contained a total of 30 instances. The value N/A means the average is undefined
because of timeouts.

WMC1 WMC2 ACE
P+ #var width sec. solv. #var width sec. solv. sec. solv.
30 3686 10 0.2 30 6590 11 0.1 30 32 30
35 3716 11 0.6 30 6605 11 0.2 30 33 30
40 3746 13 21 30 6620 11 0.5 30 33 30
45 3776 14 39 30 6635 13 2 30 36 30
50 3806 19 75 30 6650 13 6 30 41 30
55 3836 22 175 30 6665 16 71 30 166 30
60 3916 24 N/A 17 6680 16 N/A 27 N/A 21

Each random network contains 500 diseases and 500 symptoms. Each symptom
has six possible diseases uniformly distributed in the disease set. Table 4.3 shows
the treewidth of the encoded CNF for the WMC1 and WMC2 encodings. The first
column shows the amount of positive evidence in the symptom variables. The remain-
der of the evidence variables are negative symptoms. It can be seen that although
the WMC1 encoding generates fewer variables than the WMC2 encoding, the CNF
created by the WMC2 encoding has smaller width. The probability of evidence (PE)
is computed using the tree decomposition guided variable ordering [64] and the re-
sults are compared against ACE24 (a more detailed experimental analysis is given
in the next section). ACE2 is the latest package which applies the general Bayesian
networks encoding method to noisy-OR model and then compiles the CNF into an
arithmetic circuit [17].

4.5.2 Experiment 2: QMR-DT

In my second set of experiments, I used a Bayesian network called QMR-DT. Com-
pared with randomly generated problems, the QMR-DT presents a real-world in-
ference task with various structural and sparsity properties. For example, in the

4http://reasoning.cs.ucla.edu/ace/
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empirical distribution of diseases, a small proportion of the symptoms are connected
with a large number of diseases (see Figure 4.7).
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Figure 4.7: Empirical distribution of diseases in the QMR-DT Bayesian network.
Approximately 80% of the symptoms are connected with less than 50 diseases.

The network I used was aQMR-DT, an anonymized version of QMR-DT5. Symp-
tom vectors with k positive symptoms were generated for each experiment. For each
evidence vector, the symptom variables were sorted into ascending order by their
parent (disease) number, the first k variables were chosen as positive symptoms, and
the remaining symptom variables were set to negative.

I report the runtime to answer the probability of evidence (PE) queries. I also
experimented with an implementation of Quickscore6, but found that it could not
solve any of the test cases shown in Figure 4.8. The approach based on weighted model
counting also outperforms variable elimination on QMR-DT. The model counting
time for 2560 positive symptoms, when using the WMC1 encoding and the VSADS
dynamic variable ordering heuristic, is 25 seconds. This same instance could not be
solved within one hour by variable elimination.

I tested two different heuristics on each encoding: the VSADS dynamic variable
order heuristic and dTree [64], the semi-static tree decomposition-based heuristic.
The runtime using an encoding and the dTree heuristic is the sum of two parts: the

5http://www.utoronto.ca/morrislab/aQMR.html
6http://www.cs.ubc.ca/∼murphyk/Software/BNT/bnt.html

67



0.1 1 10

100

1000

100002000
2100

2200
2300

2400
2500

2566

P
o

sitive V
ariab

le N
u

m
b

er

Runtime(sec)

W
M

C
1(D

T
)

W
M

C
1(V

S
A

D
S

)
V

E
(D

iez)
W

M
C

2(D
T

)

F
igu

re
4.8:

T
h
e

Q
M

R
-D

T
B

ayesian
n
etw

ork
w

ith
4075

sy
m

p
tom

s
an

d
570

d
iseases.

E
ff
ect

of
am

ou
n
t

of
p
ositive

sy
m

p
tom

s
on

th
e

tim
e

to
an

sw
er

p
rob

ab
ility

of
ev

id
en

ce
q
u
eries,

for
th

e
W

M
C

1
en

co
d
in

g
an

d
th

e
d
T
ree

variab
le

ord
erin

g
h
eu

ristic,
th

e
W

M
C

1
en

co
d
in

g
an

d
th

e
V

S
A

D
S

variab
le

ord
erin

g
h
eu

ristic,
th

e
W

M
C

2
en

co
d
in

g
an

d
th

e
d
T
ree

variab
le

ord
erin

g
h
eu

ristic,
an

d
D

ı́ez
an

d
G

alán
’s

[35]
ap

p
roach

u
sin

g
variab

le
elim

in
ation

.

p
rep

ro
cessin

g
tim

e
b
y

d
T
ree

an
d

th
e

ru
n
tim

e
of

m
o
d
el

cou
n
tin

g
on

th
e

en
co

d
in

g.
In

th
is

ex
p
erim

en
t,

d
T
ree

h
ad

a
faster

ru
n
tim

e
th

an
V

S
A

D
S

in
th

e
m

o
d
el

cou
n
tin

g
p
ro

cess.
H

ow
ever,

th
e

overh
ead

of
p
rep

ro
cessin

g
for

large
size

n
etw

ork
s

is
to

o
h
igh

to
ach

ieve
b
etter

overall
p
erform

an
ce.

T
h
e

W
M

C
2

en
co

d
in

g
gen

erates
tw

ice
as

m
an

y
variab

les
as

th
e

W
M

C
1

en
co

d
-

in
g.

A
lth

ou
gh

th
e

W
M

C
2

en
co

d
in

g
is

m
ore

p
rom

isin
g

th
an

th
e

W
M

C
1

en
co

d
in

g
on

sm
aller

size
n
etw

ork
s

(see
T
ab

le
4.3),

h
ere

th
e

W
M

C
2

en
co

d
in

g
is

less
effi

cien
t

th
an

th
e

W
M

C
1

en
co

d
in

g.
T

h
e

overh
ead

of
th

e
tree

d
ecom

p
osition

ord
erin

g
on

th
e

W
M

C
2

en
co

d
in

g
is

also
h
igh

er
th

an
on

th
e

W
M

C
1

en
co

d
in

g.
O

u
r

resu
lts

also
sh

ow
th

at
d
y
n
am

ic
variab

le
ord

erin
g

d
o
es

n
ot

w
ork

w
ell

on
th

e
W

M
C

2
en

co
d
in

g.
M

o
d
el

cou
n
tin

g
u
sin

g
th

e
W

M
C

2
en

co
d
in

g
an

d
th

e
V

S
A

D
S

h
eu

ristic
can

n
ot

solve
n
etw

ork
s

w
h
en

th
e

am
ou

n
t

of
p
ositive

ev
id

en
ce

is
greater

th
an

1500
sy

m
p
tom

s.
T

h
e

ex
p
erim

en
tal

resu
lts

also
sh

ow
th

at
m

y
ap

p
roach

is
m

ore
effi

cien
t

th
an

A
C

E
2.

F
or

ex
am

p
le,

u
sin

g
A

C
E

2,
a

C
N

F
of

Q
M

R
-D

T
w

ith
30

p
ositive

sy
m

p
tom

s
creates

2.8×
10

5
variab

les,
2.8×

10
5

clau
ses

an
d

3.8×
10

5
literals.

A
lso,

it
often

req
u
ires

m
ore

th
an

1G
B

of
m

em
ory

to
fi
n
ish

th
e

com
p
ilation

p
ro

cess.
W

ith
th

e
W

M
C

1
en

co
d
in

g,

68



the same network and the same evidence create only 4.6 × 104 variables, 4.6 × 104

clauses and 1.1 × 105 literals. Cachet, the weighted model counting engine, needs
less than 250MB of memory in most cases to solve these instances. And in our
experiments, ACE2 cannot solve QMR-DT with more than 500 positive evidence
within an hour.
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Figure 4.9: Random noisy-OR Bayesian networks with 3000 random variables. Effect
of number of hidden variables on average time to answer probability of evidence
queries, for the WMC1 encoding and the VSADS variable ordering heuristic, the
WMC1 encoding and the dTree variable ordering heuristic, and Dı́ez and Galán’s [35]
approach using variable elimination.

4.5.3 Experiment 3: Random Multi-Layer Networks

In my third set of experiments, I used randomly generated multi-layer Bayesian net-
works. To test randomly generated multi-layer networks, I constructed a set of acyclic
Bayesian networks using the same method as Dı́ez and Galán [35]: create n binary
variables; randomly select m pairs of nodes and add arcs between them, where an arc
is added from Xi to Xj if i < j; and assign a noisy-OR distribution or a noisy-MAX
distribution to each node with parents.

Figure 4.9 shows the effect of the number of hidden variables on the average
time to answer probability of evidence (PE) queries for random noisy-OR Bayesian
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networks. Each data point is an average over 30 randomly generated instances, where
each instance had 3000 nodes in total. The “spikes” in the runtime at the end of the
curves indicates that the memory limits of our computer were reached (2GB RAM)
and the process had started swapping between memory and the hard disk.
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Figure 4.10: Random noisy-MAX Bayesian networks with 100 five-valued random
variables. Effect of number of arcs on average time to answer probability of evidence
queries, for the MAX1 encoding for noisy-MAX, the MAX2 encoding for noisy-MAX,
and Chavira, Allen, and Darwiche’s ACE2 [17].

The results from the two layer QMR-DT and the multiple layer random noisy-OR
show that on average, the approach based on weighted model counting performed
significantly better than variable elimination and significantly better than ACE2. All
the approaches benefit from the large amount of evidence, but the weighted model
counting approach explores the determinism more efficiently with dynamic decompo-
sition and unit propagation (resolution). In comparison to variable elimination, the
weighted model counting approach encodes the local dependencies among parame-
ters and the evidence into clauses/constraints. The topological or structural features
of the CNF, such as connectivity, can then be explored dynamically during DPLL’s
simplification process.

Heuristics based on conflict analysis have been successfully applied in modern
SAT solvers. However, conflicts rarely occur in model counting problems with large
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numbers of solutions, as arise in encodings of Bayesian networks. In situations where
there are few conflicts, the VSADS heuristic essentially makes random decisions. But
here, for large Bayesian networks with large amounts of evidence, VSADS work very
well because the constraints that were generated from the evidence limits the num-
ber of solutions. DTree is also a good choice due to its divide-and-conquer nature.
However, when we use dTree to decompose the CNF generated from QMR-DT, usu-
ally the first variable group contains more than 500 disease variables. As well, the
overhead of preprocessing affects the overall efficiency of this approach.

Similarly, I performed an experiment with 100 five-valued random variables. Fig-
ure 4.10 shows the effect of the number of arcs on the average time to answer prob-
ability of evidence (PE) queries for random noisy-MAX Bayesian networks. Each
data point is an average over 50 randomly generated instances. It can be seen that
on these instances our CNF encoding MAX2 out performs our encoding MAX1 and
significantly outperforms Chavira, Allen, and Darwiche’s ACE2 [17]. It has been
recognized that for noisy-MAX relations, the multiplicative factorization has signif-
icant advantages over the additive factorization [98, 35]. Hence, one would expect
that the CNF encoding based on the multiplicative factorization (encoding MAX2)
would perform better than the CNF encoding based on the additive factorization
(encoding MAX1). The primary disadvantage of encoding MAX1 is that it must
encode in the CNF summing over all configurations. As a result, MAX1 generates
much larger CNFs than MAX2, including more variables and and more clauses. In
encoding MAX2, the weight of a parameter variable represents the maximum effect
of each cause and hence minimizes the add computations.

4.6 Summary

Large graphical models, such as QMR-DT, are often intractable for exact inference
when there is a large amount of positive evidence. I presented space efficient CNF
encodings for noisy-OR/MAX relations. I also explored alternative search ordering
heuristics for the DPLL-based backtracking algorithm on these encodings. In my ex-
periments, I showed that together my techniques extend the model counting approach
for exact inference to networks that were previously intractable for the approach. As
well, my techniques gave speedups of up to two orders of magnitude over the best
previous approaches for Bayesian networks with noisy-OR/MAX relations and scaled
up to networks with larger numbers of random variables.

In the next chapter, I continue to consider how to exploit structure to improve
efficiency and scalability when the knowledge base is expressed as a Bayesian net-
work and the inference engine is based on weighted model counting. In particular,
I discuss techniques for taking advantage of previous computations when solving an
incrementally updated Bayesian network.
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Chapter 5

Exploiting Structure in
Probabilistic Reasoning:
Incremental Reasoning

Many real world Bayesian network applications need to update their networks incre-
mentally as new data becomes available. For example, the capability of updating a
Bayesian network is crucial for building adaptive systems. Many methods for refin-
ing a network have been proposed, both for improving the conditional probability
parameters and for improving the structure of the network (see, e.g., [15, 73, 43] and
references therein). However, little attention has been directed toward improving the
efficiency of exact inference in incrementally updated Bayesian networks.

In this chapter, I propose techniques for improving the efficiency of exact inference
in incrementally updated Bayesian networks by exploiting common structure. In
particular, I propose and formalize the concept of dynamic model counting and present
an algorithm for performing dynamic model counting, which I call DynaMC. The
philosophy behind dynamic model counting is intuitive. Bayesian networks can be
efficiently encoded into CNFs [23, 89]. When two CNF formulas share many common
clauses, it is possible to use the knowledge learned while counting the solutions of one
formula to simplify the solving and counting of the next formula (see Figure 5.1).

The updating of a Bayesian network, such as adding an edge or deleting an edge,
is presented as a sequence of regular model counting problems. I extend dynamic
decomposition and component caching (good learning) [4] to multiple runs on a series
of changing instances with similar structure. In each run, the previous instance evolves
through local changes, and the number of models of the problem can be re-counted
quickly based on previous results after each modification.

The techniques I propose provide a general approach for reusing partial results
generated from answering previous queries based on the same or a similar Bayesian
network. My focus is to improve the efficiency of exact inference when the network
structure or the parameters or the evidence is updated. I show that my approach can
be used to significantly improve inference on multiple challenging Bayesian network
instances and other problems encoded as dynamic model counting problems.
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BN1 BN2 BN3 BNk

WMC1 WMC2 WMC3 WMCk

Updates or multiple queries

Encoding

Component forwarding and component filtering

Figure 5.1: Schematic of dynamic model counting. A sequence of Bayesian networks
BN1, . . . , BNk leads to a sequence of weighted model counting instances WMC1, . . . ,
WMCk that may share much common structure.

5.1 Applications of Dynamic Model Counting

In this section, I motivate the introduction of dynamic model counting. I do so by
listing three types of important applications or tasks that can take advantage of the
concept to potentially speed up the resolution of the tasks.

• Solving a sequence of probabilistic queries that are based on the same Bayesian
network but different evidence.

Algorithms based on junction trees have two steps: building a junction tree
(compilation is done once and for all at the start before any queries are posed)
and then answering queries. Usually once the junction tree has been built, one
can answer a query about any variable with the following algorithm: instantiate
evidence in the potentials of the density and then pass messages according to a
message passing protocol. Although a junction tree can be thought of as storing
the subjoints computed during elimination to avoid repeated computations,
if given new evidence, this algorithm must repeat the instantiation and the
message passing process.

I demonstrated in the previous chapter that weighted model counting outper-
form junction tree based algorithms for large Bayesian networks with high den-
sity and width, such as BN2O. In many cases, the junction tree’s compilation
process is not able to complete because it requires to much space to build.

For inference methods based on weighted model counting, the process of solving
the encoded weighted model counting problem is usually viewed as a whole
process; a new DPLL-based model counting has to be performed for different
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queries. For example, to compute the posterior probability of a disease based
on a set of symptoms in a QMR-DT network, we encode this QMR-DT network
into a CNF and solve this CNF with DPLL, and we would need to run DPLL
to solve a new CNF if certain symptoms of the patient change. The concept
of dynamic model counting and the DynaMC algorithm that I present avoid
recomputing such new queries from scratch.

• Parameter learning and sensitivity analysis in Bayesian networks.

Determining accurate or reasonable probabilities for a Bayesian network can be
difficult when the knowledge must be acquired from a human expert. The pa-
rameter learning problem is the problem of learning the conditional probabilities
for a given network structure from (possibly incomplete) data and various al-
gorithms and methods have been proposed (e.g., [96, 54, 74, 86]). For example,
Russell et al. [86] show how gradient descent can be used to compute an ap-
proximate maximum likelihood estimate of the parameter vector of a Bayesian
network from a collection of independent data cases. However, many Bayesian
network inferences are required in the evaluation functions and gradient calcula-
tions. These inferences are the most expensive operations in all of the iterative
learning methods; all other operations are trivial compared to the probabilistic
inferences. Therefore, the efficiency of these iterative learning methods heavily
depend on the inference algorithm they require.

As well, my dynamic model counting approach can also be used to speed up
sensitivity analysis in Bayesian networks [16, 66, 82]. In sensitivity analysis,
the derivative of queries relative to parameters measures the sensitivity of a
Bayesian network to parameter variations, and the derivative can be computed
using queries with the same evidence but various parameters.

• Solving a sequence of probabilistic queries when the Bayesian network has up-
dated parameters or structure.

As noted earlier, many real world Bayesian network applications need to update
their networks incrementally as new data becomes available and many methods
for refining a network over time have been proposed (see, e.g., [15, 73, 43] and
references therein). However, only limited attention has been directed toward
improving the efficiency of exact inference in incrementally updated Bayesian
networks.

Inference methods based on junction trees can efficiently update the results
for different queries for a fixed network structure. However, when the network
structure changes, the junction tree usually must be reconstructed from scratch.
Inference methods based on weighted model counting are designed for answering
a single query of a fixed Bayesian network. Each new network needs to be
recompiled, even though a change (be it evidence or structure) may only affect
a small part of the network. With dynamic model counting, after each network
is encoded into CNF, partial inference results can be maintained.
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5.2 Related Work

In this section, I relate my work to previously proposed exact methods for inference
in Bayesian networks and to previously proposed exact methods in satisfiability and
model counting. My focus is on related work on probabilistic inference that attempts
to accommodate changing queries, changing parameters, and changing structure in
Bayesian networks and on related work on good learning and caching in satisfiability
and model counting.

For probabilistic inference, junction tree based algorithms [75, 92] have a compi-
lation step that transforms a Bayesian network into a secondary structure called a
junction tree. A junction tree is built before any observations have been received.
When the Bayesian network is reused, the cost of building the secondary structure can
be amortized over multiple queries. However, when the network structure changes,
the junction tree usually must be reconstructed from scratch. The variable elimi-
nation algorithm (VE) processes one query at a time (see, e.g., [72] and references
therein). If a user wants the posterior probabilities of several variables, or for a se-
quence of observations, they need to run VE for each of the variables and observation
sets. Evidence can simplify the inference of VE by eliminating the observed variables
at the start of the algorithm, but each observation in the junction tree requires prop-
agation of evidence. Because VE is query oriented, one can prune nodes that are
irrelevant to specific queries [7, 46]. The junction tree structure is kept static at run
time, and hence does not allow pruning of irrelevant nodes. Based on this space-time
trade off, the junction tree is particularly suited to the case where observations arrive
incrementally and where the cost of building the junction tree can be amortized over
many cases. VE is suited for one-off queries, where there is a single query variable and
all of the observations are given at once. Because VE permits pruning of irrelevant
variables, VE can answer many of the possible queries of large real-world networks,
which cannot be processed by junction tree algorithm. But currently VE does not
have the ability to reuse the previous inference result for different queries in Bayesian
networks (there has been work on reuse in VE for more generalized graphical models;
see, e.g., [59, 93]).

Darwiche [21] proposes dynamic junction trees, but in his framework the network
structure is fixed and the query changes over time. Flores, Gámez, and Olesen [36]
propose the incremental compilation of a junction tree in the case where the structure
of the network changes. Their idea is to identify the parts of the junction tree that
are affected by the changes and only reconstruct those parts. However, junction tree
algorithms do not perform well on Bayesian networks with high density and large
width. Also, those improved methods cannot achieve the same result as VE and
WMC for large scale real world Bayesian networks with large amounts of evidence.

Dynamic versions of CSPs [30, 91] and SAT [61, 67] have been proposed. However,
the focus of previous work has been on the satisfiability problem—finding one solution
or showing that no solution exists—and the learned knowledge is expressed in terms
of conflict clauses (or nogoods). In nogood learning, a constraint that captures the
reason for a failure is computed from every failed search path.

In contrast to learning from failure, component caching (or good learning) is learn-
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ing from success. Both component caching and nogood learning collect information
during search. However, it has been shown experimentally that good learning can be
more effective than nogood learning for model counting [88]. In my work, to maintain
the partial solutions of the problems having similar structure, I generalize component
caching (good learning) to multiple runs.

Bayardo and Miranker [8] were the first to propose component caching and demon-
strated that component caching improves the worst-case complexity of tree-structured
problems. A good learning algorithm keeps track of domain values that were previ-
ously used to completely instantiate an entire subtree of the problem. By skipping
over the variables in these subtrees, good learning avoids solving the same subprob-
lems multiple times. Bayardo and Pehoushek [9] present the first implementation
of good learning in the model counting system called Relsat. Their system identifies
connected components dynamically during search, in contrast to previous work which
as based on a static method [8]. Bacchus, Dalmao, and Pitassi [4] show that DPLL
augmented with component caching can solve Bayesian inference and model counting
with worst case time complexity that is theoretically competitive with the best meth-
ods and can be exponentially better. Sang et al. [88] show that good learning plus
component caching dramatically improves the performance of their model counting
solver Cachet.

Three of the most prominent model counting engines based on DPLL are Rel-
sat [9], Cachet [88], and sharpSAT [100]. Bayardo and Pehoushek [9] describe two
difficulties for an effective implementation of good learning: the space complexity
of recording the defining set and the adaptability of goods with dynamic variable
orderings. These problems are caused by the original design of good learning. Mod-
ern DPLL-based model counting engines have effectively solved these problems. For
example, to decrease the space complexity, Cachet [88] removes all cached values of
child components once their parent component’s value has been computed. To solve
the second problem, Cachet implements a dynamic component detection using a sim-
ple depth-first search after a component’s decision literal is chosen. So the branching
heuristics can be separated into two parts: the choice of decision variable and the
choice of component. Both choosing decision literal and choosing branching com-
ponent are based on the dynamic variable ordering. Cachet [88] also shows how to
combine component caching and nogood learning in an implementation to preserve
correctness. Thurley’s sharpSAT [100] proposes several ideas that let components be
stored more compactly, simplifies the search space, and improves the cache manage-
ment. Different variants of caching schemes are also considered in [4].

In the CSP domain, Jégou and Terrioux [65] also proposed structural goods for
solving CSPs. They showed that exploiting goods led to realize a “forward-jump” in
the search tree, analogous to but in the reverse direction of backjumping. The main
idea of their approach is that backtracking search will be guided for the choice of
variables by the structure of the networks tree-decomposition.
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5.3 Incremental Inference using Dynamic Model

Counting

In this section, I propose and formalize the concept of dynamic model counting and
present an algorithm for performing dynamic model counting, which I call DynaMC.

As has been extensively discussed in previous chapters, a Bayesian network can be
described as a weighted model counting (WMC) problem [23, 89]. The conventional
model counting problem (#SAT) asks, given a Boolean formula F in CNF, how
many of its assignments are satisfying? There are natural polynomial-time reductions
between the Bayesian inference problem and model counting problems [4]. In some
situations, we need to recalculate certain parts of the preceding instance. For example,
when WMC is used to perform Bayesian inference and we adjust the CPTs of a
hidden variable, we get a sequence of model counting instances. The instances have
the same clauses but some variables have updated weights. In this case, we need
to recalculate the part of the original instance where the weights are updated. It is
always possible to solve each WMC from scratch, using the usual algorithms. But
inefficiency can become a problem in real world applications. Hence, my interest in
defining dynamic model counting and developing dynamic model counting algorithms
that take advantage of the incremental changes.

In what follows, I use the phrases static model counting problem and conventional
model counting problem interchangeably. In both cases, I mean the problem where
the propositional formula remains fixed or is static.

Definition 5.1 (Dynamic model counting problem). A dynamic model counting
problem is a sequence M0, M1, M2, . . . , of conventional model counting (MC) prob-
lems, each one resulting from a change in the preceding one. As a result of such
an incremental change, the number of solutions of the propositional formula may de-
crease (in which case it is considered a restriction) or increase (in which case it is a
relaxation).

Solving a dynamic model counting problem consists of sequentially computing
the number of models of each of the conventional model counting problems (MCs)
in the sequence. A naive approach to solving a dynamic model counting problem
is to successively apply an existing static model counting algorithm to each MC.
Compared with updating model counts from scratch, a more efficient solution is to
maintain the model counts for the subproblems of the previous MCs so that one only
re-computes the part affected by the insertion or deletion of constraints. The hope
is that the number of assignments that satisfy a component in formula Mi−1 can be
used to solve a new formula Mi, which has the same component.

Definition 5.2 (Component). A component of a CNF formula F is a set of clauses
Φ, the variables of which are disjoint from the variables in the remaining clauses
F − Φ.

The partial inference result of model counting can be represented by a set of
components. In current weighted model counting engines, disjoint components of the
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formula, generated dynamically during a DPLL search, are cached so that they only
have to be solved once [88].

5.3.1 Component Forwarding

In the DPLL-based model counting algorithm (Algorithm 5.1), a component is de-
fined relative to the residual formula after all possible unit propagations have been
performed (the reduced formula after unit propagation of the current partial assign-
ment). The algorithm takes the original CNF formula as the first component and
keeps creating new components and counting the models in each component until the
number of satisfying assignments for each component has been stored in the cache.

When DPLL decomposes the initial MC instance into subproblems recursively and
solves each problem, most of the variables on the implication chains are instantiated
after making a relatively small number of decisions, and the internal structure often
changes dramatically in different parts of the search tree. Thus, we expect this
dynamic decomposition method can be used to effectively identify subproblems and,
compared with static decomposition, dynamic decomposition should capture more
internal structure. After DPLL branches (instantiates a variable) and has performed
unit propagation, a separate depth-first search (DFS) is used to identify connected
components [99]. The depth-first search is over the primal graph representation of
the CNF formulate.

Definition 5.3 (Primal graph). In the primal graph for a CNF formula F , there is
a vertex for each propositional variable and there is an edge between two vertices if
the corresponding pair of variables appear together in some clause.

Using DFS for dynamically detecting components (goods) has the advantage that we
have more options for variable ordering heuristics inside each component.

Example 5.1. As an example for component analysis, consider the propositional
CNF formula,

F = (¬A ∨ ¬B ∨ ¬L) ∧ (B ∨ ¬L ∨ M) ∧ (M ∨ ¬N ∨ O)
∧ (B ∨ ¬D ∨ M) ∧ (D ∨ ¬M ∨ ¬N) ∧ (¬C ∨ E ∨ F )
∧ (E ∨ F ∨ G) ∧ (E ∨ G ∨ ¬D) ∧ (D ∨ G)
∧ (J ∨ ¬G ∨ H) ∧ (¬H ∨ I ∨ ¬K) ∧ (G ∨ D ∨ ¬H)
∧ (D ∨ H ∨ K) ∧ (¬D ∨ H).

Figure 5.2 gives the primal constraint graph of the formula F . Figure 5.3 shows the
search tree of regular DPLL on F up to depth 3. A complete decomposition tree
of F is shown in Figure 5.4. Figure 5.5 shows the decomposition trees at leaf node
F3 in Figure 5.3. The decompositions at leaf nodes are different due to the partial
assignments and related unit propagations. In those diagrams, it can be seen that F
is decomposed dynamically along each branch of the search tree.

As presented in Algorithm 5.1, the components are organized by component stack.
At each decision-making point, the new components are detected in the top compo-
nent of the branchable component stack. If the new components are found in the
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Figure 5.2: The primal graph of the formula F in Example 5.1.

cache, then we can percolate up and update the total counting number (see Figure
5.4). Otherwise, we keep analyzing the new component until its model count is cal-
culated and we save the count in the cache and component database for our next
problem in the sequence. Here, to make it easier to present, we assume that the
updated problem is solved with the same variable ordering as the original one. My
implementation, however, is based on a dynamic variable ordering heuristic, which
has been proven to be very important for DPLL.

(A,B,C,D,E,F,G,
H,I,J,K,L,M,N,O)

Component 
stack at D=1

(A,B,L,M,N,O)

(C,E,F,G)

(I,K)

(J)
(A,B,C,D,E,F,G,
H,I,J,K,L,M,N,O)

Component 
stack at root Component 

stack at D=0

(A,B,L,M,N,O)

(C,E,F)
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(A,B,C,D,E,F,G,
H,I,J,K,L,M,N,O)

F1 F2 F3 F4

D=1 0

G=1 0 G=1 0

Figure 5.3: The search tree and component stacks when branching on the variables
D and G of the formula F in Example 5.1.

Example 5.2. Consider once again the CNF formula F given in Example 5.1 and
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Figure 5.4: A possible decomposition tree of the formula F in Example 5.1.

the partial search tree for F shown in Figure 5.3. The component stack starts with a
single component that consists of all variables in F . Suppose that D is chosen to be
the first variable to be instantiated in this component.

Assigning D = 1 and forming the residual formula F |{D} gives,

(¬A ∨ ¬B ∨ ¬L) ∧ (B ∨ ¬L ∨ M) ∧ (M ∨ ¬N ∨ O)
∧ (B ∨ M) ∧ (¬C ∨ E ∨ F )
∧ (E ∨ F ∨ G) ∧ (E ∨ G)
∧ (J ∨ ¬G ∨ H) ∧ (¬H ∨ I ∨ ¬K)

∧ (H)

The literal H is unit and forced to be true. Performing unit propagation gives,

(¬A ∨ ¬B ∨ ¬L) ∧ (B ∨ ¬L ∨ M) ∧ (M ∨ ¬N ∨ O)
∧ (B ∨ M) ∧ (¬C ∨ E ∨ F )
∧ (E ∨ F ∨ G) ∧ (E ∨ G)

∧ (I ∨ ¬K)

All disconnected components are identified using DFS and are pushed onto the compo-
nent stack. In the example, the following components are identified: (A, B, L, M, N, O),
(C, E, F, G), (I, K), and (J). Note that J does not appear in the simplified formula,
but is an isolated vertex in the primal graph and is thus a separate, unconstrained
component. The new components are pushed onto the component stack (see Figure
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Figure 5.5: The decomposition tree of F at leaf node 3 of the search tree in Figure 5.3.

5.3). (In practice in the implementation, because the components (I, K) and (J) both
have two variables or less, these two components would not be kept on the stack. In-
stead, their weights would be calculated right away.) If no equivalent component is
found in the component hash table, (A, B, L, M, N, O) and (C, E, F, G) would stay on
the component stack until their weights were fully computed from their children. In
our example, the variable G would be branched on next, further components would be
identified and looked up in the cache or solved, and so on.

Assigning D = 0 and forming the residual formula F |{¬D} gives,

(¬A ∨ ¬B ∨ ¬L) ∧ (B ∨ ¬L ∨ M) ∧ (M ∨ ¬N ∨ O)
∧ (¬M ∨ ¬N) ∧ (¬C ∨ E ∨ F )

∧ (E ∨ F ∨ G) ∧ (G)
∧ (J ∨ ¬G ∨ H) ∧ (¬H ∨ I ∨ ¬K) ∧ (G ∨ ¬H)
∧ (H ∨ K)

The literal G is unit and forced to be true. Performing unit propagation gives,

(¬A ∨ ¬B ∨ ¬L) ∧ (B ∨ ¬L ∨ M) ∧ (M ∨ ¬N ∨ O)
∧ (¬M ∨ ¬N) ∧ (¬C ∨ E ∨ F )

∧ (J ∨ H) ∧ (¬H ∨ I ∨ ¬K)
∧ (H ∨ K)

The following components are identified using DFS: (A, B, L, M, N, O), (C, E, F ),
and (H, I, J, K). Only (C, E, F ) and (H, I, J, K) will be left on the component stack.
Since the weight of the component (A, B, L, M, N, O) has already been calculated and
stored in the hashtable, it is not on the stack.

In each instance, new components are detected dynamically using a simple depth-
first search on components. Once the decision literal is chosen and unit propagation
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Algorithm 5.1: Weighted Model Count (WMC)

input : CNF formula F
output: Return the weighted model count of formula F

Push F onto component stack;
while component stack is not empty do

Select a variable in top(component stack) and begin branching;
BCP();
if Find conflict then

Backtrack;

Detect components;
for each new component C detected do

if C has only 2 literals then
pass weight(C) to the parent Component;

else if in cache(C) then
pass weight(C) to the parent Component;

else
Push(C);

return weight(F );

is finished, the original component and newly generated component are pushed into
the component stack. And the solving process stops when the component stack is
empty.

In Algorithm 5.2, the components of each instance are indexed by a hash function
and saved in a component database. Following Sang et al. [89], I use a hash func-
tion based on a short, fixed-length binary sequence known as the cyclic redundancy
checksum (CRC) code. The hash function takes as an argument a component. The
CRC code is generated based on variables in each clause inside the component. This
CRC code is used as the index of a component library. When a new component is
detected the calculation is repeated; if the new CRC does not match any index cal-
culated earlier, then the storage saves the new component at a new indexed place.
Otherwise, if two components are exactly matched, the weight of old component is
returned as the weight of new component. The components, which are still valid for
the updates, are imported to a new hash table before processing the next instance.
This table is checked when a new component is created to see if its value is already
in the hash table.
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Algorithm 5.2: Dynamic Weighted Model Counting (DynaMC)

input : Database of components from solving CNF formulas F0 . . . Fi−1; and a
CNF formula Fi

output: Return the weighted model count of formula Fi

Import stable components from component database;
WMC(Fi);
Save new components in database;

5.3.2 Component Filtering

To bound the cache space between instances that share an updated clause set, the
validity of each cached component is tracked using two properties: clean and stable.

Definition 5.4 (clean component). A clean component is a component that does not
include any variable from the set of clauses that have changed. A component is said
to be unclean if it is not clean.

Definition 5.5 (stable component). A stable component is a component that keeps
the same clauses and has the same number of solutions after the update operations.
A component C is stable if all of the following conditions are satisfied:

1. C is a clean component;

2. C is not on a path from the root to any unclean component.

A component is said to be unstable if it is not stable.

Example 5.3. Suppose that, in Figure 5.5, component C7 is not a clean component
and all of the other components are clean components. Applying the above definition,
components C7, C5 and C1 are unstable components and the rest of the components
are stable components.

After updating the previous problem, all the unstable components in the cache are
deleted. The remaining stable components are imported into the component database
of the new instance.

We record the model count of every component and their parent-child relation for
each run. If F is updated—for example, a clause is removed from the original compo-
nent C6—instead of recalculating every component, we only need to recalculate those
components that belong to ancestors(C6). So, except for C6, we need to recalculate
C5 and C1 (see Figure 5.5).

5.3.3 Updates in CNF

Once the model count of the original problem has been determined, a relaxation will
create more models, while a restriction will decrease the model count. In the following,
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Table 5.1: Updates to a CNF formula that do not add or delete variables.

Update is a restriction Remove literals from existing clauses
Add clauses of existing variables

Update is a relaxation Remove clauses
Add literals of existing variables to existing clauses

I discuss the possible updates of a CNF formula. There are several basic operations
that could be used to update a CNF formula to get the next model counting problem
in the sequence (see Table 5.1). Each of the possible modifications of a Bayesian
network—add a node, delete a node, add an edge, delete an edge, reverse an edge,
and change a CPT entry—can be expressed as a combination of these basic update
operations on the CNF encoding of the network.

Remove literals from existing clauses.

One basic modification of a CNF is to remove a literal from a clause. Removing literals
from clauses decreases the number of models of the original formula. If, for example,
all the variables of a clause are in a component, the removal of a literal in that clause
will lead to changes in the primal graph of this component. Since the structure of
this component’s children in the decomposition tree may also be changed, we not only
need to recount the number of models of this component, but the number of models of
those children components should be updated as well. Considering the disconnectivity
among its child components, only those components that have connection with the
removed variable need to be recounted.

For purposes of explanation, assume in the next two examples that we follow the
same variable ordering in each run and we remove only one literal from an existing
clause.

Example 5.4. Consider the example in Figure 5.5. Both C2 and C5 are identified
after variable D is instantiated. If the literal ¬B is removed from the clause (¬A ∨
¬B∨¬L) in C5, the structure of C2 remains the same. If there is any structural change
in C2, it must be caused either by the existing unit propagation chain connecting the
updated clause and C2 or by the instantiation of variable D. Since D is not in the
updated clause and C2 and C5 are disconnected in the search tree, C2 is “stable”.

Example 5.5. For another example, if we delete literal D from the clause (B∨¬D∨
M). After ¬D becomes instantiated, C2 (see Figure 5.5) is a clean component. If C2

or C3 are unstable due to the removal of ¬D, there must be at least one path, which
does not include D, between C2 (or C3) and the other literals (B, M) in the updated
clause. However, if such a path exists, C2 and C3 will not be disconnected from C5

after ¬D becomes instantiated.
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Remove clauses

Another basic modification of a CNF is to remove a clause. Removing a clause
increases the number of models of the original formula. This process only affects those
components that include this clause and their children components. For example, the
component C5, C6 and C7 are stable components if clause (D ∨ G) is removed.

Add clauses of existing variables

Another basic modification of a CNF is to add clauses that consist only of existing
variables. New clauses of existing variables add new constraints to the original formula
and hence decreases the number of models of the original formula. When separated
components are connected by the new clauses, only those child components that have
variables in the new clauses become unstable. For example, in Figure 5.5, if a new
clause (K ∨M) is added into F , the components C3, C6 and C7 are still stable, while
C4’s model count changes because of the new constraint.

Add literals of existing variables to existing clauses.

Another basic modification of a CNF is to add a literal of an existing variable to
an existing clause. Adding a literal of an existing variable to a clause increases
the number of models of the original formula. Since the new literals may connect
components in the different branches of the decomposition tree, the related parts of
the decomposition tree need to be updated. We get a similar conclusion as adding a
new clause. Here, the clean component does not include any of the original literals of
the updated clause and the literals that share the same clause with the new literal.
In the search tree of an updated CNF, if either the new literal or any related literal
has been instantiated in the search tree, all the existing clean components are stable.

Problem expansion: Adding literals of new variables.

Adding new variables creates more satisfiable solutions. As discussed above, all clean
components are stable.

5.3.4 Encoding Bayesian Networks Updates

In this section, I show how the possible modifications of a Bayesian network can
be expressed by a combination of the basic update operations on the CNF formula
discussed in the previous section.

Evidence updates.

The possible evidence updates are as follows: (i) change a positive evidence to a
negative evidence; (ii) change a negative evidence to a positive evidence; (iii) add a
new evidence; and (iv) remove an evidence.
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Figure 5.6: A Bayesian network over random variables A, B, and C, where dom(A) =
{a1, a2}, dom(B) = {b1, b2}, and dom(C) = {c1, c2}.
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Figure 5.7: The Bayesian network shown in Figure 5.6 updated with an arc from A
to B and an expanded conditional probability table at node B.
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We encode each evidence as a unit clause. For example, one possible general CNF
encoding of the original Bayesian network in Figure 5.6 is the following.

A : (Ia1 ∨ Ia2) ∧ (¬Ia1 ∨ ¬Ia2)

B : (Ib1 ∨ Ib2) ∧ (¬Ib1 ∨ ¬Ib2)

C : (Ic1 ∨ Ic2) ∧ (¬Ic1 ∨ ¬Ic2)

A : Pa1 ⇒ Ia1 ¬Pa1 ⇒ Ia2

B : Pb1 ⇒ Ib1 ¬Pb1 ⇒ Ib2

C : Ia1 ∧ Ib1 ∧ Pc1|a1,b1 ⇒ Ic1 Ia1 ∧ Ib1 ∧ ¬Pc1|a1,b1 ⇒ Ic2

Ia1 ∧ Ib2 ∧ Pc1|a1,b2 ⇒ Ic1 Ia1 ∧ Ib2 ∧ ¬Pc1|a1,b2 ⇒ Ic2

Ia2 ∧ Ib1 ∧ Pc1|a2,b1 ⇒ Ic1 Ia2 ∧ Ib1 ∧ ¬Pc1|a2,b1 ⇒ Ic2

Ia2 ∧ Ib2 ∧ Pc1|a2,b2 ⇒ Ic1 Ia2 ∧ Ib2 ∧ ¬Pc1|a2,b2 ⇒ Ic2.

If we add a new evidence, for example IC = true (or IC = false), a new unit clause
IC (or ¬IC) can be added to F .

For Noisy-OR/MAX relations, when evidence is updated, one often needs to re-
encode the network by adding/removing auxiliary variables and updating clauses.
For example, with the additive encoded noisy-OR (Figure 4.2), if Nausea goes from
positive to negative, this update of evidence can be encoded as replacing a set of
clauses Equation (4.10) with Equation (4.9). In this additive encoding, fully con-
nected symptom variables are all disconnected and independent.

Parameter updates.

Many Bayesian network applications need to learn parameters from newly available
data, such as weblogs and sensors. It is a practical need that the inference results can
be reused for answering the same query using new parameters. For a WMC encoded
from a Bayesian network and a query, we only need to update changed parameter
variables.

Structure updates.

In Bayesian networks, we can easily add a new causal relation by connecting two
nodes with a directed arc and expanding the existing CPT. For example, in Figure
5.7, a new arc is added in Figure 5.6 to present that node A effects node B and the
CPT at node B is changed to specify the conditional probability of the new cause.

We add the following clauses in order to specify the new CPT at node B in Figure
5.7. Here, the parameter variables Pb0 and Pb1 are also created for the conditional
probability at node B.

(IA ∨ IB ∨ ¬Pb0)

∧(IA ∨ ¬IB ∨ Pb0)

∧(¬IA ∨ IB ∨ ¬Pb1)

∧(¬IA ∨ ¬IB ∨ Pb1)
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old B : Pb1 ⇒ Ib1 ¬Pb1 ⇒ Ib2

new B : Ia1 ∧ Pb1|a1
⇒ Ib1 Ia1 ∧ ¬Pb1|a1

⇒ Ib2

Ia2 ∧ Pb1|a2 ⇒ Ib1 Ia2 ∧ ¬Pb1|a2 ⇒ Ib2 .

When a new independent cause is added into a noisy-OR/MAX relation, the
change of the CNF is based on different encodings. For example, in Figure 4.2, if a
new disease SwineF lu also causes Headache, we update the additive encoding as

(IC ∧ P0.6) ∨ (IF ∧ P0.5) ∨ (IM ∧ P0.4) ∨ (IS ∧ PS) ⇔ IH (5.1)

If IH = 0, none of the old component need to be updated since IS and PS form a
new independent component; however, if IH = 1, all the components related with
this noisy-OR relation need to be updated.

5.4 Experimental Evaluation

In this section, I empirically evaluate the effectiveness of my proposed dynamic
weighted model counting (DynaMC) algorithm.

My DynaMC program is built on Cachet, which is currently the fastest model
counting solver. The difference between DynaMC and Cachet is that new components
learned in each instance are saved in a database and the valid portion of the database
is imported into the new instance before the beginning of a new run. Also, I imple-
mented a DynaMC compiler based on JavaBayes. A consistent variable numbering
system must be maintained among compiled CNFs. In this way, adding or deleting
variables or links in the original Bayesian network only generates local changes in
each compiled CNF. The experiments were run on a Linux desktop with a 2.6GHz
P4 processor and 1GB of memory, except for Experiment 2 that used a 3.0GHz P4
processor with 3GB of memory.

I compared DynaMC against Cachet. In my experiments, both programs com-
puted the weight of the formula. I tested my approach over several kinds of networks:
real networks taken from the repository of the Hebrew University1 and QMR-DT,
deterministic QMR networks, and artificially generated grid networks2.

The experiments overall show that DynaMC method works well with scaling (Ex-
periment 1), Bayesian network structure changes (Experiments 2 & 3), and Bayesian
network parameter changes (Experiment 4). In Experiment 1, I made changes to the
encoded weighted model counting problem. In Experiments 2–4, I made changes to
the actual Bayesian networks. In all my experiments, the reported runtimes assume
that the component cache is memory-resident.

1http://compbio.cs.huji.ac.il/Repository/networks.html
2http://www.cs.washington.edu/homes/kautz/Cachet/
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Figure 5.8: The ratio (Cachet/DynaMC) of runtime and implication number on 10
× 10 grid problems. 10 instances are tested on different percentage of deterministic
nodes. We globally and locally delete 2/1000 literals on each instance.

5.4.1 Experiment 1: Grid Networks

In my first set of experiments, I used compiled grid problems to study the effect of the
number of changed literals and their relative positions (whether the changes occurred
globally or locally). Following Sang et al. [89], a grid Bayesian network is a network
with N × N random variables Xi,j, 1 ≤ i, j ≤ N . Each node Xi,j has parents Xi−1,j

and Xi,j−1, whenever those indices are greater than zero. The fraction of the nodes
that are assigned deterministic conditional probability tables (CPTs) is a parameter,
the deterministic ratio. The CPTs for such nodes are randomly filled in with 0 or 1;
in the remaining nodes, the CPTs are randomly filled with values chosen uniformly
in the interval (0, 1) [89]. A compiled grid problem is a CNF that is generated from a
grid Bayesian network using Sang’s encoding [89]. My approach to generating global
modifications was to randomly select a clause from the original CNF and randomly
add/delete a literal. To generate local modifications, I created a series of CNFs,
M0, M1, . . . , Mn. In Mi (0 < i ≤ n), only the clauses that share at least one variable
with the modified clauses in Mi−1 are selected. In order to compare DynaMC and
traditional MC, I collected the ratio of median runtime and the ratio of number of
unit propagations (implications).

Figure 5.8 and 5.9 show the results obtained for 0.2% and 1% literal deletion of a
10 × 10 grid network compiled into a dynamic model counting problem problem. As
discussed earlier, the larger the portion that is shared between successive problems,
the more components we can save for achieving speed-ups. Now, as can be seen, the
distribution of changes also plays an important role. DynaMC works much better
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Figure 5.9: The ratio (Cachet/DynaMC) of runtime and implication number on 10
× 10 grid problems. 10 instances are tested on different percentage of deterministic
nodes. We globally and locally delete 1/100 literals on each instance.

when local changes are performed. Intuitively, we need to recompute more model
counts for independent subproblems if modifications are distributed evenly in more
components. At the low end of the deterministic ratio, the constraint graphs of
compiled CNFs have very high width and density. So there is a low possibility of
finding disconnected components while executing DPLL. The problems at the high
end of deterministic ratio are relatively easy, so they can be solved without checking
the component database.

In Figure 5.10, I mixed both insert literal and delete literal operations: the ten
modifications included five insertions and five deletions. I also fixed the deterministic
ratio as 75% and tested different problem sizes from 10 × 10 to 44 × 44. The
experimental results show that DynaMC can be solved more efficiently than a set of
independent regular MC problems.

5.4.2 Experiment 2: Grid Networks

In my second set of experiments, I again used grid networks to study the effect of
structure changes in Bayesian networks. The grid networks in this experiment have
90% deterministic ratio. My approach for generating modifications in Bayesian net-
works is based on the assumption that the updates usually would be concentrated on a
limited region of the model. I use the following procedure to create 2m modifications
in a sequence Seq. The procedure is similar to the procedure used by Flores, Gámez,
and Olesen [37] in their experiments on incremental junction tree compilation.

1. DeleteSeq = {}, AddSeq = {}
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Figure 5.10: The ratio (Cachet/DynaMC) of runtime and implication number on
N ×N grid problems. 10 instances are tested on each problem size. We globally and
locally insert and delete 2/1000 literals on each instance.

2. Randomly select a node Vi from the network B. Then remove all the edges
ei = {E | Vpi → Vi} between Vi and its parents Vpi from B and add modification
delete(ei) onto the end of DeleteSeq

3. Insert modification add(ei) into the front of AddSeq

4. All the remaining nodes linked to Vi are included in a set Ni. The next node
Vi+1 is randomly selected from Ni.

5. Return to Step 2, until we have run m loops

6. Seq = DeleteSeq concatenate AddSeq

In Table 5.2, I tested 10 modifications for each problem size. Each modification
includes one or two edges in the grid network, depending on the location of the
randomly selected node. The total runtime is the sum of the runtime for solving the
10 modified networks. DynaMC is two times faster than Cachet in the best case.

5.4.3 Experiment 3: Solving Noisy-OR/MAX Incrementally

In my third set of experiments, I used randomly generated QMR-DT like networks
to study the effect of structure changes in Bayesian networks.

I also perform Bayesian inference incrementally with WMC1+VSADS. I randomly
generated QMR-DT like networks. Each random network contains 500 diseases and
500 symptoms. Each symptom has 6 possible diseases uniformly distributed in the
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Table 5.2: Total runtime of DynaMC and Cachet and percentage reduction of Dy-
naMC over Cachet, for 10 modifications of N × N grid networks.

Total Runtime (sec.) Improvement
Grid DynaMC Cachet %

10 × 10 34 31 −9.7%
12 × 12 103 170 39.4%
14 × 14 182 228 20.2%
16 × 16 229 368 37.8%
18 × 18 292 597 51.1%
20 × 20 299 370 19.2%
21 × 21 488 616 20.8%
22 × 22 596 710 16.1%
24 × 24 1558 2067 24.6%

disease set. The prior and conditional probabilities are also uniformly generated from
the interval (0, 1).

I tested a sequence of evidence qi (30 ≤ i ≤ 48) on 10 random generated QMR-DT-
like networks. Each qi+1 has one more positive symptom that is randomly picked from
the negative symptoms of qi. I directly encoded every evidence into CNFs and solved
each of the 10 evidence sequences independently and incrementally. Figure 5.11 shows
the average runtime of the two methods. Incremental inference empirically subsumes
independent inference, and is at times an order of magnitude faster.

DQMR is a simplified representation of the QMR-DT [89]. Each DQMR problem
is a two-level multiply connected Bayesian network in which the top layer consists
of diseases and the bottom layer consists of symptoms. If a disease may yield a
symptom, there is an edge from the disease to the symptom. I test networks with
50 to 100 diseases and symptoms. The edges of the bipartite graph are randomly
chosen. Each symptom is caused by three randomly chosen diseases. The problem
consists of computing the weight of the encoded formula given a set of consistent
observations of symptoms. In each instance of 50+50 networks, 10% disease nodes
are randomly selected as observed. The observed nodes are 50% in 100+100 networks.
Table 5.3 shows that the modifications on real Bayesian networks can be translated
into dynamic model counting problems and solved more efficiently using DynaMC.

5.4.4 Experiment 4: Other Bayesian Networks

In my fourth set of experiments, I studied the effect of using DynaMC when net-
work determinism changed (see Table 5.4). I generated a sequence of 10 instances
M0, M1, . . . , M10 for each network. Mk (0 < k ≤ 10) is generated by randomly select-
ing a node and setting one entry of its CPT to the value 1. The component library
imported into Mk is generated in Mk−1.

Due to the memory resource required by the large component library I skipped
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Figure 5.11: Log of average runtime (seconds) for DynaMC (carry components from
the previous run) and Cachet (without previous components) on a sequence of ten
QMR-DT like networks with 500 disease and 500 symptoms.

networks that could not be solved by both Cachet and DynaMC. It has been noted
that for Bayesian networks that have variables with large cardinalities, large CPTs,
or a small amount of determinism, the general encoding method does not work well
[18]. Those encoded CNFs are simply too large to be quickly decomposed and quickly
use up all available memory. In the same paper, Chavira and Darwiche propose a
more efficient encoding.

For a few test instances, my method was slower than Cachet due to the overhead
of querying the cache. In those “failed” cases, I found that the components imported
from previous runs were extremely small. Usually, the average size of imported com-
ponents in those cases was less than 10 literals. In many successful instances, the
average number of literals of imported components was more than 100 literals. When

Table 5.3: Total runtime and number of implications of 10 DQMR instances for each
network, where (e) indicates that an edge from a disease to a symptom was randomly
selected and removed from the original DQMR network, and (n) indicates removing
a randomly selected symptom node.

Total Runtime (sec.) Implication#
DQMR DynaMC Cachet DynaMC Cachet
50+50 (e) 194 334 4.3 × 106 8.0 × 106

100+100 (e) 22 48 1.6 × 106 3.7 × 106

50+50 (n) 34 63 8.2 × 105 1.3 × 106

100+100 (n) 101 172 5.6 × 106 1.1 × 107
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Table 5.4: Total runtime and implication number of a sequence of 10 instances for
real networks.

Total Runtime (sec.) Implication#
BN DynaMC Cachet DynaMC Cachet

Alarm 17 43 1.5 × 106 8.4 × 106

Insurance 360 1082 1.2 × 108 3.9 × 108

Asia 0.01 0.01 169 840
Car-starts 0.02 0.02 370 1690

Water 94 465 2.7 × 107 1.4 × 108

the component database is full of small components, the overhead of checking each
new generated component increases. Even if the correct component is found, only a
few variables can be skipped in the search tree. If I limit the size components to im-
port only “big” components, I can improve the performance of most “fail” instances.
In practice, one would expect the imported components to have at least 20-50 literals.
However, I did not set a component limit in any of the experiments reported above.
Another possible solution for the problem of overhead is to design a more accurate
hash function to increase the hitting rate, so that when searching for a component in
the database the query can return more quickly.

5.5 Summary

In applications where there is uncertainty about the state of the world and our own
observations of that world, a knowledge representation and reasoning system based
on Bayesian networks can be used to advantage. In many such applications, queries
to the Bayesian network will be interleaved with updates and refinements to the net-
work. So there is an obvious need for improving the performance of probabilistic
inference as incremental local change happens. I presented techniques for improving
the efficiency of exact inference in incrementally updated Bayesian networks. My
approach takes as its starting point previous work that has shown that probabilistic
inference in Bayesian networks can be reduced to weighted model counting of a CNF
encoding of the network [23, 76, 89]. I defined the concept of dynamic model count-
ing and presented an algorithm for performing dynamic model counting. I showed
that by maintaining the partial solutions of similar instances, great speedups can
be achieved over current model counting algorithms. Cachet is currently the fastest
model counting solver available. In grid, DQMR and QMR-DT problems, Cachet
dominates both junction tree and previous state-of-the-art conditioning algorithms.
As compared with Cachet, I obtained significant improvements in runtime for most
networks when the networks are incrementally updated.

In the next chapter, I summarize the contributions of this thesis and discuss some
potential future work.
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Chapter 6

Conclusion and Future Work

In this chapter, I summarize the work presented in this thesis and discuss possible
future work.

6.1 Conclusion

Knowledge representation and reasoning (KRR) have been central to the field of
artificial intelligence since its inception. In this thesis, my focus has been on KRR
systems based on propositional logic and logical inference and KRR systems based on
Bayesian networks and probabilistic inference. The general problem that I addressed
was improving the efficiency of inference in these types of KRR systems. The spe-
cific solutions that I proposed involved techniques and algorithms for exploiting the
structure of real-world instances within backtracking algorithms for query answering.

For the task of determining whether a propositional CNF formula is satisfiable,
the main results are as follows. Previous studies have demonstrated that backtrack-
ing search algorithms can be considerably improved if they take advantage of the
internal structure of propositional formulas to decompose the an instance into inde-
pendent subproblems. However, most existing decomposition techniques are static
and performed prior to search. I propose a dynamic decomposition method based
on hypergraph separators. Integrating the separator decomposition into the variable
ordering of a modern SAT solver leads to speedups on large real-world satisfiability
problems. In comparison to static decomposition based variable orderings, my ap-
proach does not need time to construct the full decomposition prior to search, which
sometimes needs more time than the solving process itself. Furthermore, my dynamic
method can solve hard instances not solvable by previous static approaches within an
acceptable amount of time.

For the task of answering a general probabilistic query of the from P (Q | E) from
a Bayesian network, the main results are as follows. Previous studies have demon-
strated that encoding a Bayesian network into a SAT formula and then performing
weighted model counting using a DPLL-based algorithm can be an effective method
for exact inference, where DPLL is a backtracking algorithm specialized for SAT that
includes unit propagation, conflict recording and backjumping [89]. I present tech-
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niques for improving this weighted model counting approach for Bayesian networks
with noisy-OR and noisy-MAX relations. In particular, I present space efficient CNF
encodings for noisy-OR and noisy-MAX which exploit their structure or semantics.
In my encodings, I pay particular attention to reducing the treewidth of the CNF
formula and to directly encoding the effect of unit propagation on evidence into
the CNF formula, without actually performing unit propagation. I also explore al-
ternative search ordering heuristics for the DPLL-based backtracking algorithm. I
experimentally evaluated my techniques on large-scale real and randomly generated
Bayesian networks. On these benchmarks, my techniques gave speedups of up to
two orders of magnitude over the best previous approaches for Bayesian networks
with noisy-OR relations and scaled up to networks with larger numbers of random
variables. My techniques extend the model counting approach for exact inference to
networks that were previously intractable for the approach.

Further, many real world Bayesian network applications need to update their
networks incrementally as new data becomes available. For example, the capability
of updating a Bayesian network is crucial for building adaptive systems. I present
techniques for improving the efficiency of exact inference in incrementally updated
Bayesian networks by exploiting common structure. In particular, I propose and
formalize the concept of dynamic weighted model counting and present an algorithm
for performing dynamic model counting. The techniques I propose provide a general
approach for reusing partial results generated from answering previous queries based
on the same or a similar Bayesian network. My focus is to improve the efficiency
of exact inference when the network structure or the parameters or the evidence is
updated. I show that my approach can be used to significantly improve inference
on multiple challenging Bayesian network instances and other problems encoded as
dynamic model counting problems.

Together my results increase the efficiency and improve the scalability of query
answering in knowledge representation and reasoning systems, and so increases their
applicability in practice.

6.2 Future Work

I structure my discussion of possible future work according to the three main tasks
addressed in the thesis.

I considered a knowledge base expressed in propositional logic and an inference
engine based on model finding and proposed methods for dynamically decomposing
propositional formulas during the backtracking search (see Chapter 3). Future work
could include additional ways to combine a structure-guided ordering heuristic and
a conflict analysis-guided ordering heuristic. One possibility that may be worthy of
future exploration is to dynamically recognize during the search that a small sepa-
rator exists, before any decision is made on which variable to branch on next. The
idea would be that if the residual primal graph was decomposable by some small
separator(s), we would record all of these separators and instantiate those variables
first. If the current residual primal graph was not decomposable, we would keep using
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Table 6.1: Dynamic k-set separator decomposition methods, where n and m denote
the number of vertices and the number of edges, respectively, of the primal graph
representation of a propositional formula.

Separator size Algorithm Complexity Property
0 DFS/WFS O(n + m) connected
1 Articulation Point O(n + m) biconnected
2 SPQR Tree O(n + m) triconnected
3 A. Kanevsky [68] O(n2) four-connected
k Z. Galil [44] O(max(k, n1/2)kmn1/2) (k + 1)-connected

the conflict analysis-guided ordering heuristics to find the next decision variable. For
small values of k, efficient algorithms are available (see Table 6.1).

I presented techniques for extending the weighted model counting approach to
exact inference to Bayesian networks that contain the widely used noisy-OR and
noisy-MAX relations (see Chapter 4). Future work could include developing SAT-
encodings of other causal independence relations such as noisy-AND/MIN, noisy-
XOR, and noisy-ADD (see, e.g., [34]).

I presented techniques for improving the efficiency of exact inference in incremen-
tally updated Bayesian networks (see Chapter 6). Future work could include applying
my framework to specific applications. One exciting possible application is bounded
model checking (see, e.g., [10]). In bounded model checking one formally verifies that
a system, such as a hardware CPU or a software project, satisfies a property such as
“liveness” or “safety”. The basic idea is to iteratively search for a counter-example
of length bounded by k, k = 0, . . ., where a counter-example represents a bug and
the search continues until some known upper bound is reached or computational
resources are exhausted. The bounded model checking problem can be reduced to
propositional satisfiability and the important feature in this context is that the sat-
isfiability instances that arise at iteration k and k + 1 are intricately related. The
fit here is not exact as my framework was for dynamic model counting and in this
context we are only interested in satisfiability. Nevertheless, this avenue appears to
be worth exploring. Another possible application of my framework is in learning
Bayesian networks from data (see, e.g., [54]). Many proposals have been given for
learning or boosting the performance of a Bayesian network so as to improve accuracy
over time. These approaches involve modifying both the network structure and the
network parameters. Hence, my framework may also be useful in this context.
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