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Abstract

Algorithms in fields like image manipulation, sound and signal processing, and
statistics frequently employ tight loops. These loops are computationally intensive
and CPU-bound, making their performance highly dependent on efficient utilization of
the CPU pipeline and memory bus. Recent years have seen CPU pipelines becoming
more and more complicated, with features such as branch prediction and speculative
execution. At the same time, clock speeds have stopped their prior exponential growth
rate due to heat dissipation issues, and multiple cores have become prevalent. These
developments have made it more difficult for developers to reason about how their
code executes on the CPU, which in turn makes it difficult to write performant code.
An automated method to take code and optimize it for most efficient execution would,
therefore, be desirable. The Polyhedral Model allows the generation of alternative
transformations for a loop nest that are semantically equivalent to the original. The
transformations vary the degree of loop tiling, loop fusion, loop unrolling, parallelism,
and vectorization. However, selecting the transformation that would most efficiently
utilize the architecture remains challenging. Previous work utilizes regression models
to select a transformation, using as features hardware performance counter values
collected during a sample run of the program being optimized. Due to inaccuracies
in the resulting regression model, the transformation selected by the model as the
best transformation often yields unsatisfactory performance. As a result, previous
work resorts to using a five-shot technique, which entails running the top five trans-
formations suggested by the model and selecting the best one based on their actual
runtime. However, for long-running benchmarks, five runs may be take an excessive
amount of time. I present a variation on the previous approach which does not need
to resort to the five-shot selection process to achieve performance comparable to the
best five-shot results reported in previous work. With the transformations in the
search space ranked in reverse runtime order, the transformation selected by my clas-
sifier is, on average, in the 86th percentile. There are several key contributing factors
to the performance improvements attained by my method: formulating the problem
as a classification problem rather than a regression problem, using static features in
addition to dynamic performance counter features, performing feature selection, and
using ensemble methods to boost the performance of the classifier. Decision trees
are constructed from pairs of features (performance counters and structural features
than can be determined statically from the source code). The trees are then evaluated
according to the number of benchmarks for which they select a transformation that
performs better than two baseline variants, the original program and the expected
runtime if a randomly selected transformation were applied. The top 20 trees vote to
select a final transformation.
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Chapter 1

Introduction

In this chapter, I informally introduce and motivate the problem that I address in
this thesis. I also summarize the contributions of the thesis and the organization of
the thesis.

1.1 The Problem

Loops are a fundamental part of many scientific computing algorithms, with appli-
cations in image manipulation, sound and signal processing, statistical simulations,
and any other algorithms that rely on linear algebra, among others. Loops in such
algorithms are usually tight — they are computationally intensive and run for many
iterations without blocking to perform high-latency operations such as disk or net-
work I/O. Accordingly, the performance of such loops is very dependent on efficient
utilization of the CPU pipeline and the memory bus.

While in prior decades, software developers could rely on successive generations
of new hardware to automatically to speed up tight loop execution due to ever-
increasing CPU clock speeds, that is no longer the case. Recent years have seen a
marked decline in the rate of CPU clock speed increases. Clock speeds of commodity
Intel CPUs increased exponentially starting in the 1980’s through 2005, from 4.77
MHz to 3 GHz. They have not, however, increased much since then. Top-of-the-line
Intel processors at the time of writing (Haswell Core i7) top out at 3.5 GHz, while the
processor with the highest clock speed is the mainframe IBM zEC12, at 5.5 GHz. The
reason for the lack of clock speed increase is the difficulty CPU manufacturers have
faced with effective heat dissipation at higher clock rates. Instead, CPUs have been
designed with deeper and more complex pipelines, as well as an increasing number
of cores. An effect of the more intricate CPU pipelines has been an increase in
difficulty intuitively reasoning about how tight loops actually execute on the CPU. In
addition, tight loops are by default compiled to single-threaded code, which is unable
to take advantage of the multiple cores and hardware threads available on modern
CPUs. Software developers must perform manual loop optimizations to ensure that
the loops take advantage of the full range of capabilities provided by the CPU. Loops
must be structured so as to effectively utilize instruction level parallelism, branch
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prediction, and instruction and data prefetch capabilities. As well, in order to make
use of multiple cores, software developers must manually parallelize the loops. Such
manual transformations result in code that is difficult to read and to maintain. To
complicate matters further, the transformations that would yield the most optimal
execution time can vary with the original structure of the loops as well as the CPU
model and vendor. To write optimal code, software developers must not only be
domain experts in the field to which the algorithms they are developing belong, but
they must also be CPU architecture experts.

Such cross-domain experts are difficult to find. Even in the case of developers
skilled in CPU architecture, the need to consider the demands imposed by the CPU
architecture complicate and confound the developers’ job. It would, therefore, be
desirable for it to be possible for domain-expert software developers to write straight-
forward loops tailored to the needs of the algorithm in question and have the necessary
transformations and optimizations automatically applied at the compilation stage. To
do so, the compiler must be able to accomplish two tasks:

1. Given a loop or a nest of loops, the compiler must be able to apply transfor-
mations that optimize the loops while preserving the semantics of the original
code.

2. Out of the set of all possible correct transformations, or a subset thereof, the
compiler must then be able to select a good transformation for the loop nest
and the CPU architecture in question.

1.2 Contributions of the Thesis

My focus is on the polyhedral model, a mathematical framework wherein loops and
loop nests can be represented with polyhedra [23]. The polyhedral model allows loop
transformations to be expressed as algebraic operations on polyhedra and specifically
allows the generation of a search space of loop transformations that preserve the se-
mantics of the original loop. Many loop transformations are possible. I specifically
examine several transformations commonly used when optimizing loops: loop tiling,
loop unrolling, loop fusion, loop prevectorization, and loop parallelization. In previ-
ous work, various techniques have been proposed to choose a transformation to use
for a candidate program from the transformation search space. Some early techniques
employed an analytical model, while others relied in whole or in part on a search that
required running programs generated from different transformations and comparing
observed runtimes. Approaches that rely on a static model derived from the pro-
gram structure to select a transformation do not take into account the architecture
for which the code is compiled. As a result, the static models do not capture the
tradeoffs imposed by the hardware. On the other hand, a search process that in-
volves running multiple transformations can be very time consuming. Recently, Park
et al. [22] used machine learning regression models to select transformations, using as
features hardware performance counter values obtained while running the candidate
program. Park et al. explored the use of linear regression and SVM regression to
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predict the speed-up of an arbitrary transformation from the search space over the
original program. The search space consisted of transformations that were composed
of some combination of loop tiling, unrolling, fusion, prevectorization, and paralleliza-
tion. The transformation predicted to have the largest speed-up was taken to be the
best transformation. However, the lack of accuracy of the regression models resulted
in the top transformation suggested by the model to have inadequate performance.
To accommodate this shortcoming, Park et al. proposed a five-shot approach, where
binaries generated by applying each of the top five transformations suggested by the
model were run, and the transformation that had the best runtime was chosen. The
five-shot approach, however, can be excessively an onerous one if the program being
optimized is long-running. There has been evidence of developers being reluctant
to use Profile-Guided Optimization techniques to extract more performance from a
program due to the process being complicated and time consuming [12, p. 339]. It is,
therefore, reasonable to assume a five-shot selection process would run into similar
hurdles with developers.

I present a machine learning approach to learning a classifier that helps to deter-
mine which of a finite set of loop transformation sequences should be applied to a
loop nest so as to minimize runtime. My approach achieves performance comparable
to the best five-shot results reported by Park et al. without needing to resort to the
five-shot selection process; it is sufficient to use the top transformation selected by
the model. There are several key contributing factors to the performance improve-
ments attained by my method: formulating the problem as a classification problem
rather than a regression problem, using static features in addition to dynamic per-
formance counter features, performing feature selection, and using ensemble methods
to boost the performance of the classifier. Decision trees are constructed from pairs
of features (performance counters and structural features than can be determined
statically from the source code). The trees are then evaluated according to the num-
ber of benchmarks for which they select a transformation that performs better than
two baseline variants: the original program and the expected runtime if a randomly
selected transformation were applied. The top 20 trees vote to select a final trans-
formation. On average, the performance of the transformations selected using my
approach matches or exceeds the performance of the transformations selected with
five-shot SVM regression, the highest-performing approach proposed by Park et al.

1.3 Organization of the Thesis

The remainder of the thesis is organized as follows.
In Chapter 2, I review background material necessary for the understanding of

the thesis. I begin by describing the polyhedral model and how it can be used to
generate correct loop nest transformations. I proceed to cover common loop transfor-
mation techniques and discuss their benefits and drawbacks. Finally, I conclude by
introducing supervised machine learning for classification, describing the concept of
features and classes, and cover one particular approach to classifier learning, decision
trees.
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In Chapter 3, I review relevant prior work on generating transformations using
the polyhedral model and various approaches to choosing a good transformation. I
also review prior work on using machine learning to choose compiler optimizations in
general and loop optimizations in particular.

In Chapter 4, I present a proposal for using a machine learning technique to choose
a sequence of loop transformations among a finite search space of transformation
sequences. I describe the full learning process, which includes data collection, feature
selection, classifier construction, and application of the classifier.

In Chapter 5, I present an evaluation of my proposal. I demonstrate the efficacy
of my technique by presenting a comparison of the runtime speed-ups obtained using
my method with a baseline, as well as with results obtained by applying a prior
state-of-the-art approach.

In Chapter 6, I summarize the results of the thesis and discuss some future work
that could be undertaken.
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Chapter 2

Background

In this chapter, I review the necessary background in the polyhedral model, loop
transformations, and machine learning. For more background on these topics, see,
for example, [25] and [29].

2.1 Polyhedral Model

The polyhedral model is a mathematical framework used to represent loops and fa-
cilitate loop transformations [25]. Under the polyhedral model, certain constructs in
software source code can be represented as polyhedra. Algebraically, a polyhedron
encompasses a set of points in a Zn vector space satisfying the inequalities

D = {x | x ∈ Zn, Ax+ a ≥ 0}, (2.1)

where A is a matrix while x and a are column vectors. In the polyhedral model, A is a
matrix of constants, x is a vector of iteration variables, a is a vector of constants [3], 0
is the zero vector, and the inequality operator (≥) compares the vectors element-wise.
Geometrically, a polyhedron may be thought of as a convex set of points in a lattice
[2].

Polyhedra can be used to represent nested loops. Every statement executed as
part of a loop iteration is referred to as an execution instance. In the polyhedral
model, each execution instance that is part of a loop iteration is represented by a
point on a polyhedron. The dependencies between the statements are indicated by
directed edges, creating a directed acyclic graph [20].

The polyhedral model is limited in the nature of programming constructs it can
represent. To be mapped to the polyhedral model, a block of statements must be
restricted such that it is only enclosed in if statements and for loops. Pointer arith-
metic, with the exception of array accesses, is disallowed. Function calls must be
inlined. Loop bounds are restricted to affine functions of loop iterators and global
variables. This means, for example, that loop bounds cannot be determined by a
call to an arbitrary function and cannot be read at runtime. They must be statically
and linearly derived from the loop iterator and/or global variable values. The parts
of a program that meet these requirements are referred to as Static Control Parts
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(SCoPs). While these limitations appear onerous at first glance, static control parts
play a large role in scientific and signal processing kernels [15].

Loop bounds determine the iteration domains of the statements in consideration.
An iteration domain represents the values taken on by the loop iterators for all iter-
ation instances.

Example 2.1. Given the source code

1 for (i = 1; i <= n; i++)
2 for (j = 1; j <= m; j++)
3 if (i < j)
4 S(i, j)

the iteration domain DS of statement S in the polyhedral model becomes,

DS =


(
i
j

)∣∣∣∣∣∣∣∣∣∣
(
i
j

)
∈ Z2,


1 0
−1 0

0 1
0 −1
−1 1


(
i
j

)
+


−1
n
−1
m
−1

 ≥ 0

 ·
The first two inequalities reflect the bounds imposed by the outer loop; the next two
inequalities are the bounds imposed by the inner loop; and the last inequality reflects
the logic of the conditional.

While iteration domains characterize all execution instances of each statement,
they hold no information with respect to instance ordering. Schedules fill this gap.
In the polyhedral model, a timestamp (or an execution date) is associated with each
statement instance. The relative order of the timestamps reflects the execution order
of the instances. A scheduling function maps execution instances to their correspond-
ing timestamps [24]. The mapping of execution instances to timestamps is known
as a schedule. In effect, the schedule is one variant of the program. If two instances
share a timestamp, no partial ordering between them need be enforced, and they can
therefore be executed in parallel.

Schedules may be one-dimensional or multi-dimensional. One-dimensional sched-
ules have scalar timestamps. Multi-dimensional schedule timestamps are vectors ex-
pressed in big-endian order, with the first element the most significant and the last
the least significant. For example, UNIX epoch timestamps can be used to make
up a one-dimensional schedule, since they consist of a scalar integer representing
the number of seconds since the beginning of the epoch. A timestamp of the form
(year, month, day, hour, minute, second) is a multi-dimensional timestamp with a
cardinality of 6 [7].

Since schedules are expressed as functions of loop iteration vectors, one-dimensional
schedules can only be used to describe code blocks with single sequential loops, since
the instance ordering must in this case be a function of a single variable. Multi-
dimensional schedules, on the other hand, allow for multiple nested sequential loops
[25].
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Schedules are affine. A statement S can have its schedule, θS, expressed as,

θS(xS) = T

xSn
1

 ,

where xS is a loop iterator vector, n is a vector of global parameters, and T is a
constant matrix containing coefficients that define the transformation.

Schedules allow us to express dependencies between instance executions. Two
instances, R and S, are said to be in a dependence relation δR,S if both access the
same memory address and one of the accesses is a write operation [25]. A polyhedral
transformation is considered legal if it preserves all dependence relations within the
polyhedron.

Example 2.2. Consider the following source code:

1 A[0] = 1;
2 for (i = 1; i <= n; i++) {
3 (R) A[i] = i;
4 (S) A[i − 1] = i ∗ A[i];
5 }

A legal one-dimensional schedule for statement R would be simply θR(i) = i, and
the schedule for statement S can be expressed as θS(i) = i + 1. R and S are in a
dependence relation for loop iterator values iS = iR + 1.

Dependence relations may also be expressed with dependence polyhedra. A depen-
dence polyhedron DR,S is a subset of the Cartesian product of the iteration domains
of statements R and S. Every dependence between two instances of the statements
corresponds to a point on the polyhedron.

Example 2.3. Consider once again the code in Example 2.2. The dependence poly-
hedron is defined by the inequality,

1 −1 0 0
1 0 0 0
−1 0 1 0
0 1 0 0
0 −1 1 0



iR
iS
n
1

 ≥ 0.

The first line captures the relationship between iR and iS under which the dependence
holds. The next two lines specify the bounds of iR, while the last two lines specify the
bounds of iS.

Different schedules for statements also correspond to different transformations
of the polyhedron. However, when performing optimizations, the transformations
of interest are only ones that are legal. Testing every schedule for legality quickly
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becomes impractical even with one-dimensional schedules, to say nothing of the multi-
dimensional kind. It is, therefore, desirable to generate the set of legal schedules
algorithmically.

A dependence relation DR,S implies that θR(xR) < θS(xS). This inequality must
be satisfied in all transformations. The affine form of Farkas’ Lemma [9] is used in
the process of deriving legal schedules.

Lemma 2.1 (Farkas’ Lemma). Let D be a non-empty polyhedron defined by the in-
equalities Ax + b ≥ 0. Then any affine function f(x) is non-negative everywhere in
D iff there exist λ0 and λ such that,

f(x) = λ0 + λT (Ax+ b),

where λ0 is some non-negative scalar and λ is a row vector of non-negative scalars.

Using Farkas’ Lemma, the schedule constraints may be expressed in an affine form.
If θR(xR) < θS(xS), then ∆R,S = θS(xS)− θR(xR)− 1 is non-negative at every point
in the dependence polyhedron. By Farkas’ Lemma,

∆R,S = λ0 + λT
(
DR,S

(
xR
xS

)
+ dR,S

)
≥ 0,

where DR,S is the dependence polyhedron for statements R and S and dR,S is a scalar
component. All legal schedules satisfying the dependence relation also satisfy the
inequality. Solving this system of inequalities, for instance using Fourier-Motzkin
Elimination, allows these schedules to be enumerated [25].

In the multi-dimensional case [24], the scheduling constraint is extended to be,

θR(xR) ≺ θS(xS),

where ≺ denotes a lexicographic ordering, with the elements of the scheduling vectors
for the two instances being compared from the most to the least significant. For any
of the time dimensions, the constaint can be either weakly satisfied, with θRi

(xR) ≤
θSi

(xS), or strongly satisfied, with θRi
(xR) < θSi

(xS). For the overall dependence to
hold, time dimension constraints can be weakly satisfied in lexicographic order until
one of the time dimension constraints is finally strongly satisfied. Once one of the
constraints is strongly satisfied, further time dimensions need no longer be examined.

It is necessary to select criteria to evaluate two schedules with respect to each
other and to allow us to select the better one of the two. The cost function specifies
these criteria. The most natural cost function for a particular machine would appear
to be the measured execution time of each schedule. Computing the result of this cost
function requires that each schedule being evaluated be rendered in source code form,
compiled, and run on the target machine [24]. However, there are several drawbacks
to this approach. The compilation and execution process may be time consuming and
impractical for a large number of schedules. Program input, if applicable, must be
carefully chosen to be representative if the nature of the input changes the execution
path of the program. Care must be taken when measuring the runtime, since the
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contents of the CPU cache when the program starts can affect the execution speed.
Finally, this approach is less than ideal if the same binary is expected to be run
on multiple machines, since without a theoretical model to guide schedule selection,
nothing suggests how a schedule empirically found to be optimal for one architecture
will perform on another architecture.

Alternatively, an analytic cost function or a static function derived from a perfor-
mance model can be used. Finding an optimal schedule backed by a analytic model
typically involves solving systems of affine inequalities, using Fourier-Motzkin Elimi-
nation or linear programming techniques. Early studies include models to minimize
total execution time [10] and minimize synchronization [21]. More recently, Bond-
hugula et al. [4, 5] proposed a cost function suited to the parallelization of loops that
selects schedules for minimal communication between running loop instances. After
using tiling to extract coarse-grain parallelism from a loop nest, the cost function
reflects the number of tiles traversed by an edge in the dependence polyhedron of a
schedule.

2.2 Loop Transformations

Loop transformations are transformations to the structure of loop nests. The goal
of the transformations is to speed up loop execution while preserving the original
semantics of the loop nest. Transformations typically entail increasing or reducing
the number of loops by, for example, increasing or reducing the depth of the nest
while compensating for the change by altering the iteration domain, or by combining
or splitting adjoining loops at the same depth.

2.2.1 Tiling

Loop tiling is a loop optimization technique that rearranges loop iteration domains
so as to increase spatial locality and, potentially, expose parallelism [31, 30].

Consider the sample code in Listing 2.1, which represents the two-dimensional
matrix multiplication operation C = AB.

Listing 2.1: Matrix Multiplication

1 int A[NI][NK];
2 int B[NK][NJ];
3 int C[NI][NJ];
4 /∗ populate A and B, zero out C ∗/
5 for (int i = 0; i < NI; i++) {
6 for (int j = 0; j < NJ; j++) {
7 for (int k = 0; k < NK; ++k) {
8 C[i][j] += A[i][k] ∗ B[k][j];
9 }

10 }
11 }
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Line 8 of Listing 2.1 consists of two read operations, from A and B, and one write
operation to C. Assuming a typical two-dimensional array memory layout that an
int is 4 bytes in size, each iteration of the inner loop will access A with a stride of
4 bytes and B with a stride of 4·NJ bytes. Assuming a cache line size of 64 bytes,
B[k][0], B[k][1],. . . , B[k][15] will be loaded into cache when B[i][0] is accessed. However,
B[k][1],. . . , B[k][15] will have likely been evicted from the cache by the time they are
accessed during subsequent iterations of the loop on line 6. As a result, a cache miss
will be incurred on each of the subsequent accesses of B[k][1],. . . , B[k][15].

Suppose, however, that loop tiling is used and the loops are written as in List-
ing 2.2.

Listing 2.2: Tiled Matrix Multiplication

1 int A[NI][NK];
2 int B[NK][NJ];
3 int C[NI][NJ];
4 /∗ populate A and B, zero out C ∗/
5 for (int i = 0; i < NI; i += 16) {
6 for (int j = 0; j < NJ; j += 16) {
7 for (int k = 0; k < NK; k += 16) {
8 for (int ii = i; i < min(ii + 16, NI); i++) {
9 for (int jj = j; j < min(jj + 16, NJ); j++) {

10 for (int kk = k; k < min(kk + 16, NK); k++) {
11 C[ii][jj] += A[ii][kk] ∗ B[kk][jj];
12 }
13 }
14 }
15 }
16 }
17 }

The tile size used is 16. It was chosen since it is the quotient of the cache line size (64)
and the data type size (4). The iteration space is then partitioned into rectangles, and
the cache misses for B[kk][1],. . . , B[kk][15] are avoided, since the corresponding cache
line will still be in cache when those memory addresses are accessed. The appropriate
tile size depends on the particulars of the loop nest, such as the number of loops, the
depth of the nest and the memory accesses, and the size of the array data type.

2.2.2 Fusion

Loop fusion, otherwise known as loop jamming, refers to the process of combining
multiple loops into one. If done judiciously, benefits typically include increases in
spatial locality and cache hit rates. In some cases, however, the effect may be the
opposite [18].

Consider the sample code in Listing 2.3, extracted from the gemver benchmark
(vector multiplication and matrix addition), which computes x = Ay + z.
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Listing 2.3: gemver

1 int A[N][N];
2 int x[N];
3 int y[N];
4 int z[N];
5 /∗ populate A, y, z; zero out x ∗/
6 for (int i = 0; i < N; i++) {
7 for (int j = 0; j < N; j++) {
8 x[i] = x[i] + A[j][i] ∗ y[j];
9 }

10 }
11
12 for (int i = 0; i < N; i++) {
13 x[i] = x[i] + z[i];
14 }

Both the statements on line 8 and line 13 access x[i]. However, they reside in
different outer loops. The element x[i] is initially loaded into cache when accessed in
the first loop. Assuming an int size of 4 bytes and a cache line size of 64 bytes, x[0]
will have likely been evicted from cache by the time it is accessed in the second loop
if N > 15. Additionally, in the case that N > 31, all elements of x will have likely been
evicted by the time they are accessed in the second loop. However, since the bounds
of the two upper loops are the same, they can be fused, as show in Listing 2.4.

Listing 2.4: Fused gemver

1 int A[N][N];
2 int x[N];
3 int y[N];
4 int z[N];
5 /∗ populate A, y, z; zero out x ∗/
6 for (int i = 0; i < N; i++) {
7 for (int j = 0; j < N; j++) {
8 x[i] = x[i] + A[j][i] ∗ y[j];
9 }

10 x[i] = x[i] + z[i];
11 }

Fusing the loops in this instance makes it more likely that the second x[i] access
occurs before x[i] has been evicted from cache and, as a result, that the memory access
does not incur a cache miss.

On the other hand, consider the code in Listing 2.5, extracted from the atax

benchmark (matrix transpose and vector multiplication). The code computes the
expression ATAx.
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Listing 2.5: atax

1 int A[NX][NY];
2 int x[NY];
3 int y[NY];
4 int tmp[NX];
5 /∗ Populate A, x, and y ∗/
6 for (i = 0; i < NX; i++) {
7 tmp[i] = 0;
8 for (j = 0; j < NY; j++) {
9 tmp[i] = tmp[i] + A[i][j] ∗ x[j];

10 }
11 for (j = 0; j < NY; j++) {
12 y[j] = y[j] + A[i][j] ∗ tmp[i];
13 }
14 }

The inner loops on line 8 and line 11 have the same bounds. Also, the data
dependencies involving tmp[i] between the two statements in the loops are such that
they can therefore be fused, as in Listing 2.6.

Listing 2.6: atax, fused

1 int A[NX][NY];
2 int x[NY];
3 int y[NY];
4 int tmp[NX];
5 /∗ Populate A, x, and y ∗/
6 for (i = 0; i < NX; i++) {
7 tmp[i] = 0;
8 for (j = 0; j < NY; j++) {
9 tmp[i] = tmp[i] + A[i][j] ∗ x[j];

10 y[j] = y[j] + A[i][j] ∗ tmp[i];
11 }
12 }

Indeed, it would appear that fusion would help with cache misses owing to tmp[i]

accesses. However, that comes at the expense of an additional write operation in the
same loop to a different location. This may introduce cache thrashing and interfere
with the prefetcher. As a result, fusion in this instance may have an adverse effect
on performance.

2.2.3 Unrolling

Iterations of tight loops often have computational operations that are independent
of the execution result of a previous iteration of the loop. It should, therefore, be
possible to schedule instructions pertaining to these operations in parallel, taking
advantage of the instruction level parallelism functionality of modern CPUs. Also,
loop counter variable modification involves memory read and write operations, which
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may also incur a substantive cost relative to the body of the loop, depending on the
work the loop performs. Reducing the number of loop counter variable manipulations
can therefore yield noticeable runtime improvements.

Loop unrolling, also known as loop unwinding, is an optimization that repeats the
body of the loop multiple times and offloads into the body of the loop logic typically
handled in the loop termination condition and in the loop counter modification op-
eration. The number of times that the body of the loop is repeated is referred to as
the loop unroll factor. Repeating the body of the loop exposes instruction level paral-
lelism and can yield substantial speedups [12, p. 354]. Depending on the contents of
the body of the loop, similar savings can be achieved with respect to the loop counter
manipulation costs.

Consider the code in Listing 2.7, extracted from the jacobi-1d-imper benchmark
(1-D Jacobi stencil computation).

Listing 2.7: jacobi-1d-imper

1 int A[N];
2 int B[N];
3 /∗ Populate A ∗/
4 for (int t = 0; t < TSTEPS; t++) {
5 for (int i = 1; i < N − 1; i++) {
6 B[i] = 0.33333 ∗ (A[i−1] + A[i] + A[i + 1]);
7 }
8 for (int j = 1; j < N − 1; j++) {
9 A[j] = B[j];

10 }
11 }

Applying a loop unroll factor of 4 to both inner loops, we get the code in List-
ing 2.8. For simplicity, the code in Listing 2.8 assumes that the arrays A and B have
a size that is a multiple of 4, but it is possible to account for arrays of all sizes by
treating the last k iterations, k < 4, separately.

Listing 2.8: jacobi-1d-imper, unrolled

1 int A[N];
2 int B[N];
3 /∗ Populate A ∗/
4 for (int t = 0; t < TSTEPS; t++) {
5 for (int i = 1; i < N − 1; i += 4) {
6 B[i] = 0.33333 ∗ (A[i−1] + A[i] + A[i + 1]);
7 B[i + 1] = 0.33333 ∗ (A[i−1 + 1] + A[i + 1] + A[i + 1 + 1]);
8 B[i + 2] = 0.33333 ∗ (A[i−1 + 2] + A[i + 2] + A[i + 1 + 2]);
9 B[i + 3] = 0.33333 ∗ (A[i−1 + 3] + A[i + 3] + A[i + 1 + 3]);

10 }
11 for (int j = 1; j < N − 1; j += 4) {
12 A[j] = B[j];
13 A[j + 1] = B[j + 1];
14 A[j + 2] = B[j + 2];
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15 A[j + 3] = B[j + 3];
16 }
17 }

In Listing 2.8, the loop counter variables are directly used as array indices. All
array indices in the bodies of the loops are, therefore, a constant offset from the
loop counter variable value. As a result, unrolling the loop enables the compiler to
directly precompute all memory location accessed, allowing us to fully realize the
benefits from the loop unrolling optimization. That may not necessarily be possible
if the loop counter variables are, for example, used as arguments for another function
call, the return value of which is then used to index arrays, as in Listing 2.9.

Listing 2.9: Indirect array indexing

1 int function(int argument);
2
3 int A[N];
4 int B[N];
5 /∗ Populate A ∗/
6 for (int t = 0; t < TSTEPS; t++) {
7 for (int i = 1; i < N − 1; i++) {
8 B[i] = 0.33333 ∗ (A[i−1] + A[function(i)] + A[i + 1]);
9 }

10 }

2.2.4 Vectorization

Some CPU architectures provide support for vectorized or Single Instruction Multi-
ple Data (SIMD) instructions. Such an instruction can operate on multiple memory
locations at once. Common modern implementations include Intel’s SSE2 extensions
and the AltiVec instruction set in POWER and PowerPC CPUs. Vector instructions
can often speed up tight array-processing loop execution by processing multiple array
elements simultaneously. However, the compiler will typically only generate vector-
ized code for a loop if it determines the loop is suitable for the transformation. The
use of vector instructions can impose certain requirements on the code. For instance,
SSE2 instructions require that memory locations be aligned to 16-byte boundaries.
Further, the compiler may have a higher chance to vectorize a loop if the body of
the loop operates on data that corresponds to the instruction vector size in length.
Accordingly, it may be beneficial to tile a loop with a tile size that equals the vector
size [19].

Consider the code in Listing 2.10, extracted from the lu benchmark (LU decom-
position).
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Listing 2.10: lu

1 int A[N];
2 /∗ Populate A ∗/
3 for (int k = 0; k < N; k++) {
4 for (int j = k + 1; j < N; j++) {
5 A[k][j] = A[k][j] / A[k][k];
6 }
7 for(int i = k + 1; i < N; i++) {
8 for (int j = k + 1; j < N; j++) {
9 A[i][j] = A[i][j] − A[i][k] ∗ A[k][j];

10 }
11 }
12 }

Assuming instructions can operate on vectors of size 4, i.e., four memory locations
at a time, the code in Listing 2.10 can be transformed into the code in Listing 2.11,
which operates on arrays of size 4. Such array operations can then be easily imple-
mented using vector instructions.

Listing 2.11: lu, prevectorized

1 int A[N];
2 int temp[4];
3 int temp2[4];
4 /∗ Populate A ∗/
5 for (int k = 0; k < N; k++) {
6 for (int j = k + 1; j < N; j += 4) {
7 for (int ti = 0; ti < 4; ti++)
8 temp[ti] = A[k][j + ti];
9 for (int ti = 0; ti < 4; ti++)

10 temp[ti] = temp[ti] / A[k][k];
11 for (int ti = 0; ti < 4; ti++)
12 A[k][j + ti] = temp[ti];
13 }
14 for(int i = k + 1; i < N; i++) {
15 for (int j = k + 1; j < N; j += 4) {
16 for (int ti = 0; ti < 4; ti++)
17 temp[ti] = A[i][j + ti];
18 for (int ti = 0; ti < 4; ti++)
19 temp2[ti] = A[k][j + ti];
20 for (int ti = 0; ti < 4; ti++)
21 temp[ti] = temp[ti] − A[i][k] ∗ temp2[ti];
22 for (int ti = 0; ti < 4; ti++)
23 A[i][j + ti] = temp[ti];
24 }
25 }
26 }
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2.3 Machine Learning

As seen previously, numerous transformations can be applied to a loop nest while
satisfying the dependencies of the execution and preserving correctness. These trans-
formations can have a beneficial or an adverse effect on the runtime of the program.
Different transformations can affect different programs differently, and transformation
parameters may also have a substantial effect on performance. The transformations
may also interact with each other and cannot be selected independently. Selecting a
tile size, choosing which loops to fuse, selecting a loop unrolling factor, or determining
which loops benefit from fusion is a non-trivial task even for machine architecture ex-
perts. Predicting how code structure maps onto and interacts with the architecture
of the hardware on which it is running can be challenging and unintuitive. Being
able to select the transformations and their parameters in an automated way can,
therefore, be advantageous.

There are two main approaches to deriving algorithms to automatically choose
the appopriate transformation or sequence of transformations. The first approach is
manual, where a domain expert in machine architecture and compiler optimization
leverages his or her experience to construct a set of rules that are applied when op-
timizing a program. The second approach is more automated, with the rules that
govern which transformations are to be applied being generated with limited to no
human intervention. Machine learning can be used as part of the automated ap-
proach. Machine learning, as the term will be used here, detects patterns in existing
data sets and converts these patterns into rules. These rules can then be applied
to new, previously unseen, data to obtain predictions (see [29]). The input to the
machine learning algorithm is referred to as the training set. The unseen data used
to gauge the effectiveness of the rules generated by the machine learning algorithm
is called the test set.

Machine learning can be unsupervised or supervised. The goal of unsupervised
machine learning is to detect patterns and derive rules for unlabelled data. In other
words, an unsupervised machine learning algorithm is not provided with data to
evaluate its predictive performance. In contrast, the input to a supervised machine
learning algorithm is labelled, allowing result verification. Supervised algorithms
generally provide more accurate rules than unsupervised ones. Since labelled training
data for the problem covered by this thesis can be easily generated, I use a supervised
algorithm.

2.3.1 Features and Classes

To illustrate how supervised machine learning works, I will use a running example
commonly used in the literature: the weather problem. The weather problem involves
making a decision as to whether some unnamed game should be played based on con-
sideration of several weather conditions. The training set, or data set, for the weather
problem is laid out in Table 2.1 (see [29]). In this data set, outlook, temperature,
humidity, and wind are the features or attributes, and play is the decision, or the
classification, reached based on the values of the features. Given this data set, we
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would like to be able to reach a decision on whether to play given a new and previously
unseen set of feature values, for example as presented in Table 2.2. The table already
contains the decision for a similar set of attributes, with only the temperature value
being different. Does that change the decision of whether to play?

Table 2.1: Weather Data Set

outlook temperature humidity wind play

sunny hot high false no
sunny hot high true no
overcast hot high false yes
rainy mild high false yes
rainy cool normal false yes
rainy cool normal true no
overcast cool normal true yes
sunny mild high false no
sunny cool normal false yes
rainy mild normal false yes
sunny mild normal true yes
overcast mild high true yes
overcast hot normal false yes
rainy mild high true no

Table 2.2: Weather Test Data Set

outlook temperature humidity wind play

overcast hot high true no

The most straightforward, and naive, way to derive a set of rules from the data
set in Table 2.1 is to derive a rule from each row in the table. The rules corresponding
to the first five rows are in algorithm 2.1.

Algorithm 2.1: Per-row weather rules

if outlook is sunny and temperature is hot and humidity is high and there is
wind then no play;
else if outlook is sunny and temperature is hot and humidity is high and there
is no wind then no play;
else if outlook is overcast and temperature is hot and humidity is high and
there is no wind then play;
else if outlook is rainy and temperature is mild and humidity is high and there
is no wind then play;
else if outlook is rainy and temperature is cool and humidity is normal and
there is no wind then play;
...
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However, this leaves us with rules that would not be able to handle data not
previously seen. We would, therefore, not be able to make predictions for any feature
combination not already specified in our training set table. Alternatively, we could
derive the rules in algorithm 2.2 (see [29]).

Algorithm 2.2: Weather rules

if outlook is sunny and humidity is high then no play;
else if outlook is rainy and there is wind then no play;
else if outlook is overcast then play;
else if humidity is normal then play;
else play;

Applying this sequence of rules would produce the correct answer for every row
in Table 2.1. Without having additional data, however, the rules cannot be tested,
and it is impossible to tell if they are entirely reflective of reality. For example, if
there were more data containing the row in Table 2.2, the rules would produce the
wrong answer for that feature combination, as overcast outlook yields a prediction
of play. The problem of generating rules that hew very closely to the training data
but are not general enough is referred to as overfitting. In order to effectively learn,
the training data should be as representative as possible, and the features used as
input to the learning algorithm should correlate with the class that is being learned
in general, rather than only for the training data. For example, in an extreme case, it
is possible to sequentially number all rows in the training data and use the sequence
number as one of the features. The machine learning algorithm could generate rules
to predict the class from the sequence number with complete accuracy. However, such
rules would be completely useless on anything other than the particular ordering of
the training data elements that was used.

The features in Table 2.1 are all symbolic or nominal, in other words, the values
are members of a fixed enumerated set. The value of outlook is always one of sunny,
overcast, or rainy; the value of temperature is always one of hot, mild, or cool; et
cetera. However, features could also be numeric or continuous. The weather data set
could have a numeric feature if, for example, the temperature was instead expressed
in degrees. As will be discussed in greater detail in later sections, continuous features
pose a greater challenge to machine learning techniques.

Similarly, the class in Table 2.1 is also symbolic. In fact, it is a special case of
a symbolic class: a boolean class, with only two possible values. Boolean classes are
easier to predict (see [29]). However, a class could potentially also be numeric. For
instance, the same set of features in Table 2.1 could be used to predict the number
of people expected to turn out to an event.

2.3.2 Machine Learning Evaluation

Evaluating the efficacy of a machine learning approach, therefore, requires evaluating
the rules it produces on previously unseen data. Certain problems lend themselves
easily to this kind of evaluation, network traffic classification being one example.
Suppose that a network administrator is interested in obtaining information on the
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breakdown of network traffic by protocol. The network administrator can capture
sample traffic from the network, manually classify it, and use it as the input, or
training data, for a machine learning algorithm. Depending on how well the features
are chosen and the effectiveness of the algorithm itself, the output produced by the
algorithm may or may not be useful. The extent to which it is useful can be tested
by having the rules generated by the machine learning algorithm classify new net-
work traffic and seeing if the classification is correct. Since new network traffic is
continuously generated, there is presumably no shortage of test data.

In other situations, however, new test data may be more difficult to generate.
This usually happens when it is time consuming or otherwise expensive to generate
samples. For example, consider the hypothetical case of scientists wishing to predict
something with respect to the behaviour of periodical cicadas once they appear above
ground. Periodical cicadas develop in 13 or 17-year cycles, depending on the brood.
The development of all members of the brood is synchronized. The cicadas reside
below ground for the entire length of their development cycle in their nymph (juvenile)
form. At the end of the cycle, all members of the brood emerge above ground together,
where they spend several weeks. During that time period, the now-adult cicadas
mate, lay eggs, and die off. Nymphs proceed to hatch out of the eggs, whereupon
they burrow into the ground, to reemerge 13 or 17 years later. If scientists collect
data about the cicadas and apply a machine learning algorithm to that data, they
will not be able to collect new test data for another 13 to 17 years, an iteration cycle
almost certainly considered far too long.

Several approaches can be taken when data is in short supply, the common denom-
inator between them being that some of the data available is used for training, while
the rest is held back and used for testing. This division of data is used only for eval-
uation purposes, to generate error estimates. When generating the production-use
classifier, all available data is used for training.

N-Fold Cross Validation

The n-fold cross validation technique requires partitioning the data into n parts,
known as folds. The assignment of different data instances to folds is done randomly,
although care is taken to ensure an even class distribution among all folds. The
machine learning algorithm is then run n times. Each of the times, a different fold is
used for the test data, while the remaining n− 1 folds are used for the training data.
An average of the error rates of all the runs is then taken. A value of n = 10 has
been found to be yield good results in practice (see [29]), so 10-fold cross-validation
is commonly used.

Leave One Out

The leave one out technique is a special case of n-fold cross validation and is useful
in cases where the data available lends itself to natural, non-random partitioning. An
example of this is data pertaining to computer program analysis, which is discussed
at greater length in later chapters. If data pertaining to n computer programs is
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available, each computer program can then become a fold. The machine learning
algorithm is then run n times, each time using the data pertaining to a different
computer program for testing and the data pertaining to the other n − 1 programs
as training data. Again, an average of the error rates of all the runs is taken as the
final estimate.

2.3.3 Supervised Machine Learning Algorithms

Supervised machine learning can be broadly categorized as either classification algo-
rithms or regression algorithms. The output of a classification algorithm is one of a
small number of symbolic classes, while the output of a regression algorithm is a real
number. Of the many algorithms available, I review decision trees for classification,
linear regression, and support vector machines for regression. Decision trees are re-
viewed at length, as they are the primary machine learning algorithm used in this
thesis. Linear regression and support vector machines for regression are mentioned,
as they form the basis for the immediate previous work upon which this thesis builds.

Decision Trees

Decision trees are the machine learning algorithm used in the approach presented in
this thesis. Intermediate nodes in a decision tree correspond to features to be tested,
while leaf nodes correspond to the decision rendered by the tree, or the classification.
A data instance is evaluated by testing its feature values. Starting at the root node,
the value of the feature determines which child node should be evaluated next. This
is referred to as branching on an attribute. The process proceeds recursively until a
decision is reached.

For symbolic features, the number of child nodes equals the number of possible
values for that feature. In such a case, only one node in the tree corresponds to the
feature, since the feature need only be evaluated once. Numeric features, however,
may need to be evaluated or branched on several times. In the case of numeric fea-
tures, the test typically involves checking if the value of the feature falls above or
below a threshold value. In such a case, a numeric feature node will have two chil-
dren. Alternatively, a numeric feature may be evaluated against multiple thresholds,
resulting in multiple child nodes. A numeric feature may therefore be branched on
several times along a path to a leave node. For example, at one level one subtree may
correspond to a feature value less than 30 while the other subtree would correspond
to a feature value greater than or equal to 30. Further down the left subtree, taken
if the value is less than 30, the feature may be evaluated again. This time, the two
subtrees may correspond to the feature values being less than 5 or greater than or
equal to 5 (but still less than 30). As a result, numeric features result in deeper
and more complicated trees, as well as potential overfitting to the training data. A
coping strategy may be to discretize or bin the feature values, rendering the feature
symbolic.

When constructing a decision tree, the feature evaluated at each level is chosen by
evaluating the information gain from branching on each of the features available at
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that level. All else being equal, the construction algorithm prefers shallower and sim-
pler trees to deeper and more convoluted ones. Accordingly, it attempts to minimize
the number of feature splits necessary to get to a leaf node.

To obtain the potential information gain from every available feature, the informa-
tion value of the attribute values is calculated. The information value corresponds to
the additional amount of information required at this stage to unambiguously classify
the instance. It stands to reason that the more even the classification split between
the different values of the feature, the more ambiguous the classification, the higher
the information value, and the lower the information gain. The information value
of an intermediate node can be subtracted from the information value of the parent
node to obtain the information gain of the intermediate node. The higher the in-
formation gain, the more the branch from the parent node to the intermediate node
contributes to the classification. The entropy of the distribution of feature values is
used to represent the information value.

The equation to obtain the entropy is,

entropy(p1, p2, . . . , pn) = −p1 log p1 − p2 log p2 − . . .− pn log pn, (2.2)

where n is the number of classes and p1 + p2 + . . .+ pn = 1. The pi values are derived
from the split in classifications arising from each attribute value.

For example, returning to the weather data set in Table 2.1, there are 14 data
instances in total, 9 of which are classified as yes and 5 as no. The overall information
value is therefore,

entropy
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14
log
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14
= 0.940

Considering the outlook attribute, it has three possible values: sunny, which
yields 2 yes instances and 3 no instances, overcast, which yields 4 yes instances
and 0 no instances, and rainy, which yields 3 yes instances and 2 no instances. The
overall entropy of the attribute is therefore,
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,
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)
= 0.693

The information gain for branching on outlook is, therefore, 0.940− 0.693 = 0.247.
Similar calculations show that the information gain from branching on temperature

would be 0.0029, from branching on humidity would be 0.152, and from branching on
wind would be 0.048. As branching on outlook yields the largest information gain,
that attribute is chosen to branch on at the root of the tree. The information gain
calculations are then performed at each intermediate node of the tree to determine
the next attribute to split on. The final decision tree for the weather problem is
depicted in Figure 2.1.
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Figure 2.1: Decision tree for the weather problem specified in Table 2.1.
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Regression Techniques

While classification techniques are used to predict discrete classes, real-valued labels
are predicted using regression techniques. Regression techniques involve the study
of the relationship between one or more independent variables and one dependent
variable. In machine learning, the dependent variable is the label, while the inde-
pendent variables are the features. In this section, I will briefly discuss to regression
techniques: linear regression and SVM regression.

Linear regression is used for predicting real-valued classes given a set of numeric
features (see [29]). In linear regression, the output, x, is expressed as a linear combi-
nation of the feature values, a1, . . . , an, with the coefficients, w0, . . . , wn, derived from
the training data set:

x = w0 + w1a1 + . . .+ wnan (2.3)

The core of a linear regression approach is to choose w0, . . . , wn such that the sum
of the squares of the distances between the predicted and actual classes across all
training data instances is minimized. The main shortcoming in the linear regression
approach is evident in its name. If the relationship between the features values and
the class is not linear, it will be difficult to impossible to choose the coefficients in
such a way that the predicted class values closely track the actual values.

Support vector machines, abbreviated as SVM, combine linear and non-linear
terms, allowing for linear segments to be combined in such a way as to create overall
non-linear functions (see [29]). The support vectors are instances selected from each
class, with the selection performed in such a way as to maximize the distance between
the support vectors of the different classes. SVM was originally introduced as a bi-
nary classification technique, but it has since been extended to apply to multi-class
classification and regression problems.

2.3.4 Ensembles of Classifiers

When dealing with heterogeneous and diverse data, different features may be better
suited to classifying different subsets of the data. It is, therefore, tempting to use
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feature vectors with high dimensionality that encompass all features that improve
the classifier for some input. However, a high feature vector dimensionality carries a
cost. It complicates the model and may impede learning, as well as requiring larger
training samples. It can, therefore, be beneficial to generate multiple classifiers (or
base-learners from smaller feature sets) and combine their results [1, pp. 419-421].

The simplest way to combine the outputs of multiple classifiers is voting, with the
final class being obtained by,

L∑
j=1

wj · dji,

where L is the number of base learner classifiers, dji is the vote of base learner classifier
j for class Ci, and wj is the weight assigned to base learner classifier j. The simplest
and most widely-used voting technique is simple voting, where all classifiers are equally
weighted, in other words, ∀j : wj = 1

L
. The combination function for simple voting

is the sum function. Other, more complex, combination functions include weighted
sum, median, minimum, maximum, and product [1, pp. 424-425].

2.4 Summary

In this chapter, I provided an overview of the polyhedral model of loops and data
dependencies, of loop transformations, and of machine learning. I discussed the con-
struction of dependence polyhedra for static control parts, as well as the algorithmic
generation of one-dimensional and multi-dimensional schedules for static control part
statements. I described four different loop optimization techniques: tiling, fusion,
unrolling, and vectorization. Finally, I introduced supervised machine learning, with
an emphasis on decision trees.
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Chapter 3

Related Work

In this chapter, I review prior work pertaining to using the polyhedral model to
optimize loop execution, as well as work on using machine learning for general runtime
and loop efficiency optimizations.

3.1 Optimizations in the Polyhedral Model

While the polyhedral model allows for the easy generation of a search space of se-
mantically correct transformations, or schedules, multiple classes of approaches have
been proposed for choosing or finding a good schedule. Some approaches use an an-
alytic model to determine the best schedule to use, others rely on an iterative search
that requires the compilation and running of successive schedules before a decision is
made, while others still combine the two approaches.

Feautrier [11] presents two ways of choosing a schedule. Valid schedules can be
discovered by solving the system of affine inequalities describing the dependencies be-
tween the execution instances. The system of inequalities can be solved using Fourier-
Motzkin Elimination. However, Fourier-Motzkin Elimination has super-exponential
complexity and quickly becomes infeasible as the number of dependencies increases.
An alternative is a variation of the Integer Programming Simplex method called Para-
metric Integer Programming [8]. While this method is also exponential in the worst
case, empirical results suggests that it is nonetheless faster than Fourier-Motzkin
Elimination. Feautrier finds that the optimal schedule depends on the dimension
being optimized. As an example, a schedule minimizing the latency can be obtained
using linear programming, since latency can be expressed as a linear function of
schedule coefficients.

Lim and Lam [21] propose an algorithm to select a transformation that maximizes
parallelism and minimizes synchronization. The algorithm applies to programs with
arbitrary loop nesting levels and loop sequences and consists of three phases. The first
phase attempts to find a partitioning of statements that would yield full parallelism
with no need for synchronization. The second phase attempts to find a schedule
where the number of synchronization points is constant with respect to the number
of loop iterations. Finally, the third phase examines schedules with synchronization
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points linear in the number of iterations. Coarse-level parallelism is preferred to fine-
grained parallelism provided the degree of parallelism (or the fanout) is the same
in both cases and coarse-level parallelism reduces the need for synchronization. As
the algorithm employs techniques such as Fourier-Motzkin Elimination, it has super-
exponential complexity in the worst case. Also, while the algorithm minimizes the
order of synchronization, it does not take into account the volume of communication
[4].

Pouchet et al. [25, 24, 23] introduce an approach to find an optimal schedule
using iterative compilation for single-dimensional and multi-dimensional schedules.
A potentially large search space of valid schedules for a given kernel is constructed
and subsequently traversed. Rather than using a theoretical model, the effectiveness
of a schedule is judged by generating the corresponding source code, compiling it,
and running it on the target machine.

Multiple approaches to traversing the search space were investigated:

1. Exhaustive search, where every valid schedule is run. This approach is obviously
infeasible for all but the smallest program kernels.

2. A decoupling heuristic. As noted above, schedules are three-dimensional func-
tions of iterator coefficients, parameter coefficients, and constant coefficients.
The decoupling heuristic optimizes each dimension separately. The optimal
iterator coefficients are selected first, while choosing the other coefficients at
random and holding them constant. Then, given the optimal iterator coeffi-
cients, the optimal parameter coefficients are selected. Finally, with the first
two dimensions fixed, the constant coefficients are chosen.

3. A genetic algorithm, where every step in the search space involves a mutation
of the schedule. The mutation has to preserve the validity of the schedule. A
probability distribution is calculated, and it is used to decide which coefficient
to alter first. The new value of the coefficient is randomly chosen from within
the range of valid values. If the change to the coefficient renders the schedule
invalid, the other coefficients are adjusted to construct a valid schedule.

Bondhugula et al. [4, 5] propose an algorithm that generates schedules which mini-
mize communication among execution instances. The algorithm applies to arbitrarily-
nested loops. The approach is fully automated and requires no manual intervention.
Coarse-grained parallelism is extracted by means of loop tiling, which involves parti-
tioning the iteration domain of a loop into tiles (or blocks) which can be executed in
parallel, with communication between threads necessary only before and after a block
executes. Another advantage to tiling is that it improves data locality and hence cache
utilization, since the smaller sizes of the tiles reduces cache line contention. The cost
function to be minimized represents the number of tiles traversed by an edge in the
dependence polyhedron. The smaller the quantity, the less inter-tile communication
is necessary during execution. While the cost function is non-linear, it can bounded
by an affine function using an application of Farkas’ Lemma, and Integer Linear Pro-
gramming can be used to find an optimal solution. For every statement, a number of
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linearly independent solutions equal to the size of the iteration domain of the state-
ment is required. Empirical tests show a 1.1–5.7× speed-up over state-of-the-art on
a single-core machine and 1.5–7× speed-up on a multi-core machine. The algorithm
does not take into account the characteristics of target hardware and relies solely on
a theoretical cost model.

Pouchet et al. [26, 27] combine the approaches laid out in [24] and [4]. The
approach is a combination of the use of analytic models, where they are available
and effective, and empirical search for cases where analytic models do not account for
important properties of the hardware which have a significant impact on performance.
Specifically, the tiling approach Bondhugula et al. [4] is used, while also trying to
maximize SIMD (single instruction, multiple data) parallelism via loop vectorization.
An observation made in the work is that loop fusion and distribution drive the success
of other transformations (vectorization, tiling, array construction). The authors also
demonstrate, using an example, that different schedules may be optimal for different
CPU chips (Xeon and AMD in the example, with a runtime difference of 25%).
Thus, while an analytic model is used to select tiling and vectorization optimizations,
a compile-and-run iterative process is used to select the program partitioning. The
partitioning is selected first, followed by the application of tiling and vectorization
optimizations. Vectorization is accomplished by computing the maximum distance
between any two consecutive memory accesses in a loop and shifting loops having
the smallest such distance inwards, towards the innermost position in the loop nest.
Empirical results showed a performance improvement of 2 − 2.5× over that of the
compiler.

The iterative approaches described in this section suffer from scalability concerns.
The schedule search space for anything but toy computational kernels are large enough
to make it impractical to explore it iteratively and try out different schedules by run-
ning them. Even in cases where the search space is not so large as to make the search
completely impractical, it is still too time consuming to be palatable to developers
in practice. The analytic models, on the other hand, either fail to account for fea-
tures specific to hardware architecture, thus failing to extract maximum performance,
or are tied to particular architectures and can become obsolete as the architecture
evolves.

3.2 Using Machine Learning to Select Optimiza-

tions

Machine learning, using both static and dynamic features, has been used to select
optimization parameters in various contexts within compilers and code optimization:
parameters for specific loop optimizations, compiler command line invocation param-
eters, and compiler optimization pass selection.

Stephenson et al. [28] use machine learning to select a loop unroll factor. They
explore two machine learning approaches: Near Neighbour (using the Euclidean dis-
tance between feature vectors as the similarity vector) and SVM. They find that
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their best classifier comes within 7% of the optimal unroll factor 79% of the time,
obtaining a 5% speedup over the Open Research Compiler baseline with software
pipelining disabled and a 1% speedup with software pipelining enabled. Stephenson
et al. formulate a multi-class classification problem: given a set of program features,
which one of eight loop unroll factors (1, 2,. . . ,8) yields the best performance? The
features used included features such as the number of operands in the loop body, the
number of branches in the loop body, the number of indirect references in the loop
body, and the cycle length of the loop body. Of the two machine learning approaches,
SVM performs better than Near Neighbour. Stephenson et al. use feature selection to
narrow down their initial list of 38 features. They explore two feature selection tech-
niques: Mutual Information Score (MIS) and greedy feature selection. MIS attempts
to quantify the reduction in uncertainty regarding the value of the loop unroll factors
given the value of a particular attribute. The features with the highest MIS values
are chosen. Greedy feature search chooses a feature at a time in the order in which
the features reduce the classifier error. Unlike MIS, greedy feature search takes into
account the effect of multiple features in tandem. The union of the features selected
by the two algorithms were used to generate the final classifier.

Cavazos et al. [6] utilize machine learning to select compiler optimization settings,
using standard x86/x86 64 architecture hardware performance counters as input fea-
tures. The performance counters reflect the number of memory accesses, cache hits
and misses at all cache levels, translation lookaside buffer statistics, floating point
instruction statistics, branch instruction statistics, and CPU cycle statistics. Logistic
regression, a probabilistic approach, is used to find a set of compiler optimizations
to allow for optimal performance. Cavazos et al. [6] found that their model results
in a set of transformations which allow the compiler to compile binaries that run
substantially faster than when the default aggressive optimization settings are used.

Fursin et al. [14] describe MILEPOST GCC1, an adaptation of the GCC compiler.
MILEPOST GCC utilizes machine learning to determine which optimization passes
to use when compiling code. The features used are static features extracted from the
source code of the program being optimized (e.g., number of conditional branches,
number of assignment instructions, number of unary operations, number of calls with
pointers as arguments). Programs for the MiBench benchmark suite are used for
testing. A training set of 500 sequences of compiler flags and their values, which
were mapped to optimization passes, was generated by uniform random selection
from the overall space of flag settings. Each of the compiler flag sequences was
used to compile each of the benchmarks used for training, and a speed-up for each
benchmark relative to a baseline was recorded. From these results, a mapping from
the training benchmark features to a distribution over good solutions was learned. For
a test (unseen) program, its features were extracted, and the learned good solution
distribution was used to predict the best set of optimization passed to be used. The
prediction process is one-shot, without the need for an iterative search through the
solution space. Fursin et al. found that their adaptive optimization approach provides,
on average, an 11% runtime improvement over the optimization passes GCC uses by

1http://ctuning.org/wiki/index.php/CTools:CTuningCC
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default with the -O3 optimization setting.
Yuki et al. [33] apply machine learning to the loop optimization search space with

a focus on loop tiling. The primary contribution is the set of features selected to
select an optimal tile size. Specifically, for every source program, the number of
read and write operations in the innermost loops is added up and classified according
whether the memory operation could make efficient use of the CPU’s linear prefetch
capability. Accordingly, memory operations were classified as either RP (prefetched
reads), NP (non-prefetched reads), RI (invariant reads), WP (prefetched writes),
WNP (non-prefetched writes), and WI (invariant writes). A memory operation was
considered invariant if the target memory location was invariant with respect to the
loop iteration; it was considered prefetched if the CPU could successfully prefetch into
cache memory regions addressed in later loop iterations based on accesses in prior loop
iterations, e.g., accessing consecutive words in memory; and it was considered non-
prefetched if linear prefetching could not fetch into cache memory regions accessed
in later iterations, e.g., random access. Yuki et al. find that the tile sizes selected
by using the Artificial Neural Networks machine learning algorithm when using their
features of choice fall within 5% of optimal tile sizes. The features used by Yuki et
al. are also included in the features used to construct the classifier in my work.

The previous work discussed in this section focuses either on coarse-grained classes
(selecting compiler command line options or compiler optimization passes) or on
optimizing a single loop transformation in isolation (loop unrolling or loop tiling).
The generation of a search space consisting of compositions of transformations and
selecting the best transformation composition are not explored.

3.3 Machine Learning and the Polyhedral Model

Park et al. [22] use machine learning to predict the best polyhedral transformation for
a candidate source program. The search space of candidate polyhedral transforma-
tions is limited to transformations of several types supported out-of-the-box by the
the Polyhedral Compiler Collection (PoCC) 2 software: loop tiling, loop fusion, loop
parallelization, loop pre-vectorization, and loop unrolling. The transformation types
are, in theory, independent of each other and can be applied in all combinations. The
cross product of them all would result in a search space of several hundred transfor-
mations. In reality, my experience suggests that the transformations are not always
independent, and not all are well-supported. This will be discussed in greater detail
in Chapter 4. Like Cavazos et al. [6], Park et al. use hardware performance counters
as features. However, the precise list of features used is not specified.

Park et al. endeavour to predict the runtime of a source program that has been
subjected to a sequence of defined polyhedral transformations. Two approaches are
then evaluated to select the optimal transformation to use. In the one-shot approach,
the transformation corresponding to the lowest runtime is selected. In the five-shot
approach, the transformations corresponding to the five best runtimes are applied
to the source and each resulting program is compiled and run. The program with

2http://www.cs.ucla.edu/~pouchet/software/pocc
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the best actual runtime of the five is selected. Two machine learning techniques to
predict runtimes are evaluated: linear regression and Support Vector Machine (SVM)
regression.

Park et al. [22] find that that using the Polyhedral model for loop optimization
produces runtimes 2–3.5× better than those achieved by merely optimizing compiler
flags. Moreover, they report their method outperforms the static method utilized by
Bondhugula et al. [4]. Evaluating linear regression and SVM, they find that the former
yields a runtime improvement of 3.16× in the one-shot trial and 3.50× in the five-shot
trial, while the runtime improvement produced by the latter is 3.27× in the one-shot
trial and 4.68× in the five-shot trial. If the optimal transformation is defined as the
transformation in the search space that produces the best runtime, the transformation
chosen in the one-shot trial yields a runtime within 63% of the optimal on average,
while the transformation chosen in the five-shot trial yields a runtime within 84% of
the optimal on average. The findings by Park et al. are discussed in greater detail in
Chapter 5.

To achieve good performance with the technique proposed by Park et al., it is nec-
essary to run the program being optimized up to five times. For anything but trivial
programs with small input sizes, this may prove to be excessively time consuming and
would serve as a barrier to the uptake of the technique. This thesis builds on the work
by Park et al., expanding the set of features to include static features in addition to
dynamic features, formulating the problem as a classification rather than a regression
problem to make it easier to learn, performing feature selection, and using classifier
ensembles to improve classification accuracy.

3.4 Summary

In this chapter, I discussed prior work in the fields of loop optimizations in the poly-
hedral model and applying machine learning to loop optimizations. Since a method
to select one-dimensional and multi-dimensional schedules for simple loop nests was
introduced over two decades ago, research has been done into extending schedule
generation to larger classes of programs and generating schedules and loop transfor-
mations within a reasonable timeframe. Machine learning has been used to select
compiler arguments to produce faster code, as well as select loop transformations to
apply to source code before passing it through the compiler.
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Chapter 4

My Proposal

In this chapter, I discuss my proposal for learning rules to select efficient loop nest
transformations for computational kernels. I first discuss the initial set of features
constructed potentially to be predictive of the effect of different transformation com-
binations on different computational kernels. I then proceed to discuss the procedure
used to collect data and the approach used for evaluation. Finally, I conclude by
discussing how the feature selection was used to reduce the initial feature set to a
subset found to be relevant to the problem at hand.

My proposal is an extension of the work by Park et al. [22]. I use classification
machine learning methods rather than regression models, and to that end formulate
the problem as a classification problem rather than a regression problem. I augment
the set of features with static features in addition to the dynamic features derived
from hardware performance counter values. I perform feature selection to exclude
features that hold little or no predictive value for the class. Finally, I use classifier
ensembles to improve classification accuracy.

4.1 Initial Feature Set

I start out considering two sets of features. The first set consists of features that are
hardware performance counter values, collected during a run of a binary compiled
from the unmodified program source. Hardware performance counter values are com-
monly available in modern microprocessors and can be used in performance tuning
and analysis. The second set consists of features that can be extracted from analyzing
the program source structure, in particular features that characterize the program’s
memory access patterns.

4.1.1 Hardware Performance Counters

Modern microprocessors are complex and include advanced pipelining, prefetching,
branch prediction, and instruction level parallelism functionality. This functionality
continuously evolves as CPU manufacturers unveil new architectures. Furthermore,
the full details of the CPU architecture is typically a trade secret and therefore not
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well-documented. As a result, several well-known rules of thumb aside, it can be
difficult to ascertain how a fragment of source code, or even assembly, will run on a
CPU and how changes to the code structure will affect runtime. In order to make
it easier to diagnose performance issues, modern CPUs have hardware performance
counter functionality that can be used to shed light on the inner workings of the CPU.
The counters track discrete events in the microprocessor pertaining to the operation
of the hardware, such as instruction flow, memory access, and branches. Sampling
the counters before and after a program executes allows us to partially characterize
the interactions of the program with the CPU.

Park et al. [22] also use performance counters as machine learning features in
their work on selecting a good polyhedral transformation for a computational kernel.
However, they do not explicitly name the counters that were used. My starting
point is counters related to clock cycles, memory cache events, stalls while waiting
for resources, and branch prediction events. Clock cycle counters allow us to capture
the overall CPU time cost of the program. Memory cache misses are costly, as cache
layers closer to the CPU are faster to access than cache layers that are farther way.
A cache miss in a faster cache level requires a slower memory access in the next level.
Resource stalls have a detrimental effect on runtime since the CPU is unable to do
useful computational work while waiting for a resource request to be satisfied. Branch
prediction attempts to correctly predict which branch of a conditional instruction will
be taken. Instructions from the predicted branch are then loaded into the CPU’s
pipeline. If the prediction is wrong, the pipeline must be flushed, and instructions
from the other branch must be loaded instead. As CPU pipelines grow deeper and
more complex, mispredicted branches exact an increasingly higher cost in terms of
wasted cycles. The raw performance counters captured are listed in Table 4.1.

Raw counter values cannot be used as features, since higher counter values can be
indicative of repetitive execution rather than reflect the program structure. Consider
executing an identical loop for 100 iterations and for 200 iterations. The instance that
executes for 200 iterations is likely to have higher counter values across the board,
even though both programs are structurally identical. Therefore, the raw counters
are scaled to generate counter features. Cache misses for a cache layer are divided
by the total number of cache accesses for that layer. Resource stall values are scaled
with respect to the overall number of clock cycles. Values pertaining to instruction
counts are scaled with respect to the total number of instructions retired (instructions
executed to completion), resulting in feature values in the range [0, 1]. The normalized
feature values are then discretized. The discretization was carried out manually for
the purposes of this work, but it could be easily automated. The counter features
selected are listed and described in Table 4.2.

4.1.2 Memory Operation Features

Further features were added to capture the type of memory accesses in the inner-
most loops, as proposed by Yuki et al. [33] in their work on machine learning for
loop unrolling. Innermost loop memory accesses are classified along two dimensions:
access type (read or write) and interaction with the automatic prefetcher. Automatic
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Table 4.1: Performance Counter Measurements Collected

counter description
CPU CLK UNHALTED:TOTAL CYCLES Total number of core cycles
PAPI L1 TCA L1 cache accesses
PAPI L1 TCM L1 cache misses
PAPI L2 TCA L2 cache accesses
PAPI L2 TCM L2 cache misses
PAPI L3 TCA L3 cache accesses
PAPI L3 TCM L3 cache misses
MEM LOAD RETIRED:LLC MISS Last level cache misses
RESOURCE STALLS:ANY Resource related stall cycles
RESOURCE STALLS:LOAD Load buffer stall cycles
RESOURCE STALLS:RS FULL Reservation Station full stall cycles
RESOURCE STALLS:ROB FULL Re-order Buffer full stall cycles
INSTRUCTION RETIRED Number of instructions at retirement
BR INST EXEC:COND Conditional branch instructions executed
BR MISP EXEC:ANY Mispredicted branches executed
UOPS RETIRED:STALL CYCLES Cycles no micro-ops retired

prefetchers in modern CPU detect a sequence of cache misses with a consistent stride,
with either increasing or decreasing memory addresses, and automatically prefetch
memory at the detected stride interval, often up to a page boundary. This automatic
optimization speeds up operations like accessing array elements in a tight loop. Ac-
cordingly, memory accesses are characterized as prefetchable (occurring with a fixed
stride), non-prefetchable (lacking a fixed stride pattern), or loop-invariant (the same
address being accessed in all loop iterations). Combining the two dimensions gives
us the following features: the number of instances of prefetched memory reads, the
number of instances of non-prefetched memory reads, the number of instances of loop-
invariant memory reads, the number of instances of prefetched memory writes, the
number of instances of non-prefetched memory writes, and the number of instances of
loop-invariant memory writes. In my experiments, the feature values for each bench-
mark were manually determined. However, this feature extraction process could be
automated using, for example, techniques described by Fursin et al. [14]. The read
values are normalized with respect to the overall number of memory reads, as de-
termined from the performance counter values, yielding a value in the range [0, 1].
The write values are similarly normalized with respect to the number of writes. The
normalized values are discretized manually. As mentioned previously, the discretiza-
tion process can be automated in future work. The list of features is also captured in
Table 4.3.

The vector 〈c0, . . . , c12,m0, . . . ,m5〉 is then referred to as the per-benchmark fea-
ture vector.
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Table 4.2: Performance Counter Features

feature counter expression
c0 the ratio of L1 cache misses to the number of L1 cache accesses
c1 the ratio of L2 cache misses to the number of L2 cache accesses
c2 the ratio of L3 cache misses to the number of L3 cache accesses
c3 the ratio of total CPU cycles to the number of retired instructions
c4 the ratio of cycles when no instructions were retired to the number of

total CPU cycles
c5 the ratio of L3 cache accesses to the number of total CPU cycles
c6 the ratio of L3 cache misses to the number of total CPU cycles
c7 the ratio of all resource-related stall cycles to the number of total CPU

cycles
c8 the ratio of load buffer stall cycles to the number of total CPU cycles
c9 the ratio of stall cycles due to the reservation station being full to the

number of total CPU cycles
c10 the ratio of stall cycles to the reorder buffer being full
c11 the ratio of conditional branch instructions executed to the total number

of retired instructions
c12 the ratio of mispredicted branches executed to the total number of retired

instructions

4.2 Class Value

Supervised machine learning algorithms generally fall into one of two categories: re-
gression and classification. Regression algorithms predict continuous, real-valued out-
comes. Classification algorithms, on the other hand, predict discrete-valued classes.
Binary classification is a special case of classification, where the class has only two
values. The properties of the class to be learned guide the choice of the machine
learning algorithm.

The work by Park et al. [22] uses linear regression and a regression variant of
SVM to predict the ratios of the runtimes of programs subjected to a sequence of
loop transformations to the runtime of the unmodified program (in other words, the
speedup or slowdown caused by applying the transformation). The program predicted
to have the fastest runtime indicates the best sequence of transformations to apply.
Regression is used since a continuous value is being predicted directly.

The approach in this thesis is to instead express the problem as a classification
problem. Two benefits to the classification approach are hypothesized: that it will
make the problem easier to learn and reduce the error rate. While it can be argued
that a linear regression evaluation can also be easily incorporated in tools like com-
pilers, both the one-shot and the five-shot linear regression variants yield relatively
poor results, and SVM regression was required for satisfactory speed improvements.
Unlike linear regression, SVM regression evaluation is complex. To formulate the
classification problem, I consider which one of any two sequences of transformations
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Table 4.3: Memory Access Features

feature description
m0 number of prefetched memory reads
m1 number of non-prefetched memory reads
m2 number of loop-invariant memory reads
m3 number of prefetched memory writes
m4 number of non-prefetched memory writes
m5 number of loop-invariant memory writes

is preferable for a given source program. One sequence of transformations is prefer-
able to another if a program that has had that sequence of transformations applied
to it has a faster runtime than a program that has had the other sequence of transfor-
mations applied. I then attempt to use machine learning techniques to predict which
one of any two sequences of transformations is preferable for an arbitrary program.

More formally, given a source program P and two transformation sequences, TA
and TB, the transformation sequence pair (TA, TB) is labelled 1 if P has a faster
runtime having had TA applied rather than having had TB applied. Otherwise, if P
has a faster runtime having had TB applied rather than having had TA applied, the
transformation sequence pair is labelled 0. A row in the training data consists of the
feature values for the benchmark, the transformation sequence pair, and the class of
the transformation sequence pair.

Once the classifier is constructed, it is used to choose a transformation sequence as
follows. For a previously unseen program P , our machine learning algorithm attempts
to label all transformation sequence pairs (TA, TB) for all transformations A and B
in the transformation search space. Subsequently, for every transformation sequence
τ , the number of times a tuple (τ, T ), where T is any transformation other than τ ,
is predicted to have the label 1 is recorded as scoreτ . The transformation sequence
with the highest score is selected as the best transformation suggested by the machine
learning algorithm. In effect, a voting algorithm is used, with transformations being
voted on within the context of every transformation sequence pair combination. The
transformation sequence with the most votes is considered the winner. This is referred
to as pairwise preference ranking or round robin ranking [13]. Other approaches to
combining pairwise preferences exist (e.g., algorithms to calculate class probabilities
[32]) but are not explored in the context of this thesis.

A binary classification problem easily lends to learning using decision trees. The
simplicity of decision trees makes them amenable to be easily translated to code and
subsequently incorporated into optimizing compilers.
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4.3 Data Collection

The benchmarks used to train and test the classifier are taken from Polybench/C 1,
a benchmark suite that consists of computational kernels with loop nests that meet
the static control parts limitations imposed by the polyhedral model. The PAPI
library 2 is used to collect performance counter values for each benchmark. Each
benchmark is compiled using the gcc compiler version 4.7.2 3 at the highest standard
optimization level, −O3 for gcc. No other gcc flags are used. The benchmarks are
then executed. The wall time runtime and selected hardware performance counter
values are recorded. Each benchmark is run enough times for the sum of the runtimes
of the executions to reach at least 10 seconds. The number of times each benchmark
is run is also recorded.

Subsequently, the Polyhedral Compiler Collection (PoCC) 4 is used to generate
the transformation sequence search space. PoCC has numerous options for various
optimizations. Similarly to Park et al. [22], I consider the following transformation
types:

• Fusion. PoCC supports three fusion settings: nofuse, smartfuse, and max-
fuse. However, experimentation showed that these settings yield unpredictable
and inconsistent results when applied to different benchmarks. For example,
it might be expected that when nofuse is chosen, no fusion transformations at
all are applied. This is, indeed, the case with some benchmarks. With other
benchmarks, on the other hand, nofuse produces the same fusion transforma-
tions as smartfuse, while with others still, nofuse results in some loops being
fissioned. The maxfuse setting sometimes has similarly unpredictable results.
The lack of consistency resulted in noisy data that makes it difficult to learn a
classifer. To deal with the inconsistencies, the fusion setting is always fixed to
smartfuse, except in the case of the identity transformation.

• OpenMP. The OpenMP setting is a binary on or off choice. Either OpenMP is
enabled, resulting in the generation of parallel code, or it is disabled, resulting
in no parallelism.

• Tiling. Tiling can be applied at any or all of the first three loop nesting levels.
The tile size at each level could be 1 or 32. This results in 23 = 8 tiling settings.

• Vectorization. The vectorization setting is similarly binary, on or off. As a
caveat, however, PoCC only supports enabling vectorization if tiling is enabled
for at least one loop level.

• Loop unrolling. Three choices for loop unrolling were available: no loop un-
rolling, a loop unrolling factor of 4, and a loop unrolling factor of 8.

1http://www.cs.ucla.edu/~pouchet/software/polybench
2http://icl.cs.utk.edu/papi/index.html
3http://gcc.gnu.org/gcc-4.7
4http://www.cs.ucla.edu/~pouchet/software/pocc
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In addition, the identity transformation is also included as a possible transfor-
mation. The identity transformation does not alter the original source code in any
way.

Adding up the identity transformation to the product of two choices for OpenMP,
eight choices for tiling, two choices for vectorization, and three choices for loop un-
rolling, and then subtracting the invalid combination of vectorization and no tiling,
we have 96 transformations in total.

PoCC generates one source file per transformation sequence per benchmark. The
source files are then all compiled, generating a binary per transformation sequence
per benchmark. Each binary is executed, and the wall time runtime is recorded.
A row of data is then generated for every pair of transformation sequences in each
benchmark. The format of the row is c0, c1, . . ., c12, m0, m1, . . ., m6, identity0,
tiling0, openmp0, vectorization0, unroll0, identity1, tiling1, openmp1, vectorization1,
unroll1, class. The features c0, c1, . . ., c12 are the discretized performance counter
values for the benchmark, and m0, c1, . . ., m6 are the memory feature values for the
benchmark. Attributes with subscript 0 pertain to the first transformation sequence
in the pair, while attributes with subscript 1 refer to the second. Identity is a binary
attribute, and its value is 1 if the transformation is an identity transformation and 0
otherwise. Tiling is an enumerated attribute corresponding to the tiling setting used
in the transformation. Openmp and vectorization are binary attributes reflecting the
presence or absence of those optimization in the transformation. The unroll value
of unroll is the loop unrolling factor used (8, 4, or 0 for no unrolling). The feature
class is the binary classification. If the runtime of the first transformation in the pair
is less than the runtime of the second transformation, class is 0. Otherwise, it is 1.
The transformations t0, t1 and t1, t0 are treated as distinct pairs, and a separate data
row is generated for each. This is done so as to create a balance in the class values
in the training data and to avoid overfitting. Of course, the two pairs will belong to
opposite classes. The benchmark features are combined with the per-transformation
rows to generate the complete benchmark dataset. Anywhere from one to all of the
features may be used.

Once the data is collected, a leave-one-out approach is used to generate decision
trees and to test their effectiveness. For each benchmark, the data sets of all other
benchmarks are used as the training data, while the data set of the benchmark in
question is used as the test data. C4.5 5 is used to generate a decision tree from the
training data. That decision tree is then used to classify the test data. The classifi-
cations produced by the decision tree are then processed, with each transformation
scored according to how it compares with other transformations in the test data. For
every row, t0 is awarded one point if the class assigned to the row is 0 (the runtime
of t0 is predicted to be lower than the runtime of t1), and t1 is awarded one point if
the class of the row is 1. The transformation are then ordered in descending order
according to the number of points awarded to them, and this ordering reflects the
effectiveness of the transformations for the benchmark as predicted by the decision
tree, from best to worst. Ties are broken randomly. To determine the value of the

5http://www.rulequest.com/Personal

36

http://www.rulequest.com/Personal


prediction of the decision tree, the runtime of the top-ranked transformation is looked
up, and the ratio of that runtime to the best runtime of all the transformations is
reported. This is referred to as the one-shot result. Subsequently, the runtime values
of the top five transformations are looked up, and the ratio of the best of the five
runtimes to the overall best runtime is reported as the five-shot result.

4.4 Feature Selection

A classifier constructed using all features in the initial set can prove to have an
unsatisfactorily high error rate, possibly due to the presence of irrelevant or redun-
dant features, which makes constructing an effective classifier more difficult. Two
approaches to feature selection [16] are explored.

In the first approach, a classifier is generated using every individual feature and
every combination of two features. The classifier is evaluated for every benchmark.
The runtime of the transformation sequence obtained as a result of the scoring method
described in the previous section is compared to the expected runtime of a randomly-
selected transformation sequence, obtained using the formula,

1

T

T∑
t=1

runtimet,

where T is the total number of transformation sequences for the benchmark and
runtimet is the runtime of the binary generated by applying transformation t. If
applying the transformation sequence suggested by the classifier results in a slower
runtime than the expected runtime of a transformation selected at random, the clas-
sifier is considered to have failed. A feature is discarded if none of the classifiers
generated from it is deemed successful. This feature selection approach proved inef-
fective as it turned out that each feature combination was considered successful for at
least one benchmark, which meant that the approach failed to exclude any features.

In the second approach, a classifier is again generated using every individual fea-
ture and every combination of two features and evaluated for every benchmark. The
evaluation is performed similarly to before, by comparing the runtime of a program
generated by applying the transformation sequence suggested by the classifier to the
expected runtime of a program generated by applying a randomly selected transfor-
mation sequence, calculated as in the first approach. The classifiers are then sorted
in order of the number of benchmarks where the classifier suggested a transformation
sequence with a better runtime than the expected runtime of a randomly selected
transformation sequence for the benchmark. For example, a classifier considered to
be successful for 16 benchmarks and unsuccessful for 14 benchmarks will be ranked
ahead of a classifier considered successful for 14 benchmarks and unsuccessful for 16
benchmarks. As shown in Chapter 5, this approach to feature selection proves effec-
tive. The features that were included in the combinations selected by this approach
are listed in Table 4.4.

The two features that appear the most often are the number of L1 cache misses
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Table 4.4: Selected Features

feature description
number of

appearances
c0 ratio of L1 cache misses to L1 cache accesses 8
c1 ratio of L2 cache misses to L2 cache accesses 4
c3 ratio of total CPU cycles to the number of retired instruc-

tions
3

c4 ratio of cycles when no instructions were retired to total
CPU cycles

1

c5 ratio of L3 cache accesses to total CPU cycles 6
c6 ratio of L3 cache misses to total CPU cycles 2
c7 ratio of all resource-related stall cycles to total CPU cycles 1
c12 ratio of mispredicted branches executed to total retired

instructions
3

m1 number of non-prefetched memory reads 4
m3 number of prefetched memory writes 3
m4 number of non-prefetched memory writes 2
m5 number of loop-invariant memory writes 1

normalized with respect to the number of L1 cache accesses and the number of L3
cache accesses normalized with respect to total CPU cycles. On the other hand,
the number of L3 cache accesses normalized with respect to L3 cache misses does
not appear at all. It is not immediately obvious why L1 cache misses are significant
while L3 cache misses are not and why overall L3 cache accesses are significant while
overall L1 cache accesses are not. This may be related to architectural peculiarities.
It is also interesting to note that prefetched memory writes are significant, while
prefetched memory reads are not. Again, this may be related to the architecture on
which the experiment was run. Such subtleties regarding feature significance are not
intuitive, and they become apparent only as a result of the feature selection process.

4.5 Classifier Ensembles

Two classifier ensemble construction approaches are explored.
The first approach uses simple voting, with the top n classifiers as determined in

the feature selection stage voting on the classes of the test data. Each classifier’s vote
is weighted equally. As shown in Chapter 5, this ensemble construction performs very
well. A value of 20 is used for n. The value is determined empirically, and it is found
that a value of 20 performs better than a lower value, while values between 20 and
40 all perform relatively equally well.

Another alternative considered is the final classifier being the result of a vote of
the top n classifiers. The classes selected by the top n classifiers become features used
to construct a new decision tree classifier with C4.5. The format of the data rows
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for the training and test data used to construct and evaluate this new classifier is
c1, c2, . . ., cn, identity0, tiling0, openmp0, vectorization0, unroll0, identity1, tiling1,
openmp1, vectorization1, unroll1, class. c1, c2, . . ., cn are the class values predicted
for the transformation sequences by the top n classifiers from the previous stage. The
other attribute values represent the transformations applied and the actual class, as
before. This approach was found to produce inferior results to simple voting and was
therefore discarded.

4.6 Complete Classifier Construction

The end-to-end proposed classifier construction process is described in Algorithm 4.1.

Algorithm 4.1: Classifier Construction

foreach combination of one and two features from c0, c2, . . ., cn do
foreach benchmark do

Construct a training set from data for all benchmarks excluding
benchmark using the feature combination;
Construct a test set from data for benchmark benchmark using the
feature combination;
Learn a classifier using the constructed training set;
Determine the effectiveness of the classifier for the test set, as described
in the section on feature selection;

end foreach

end foreach
Tally up the number of benchmarks for which the classifier using the feature
combination was judged effective, as described in the section on feature
selection;
Sort feature combinations in descending order according to the number of
benchmarks for which they were judged effective;
Take top 20 feature combinations and construct a decision tree from each
combination;
Classify the data using the 20 trees; determine the final class by a vote of all 20
trees;

4.7 Summary

In this chapter, I proposed an approach to learning the best loop transformation
sequence among a finite transformation sequence search space for an arbitrary com-
putational kernel. I listed the features used as an input to the machine learning
algorithm, formulated the task as a binary classification problem, and described the
process of data collection, decision tree construction, and feature selection.
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Chapter 5

Evaluation of My Proposal

In this chapter, I present an evaluation of my proposal against a baseline and the
current state-of-the-art approach. I describe the baseline used first. I then proceed to
describe my reproduction of the approach and the results from the work by Park et
al. [22]. Finally, I describe the results obtained using my proposed approach: a vote
of multiple decision tree classifiers.

In all cases, the results are reported in two ways. First, I present the percentage-
of-optimal results, the ratio of the runtime of the benchmark binary obtained by
applying the optimal transformation sequence in the search space to the runtime of
a benchmark binary obtained by applying a transformation sequence selected by the
approach being evaluated. The ratio is expressed as a percentage, with a value of
100% indicating that the transformation sequence selected is, in fact, the optimal
transformation sequence in the search space. The optimal transformation in the
search space is determined by applying every transformation sequence in the search
space to the benchmark source code, running the resulting binaries, recording the
runtimes, and selecting the transformation sequence corresponding to the binary with
the lowest runtime. Second, I present the results as the ratio of the runtime of the
untransformed, or stock, program to the runtime of a benchmark binary obtained by
applying a transformation sequence selected by the approach being evaluated. This
ratio represents the speed-up factor of the transformation selected by the classifier
over the untransformed program. The transformed program is faster than the stock
program if the speed-up factor is greater than 1; conversely, the stock program is
faster than the transformed program if the speed-up factor is less than 1.

5.1 Baselines

Two baselines are used:

1. The runtime of the stock benchmark with no modifications to the source code.
In the subsequent tables and graphs, this value is referred to as identity.

2. The expected runtime of a randomly-selected transformation sequence, obtained
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using the formula,

1

T

T∑
t=1

runtimet,

where T is the total number of transformation sequences for the benchmark and
runtimet is the runtime of the binary generated by applying transformation t. In
the subsequent tables and graphs, this value is referred to as expected-random.

5.2 Reproduction of Prior Work

The reproduction of the results by Park et al. [22] of the approaches utilizing linear
regression and SVM tries to hew as closely as possible to the methodology outlined
in their paper. The performance counters used as features are listed in Table 5.1. All
counter values are normalized by dividing them by the number of instructions in each
benchmark, obtained by querying the counter PAPI TOT INS. The transformation
sequence search space used is the reduced search space as described in Chapter 4,
needed to accommodate interactions between different transformations and apparent
bugs in the PoCC software.

The performance counter values and runtimes are collected as described in Chap-
ter 4. A leave-one-out approach is used to evaluate the efficacy of the machine learning
approaches, with the data for one benchmark used for evaluation and the data for the
other benchmarks used for training. The leave-one-out process is repeated once for
every benchmark, so that error rates for all benchmarks can be calculated. For every
benchmark, the training set consists of an entry for every transformation sequence
in the search space and has the format c0, c1, . . ., c12, tiling, openmp, vectorization,
unroll, class. c0, c1, . . ., c12 are the continuous, non-discretized, normalized per-
formance counter feature values for the benchmark. Tiling is an enumerated at-
tribute corresponding to the tiling setting used in the transformation. Openmp and
vectorization are binary attributes reflecting the presence or absence of those opti-
mization in the transformation. The unroll value of unroll is the loop unrolling factor
used (8, 4, or 0 for no unrolling). class the ratio of the runtime of the benchmark
binary obtained by applying the optimal transformation sequence in the search space
to the runtime of a benchmark binary obtained by applying the transformation se-
quence corresponding to the row. In other words, the class represents the speed-up
or slowdown of the transformed benchmark relative to the original benchmark. The
class is continuous. Weka 1 3.7.5 is used for both training and evaluation. Default
parameters are used both for linear regression and for SVM. The output of Weka is
predicted runtime ratios for every transformation sequence for the benchmark used
for testing. The predicted ratios are then sorted in ascending order, from smallest
to largest, and this relative order is taken to be the order of the transformation se-
quences from best to worst as predicted by the machine learning process. The class
values predicted by Weka are ignored except to determine this order. In fact, in some
cases the class values predicted by Weka were negative.

1http://www.cs.waikato.ac.nz/ml/weka/
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5.3 Evaluation Methodology for My Approach

A leave-one-out approach [17, pp. 245-247] was used to evaluate the classifier, feature
selection approach, and approach to constructing the classifier ensemble. The overall
evaluation algorithm for the second approach is described in Algorithm 5.1.

Algorithm 5.1: Feature Selection and Classifier Evaluation

foreach benchmark do
foreach combination of one and two features from c0, c2, . . ., cn do

foreach benchmark’ excluding benchmark do
Construct a training set from data for all benchmarks excluding
benchmark’ and benchmark using the feature combination;
Construct a test set from data for benchmark benchmark’ using the
feature combination;
Learn a classifier using the constructed training set;
Determine the effectiveness of the classifier for the test set;

end foreach
Tally up the number of benchmarks for which the classifier using the
feature combination was judged effective;

end foreach
Sort feature combinations in descending order according to the number of
benchmarks for which they were judged effective;
Take top 20 feature combinations and construct a decision tree from each
combination;
Construct a final classifier that classifies the data using the 20 trees and
determines the final class by a vote of all 20 trees;
Use final classifier obtained after feature selection to predict best
transformation sequence for benchmark ;
Determine the effectiveness of the final classifier for benchmark and report
this value;

end foreach

5.4 Discussion

For both linear regression and SVM, one-shot and five-shot results are reported.
One-shot results evaluate the transformation sequence predicted to be the best by
the machine learning process. Five-shot results take the best runtime of the top five
results as predicted by the machine learning process. The binary corresponding to
each of the top five results is run and its runtime is recorded. The binary that has
the best runtime is used.

Table 5.2 contains percentage-of-optimal results for all benchmarks for the iden-
tity transformation; the expected random selection; and the one-shot and five-shot
approaches for each of linear regression, SVM regression, and decision tree voting. A
graph showing a comparison of the baseline, one-shot, and five-shot results for both
linear regression and SVM is shown in Figure 5.1. The results of the reproduction
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are similar to the results reported by Park et al. SVM produces better results than
linear regression, while the five-shot approach outperforms the one-shot approach.
With the transformations in the search space ranked in reverse runtime order, the
transformation selected using one-shot linear regression is, on average, in the 73rd
percentile; the transformation selected using five-shot linear regression is, on average,
in the 79th percentile; the transformation selected using one-shot SVM regression is,
on average, in the 70th percentile; the transformation selected using five-shot SVM
is, on average, in the 87th percentile; and the transformation selected using one-shot
decision tree voting is, on average, in the 86th percentile. As previously mentioned,
the five-shot approach necessitates running the candidate program five times, a pro-
cess which, depending on the runtime of the program, can be unduly time consuming.
The classification and prediction process for each benchmark takes between 0.5 sec-
onds to 0.7 seconds. This includes the classification time for the 20 trees, the time
it took to convert the pairwise preferences to rankings, and the time it took tally
the votes of the 20 classifiers and come up with the final prediction. The derivation
of the rankings and the voting are implemented as proof-of-concept scripts, and an
efficient implementation would likely make the process take even less time. On the
other hand, the runtime of each benchmark when run with an input size of 1024 ele-
ments is between 0.5 seconds and 20 seconds, depending on the benchmark. For most
benchmarks, the decision tree vote prediction process takes less time than a single
benchmark run, resulting in substantial time savings over a 5-shot approach.

Figure 5.2 contrasts the percentage-of-optimal one-shot decision tree vote results
with the identity and the expected random selection baselines, as well as with the five-
shot linear regression and SVM results. One-shot decision tree voting performs signif-
icantly better than the identity transformation, the expected runtime for a randomly
selected transformation, and the five-shot linear regression approach. It performs
about as well as the five-shot SVM approach, with the benefits to the decision tree
approach being the lack of necessity to run the candidate program multiple times
and the ability to more easily represent the classifier as a sequence of conditional
statements.

The per-benchmark breakdown in Table 5.2 reveals that while, on average, the
one-shot decision tree outcome is about as good as the five-shot SVM outcome (and
therefore as good as or better than prior state-of-the-art approaches), the different ap-
proaches do better on different benchmarks. For instance, the decision tree approach
gets the optimal transformation sequence (100%) for the covariance benchmark,
while the second best result for that benchmark is 77% with linear regression. Simi-
larly, decision tree voting gets 100% for seidel-2d, while the second closest is SVM
with 61.4% (both one-shot and five-shot). On the other hand, decision tree voting gets
only 55.0% on fdtd-2d, while both one-shot and five-shot linear regression get 98.7%.
Similarly, one-shot decision tree vote gets 68.2% for jacobi-2d-imper, while one-shot
linear regression gets 80.3% and one-shot SVM gets 98.8%. Examining benchmarks
where each approach excels, one-shot linear regression scores over 90% nine times,
five-shot linear regression 13 times, one-shot SVM 12 times, five-shot SVM 19 times,
and one-shot decision tree voting 18 times.

Table 5.3 contains speed-up results over the identity transformation for every
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benchmark for expected random selection as well as and the one-shot and five-shot
approaches for each of linear regression, SVM regression, and decision tree voting.
Figure 5.3 presents these results in bar chart form. The three benchmarks with the
largest speed-ups appear in a separate chart with a different scale so as not to make
the results for benchmarks with more modest speed-ups unreadable. The one-shot
decision tree vote speed-up is, on average, slightly better than the five-shot SVM
regression speed-up. However, this result is not uniform across all benchmarks. De-
cision tree voting comes very close to the SVM speed-up result for most benchmarks,
outperforming it on some benchmarks and underperforming on others. These results
show that that gcc, even at the highest optimization setting, does not currently do a
satisfactory job at loop optimization and that there are substantial speed-ups to be
gained by employing a polyhedral model optimization pass.

Table 5.1: Performance Counter Measurements Collected for Linear Regression and
SVM Predictions

counter description
PAPI L1 TCA L1 cache accesses
PAPI L1 TCM L1 cache misses
PAPI L2 TCA L2 cache accesses
PAPI L2 TCM L2 cache misses
PAPI L3 TCA L3 cache accesses
PAPI L3 TCM L3 cache misses
PAPI TLB TL Total translation lookaside buffer misses
PAPI TLB DM Data translation lookaside buffer misses
PAPI TLB IM Instruction translation lookaside buffer misses
PAPI RES STL Cycles stalled on any resource
PAPI TOT IIS Instructions issued
PAPI VEC SP Single precision vector/SIMD instructions
PAPI VEC DP Double precision vector/SIMD instructions
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5.5 Summary

In this chapter, I presented the results of the decision tree voting approach described
in Chapter 4 and compared them to previous state-of-the-art results first presented
by Park et al. [22]. The results of the decision tree approach rival those of the
best approach presented by Park, five-shot SVM, in terms of efficacy at selecting a
transformation sequence yielding as close to the best runtime as possible, while at
the same time the decision tree voting approach does not require the execution of five
binaries to reach that level of efficacy. This makes decision tree voting more usable
in practice, where the kernel being optimized can be computationally intensive and
running it multiple times can be time consuming.
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Chapter 6

Conclusion

In this chapter, I summarize the highlights of the thesis and discuss some potential
avenues for future work.

6.1 Summary

In recent years, the increasing complexity of CPU pipelines, the decrease in clock
speed growth rates, and the increase in core count have combined to make it more
difficult to write performant computational kernels. An automatic optimization mech-
anism for computational kernel loop nests would ease the task of software develop-
ers by allowing them to focus on domain-specific considerations and not have to
worry about architectural concerns. The optimization mechanism should operate on
straightforwardly-written loops and transform the loops such that they most effi-
ciently utilize the features and constraints of the architecture where the program will
run, while preserving the semantics of the original source. The Polyhedral Model
[10] allows for the generation of semantic-preserving loop transformations, varying
parameters pertaining to loop tiling, fusion, unrolling vecotirzation, and parallelism.
Several approaches have been proposed for selecting a transformation among the se-
quence that can be generated by applying the Polyhedral Model. Some [4, 5] are
model-driven and construct an analytic cost function which is then minimized, while
others [26, 27] make use of the analytic approach where it has proven to work well
while also employing an empirical (trial-and-error) methodology in areas where the
model is found lacking. Finally, Park et al. [22] use machine learning to select a
transformation using hardware performance counters as features. Park et al. explore
two machine learning approaches: linear regression and SVM. In both cases, they
attempt to predict the runtime improvement of a program that has had a particular
transformation applied over the program with no transformations applied. They find
that SVM performs better than linear regression, and that regardless of the machine
learning algorithm used, best results are achieved when the top five transformations
recommended by the algorithm are tried out in practice by running the program
with the transformations applied and taking the transformation corresponding to the
best runtime of the five. Needing to run the program five times can be exceedingly

51



time-consuming, depending on the complexity of the program and the input.
In the thesis, I built on the work by Park et al. and presented an alternative

machine learning approach that achieves results as good as their best results while
removing the need to run the program being optimized five times. With the trans-
formations in the search space ranked in reverse runtime order, the transformation
selected by my classifier was, on average, in the 86th percentile. Several alterations
were made to the approach by Park et al. First, the problem was expressed as a binary
classification problem rather than a regression problem. Rather than predicting the
runtime improvement of a particular transformation, a continous-valued class, I pre-
dict which one of two particular transformations has a faster runtime, a binary class.
Second, the hardware performance counter features are augmented with features de-
rived from the program source code structure. Third, the continuous feature values
are discretized. Fourth, feature selection is performed. Decision trees are constructed
for pairs of features, and the decision trees are evaluated on how effective they are at
predicting transformation utility. The top 20 trees thus selected then vote on the class
corresponding to each set of attribute values, with the attributes values encapsulat-
ing the discretized hardware performance counter values for the unmodified program
and the transformation. The transformations are then ordered in descending order
according to how many times a particular transformation is predicted to be better
than any other transformation. The top transformation in the list is then taken to
be the best transformation in the search space.

I evaluated my proposal on a benchmark suite selected to be representative of the
range of computational kernels. A leave-one-out approach was utilized both at the
feature selection stage and at the machine learning stage. The transformation selected
by my algorithm was compared to the transformations chosen by the four algorithms
presented by Park et al. In addition, two baseline values were also considered: the
identity transformation (the original program unchanged) and a transformation se-
lected at random. On average, the transformation selected by my approach was as
good as the transformation selected by the most promising of Park et al.’s approaches,
five-shot SVM. However, my approach did not require running the program to be op-
timized five times, making the optimization process less time consuming.

6.2 Future Work

In this thesis, the hardware performance counter values used for features were contin-
uous. The values were then manually discretized by plotting them in increasing order
and looking for patterns. Automatic discretization mechanisms should be explored.

Different approaches to feature selection can also be explored. When selecting
the decision trees to participate in the final vote, currently the trees are evaluated
based on the number of benchmarks for which the transformation suggested by the
tree does better than the baseline. However, the magnitude of the improvement over
the baseline is not taken into consideration. A tree that selects a transformation
that is 1% better than the baseline is considered equivalent to a tree that selects
a transformation 50% better than the baseline. The ranking of the trees could be
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weighted relative to the improvement over the baseline.
The voting process could also be altered. Currently, the trees that are selected

each have one vote. Each tree predicts the class by examining the majority value
at the leaf node. Leaf nodes may contain more than one value because the decision
tree algorithm did not find it advantageous to branch further. Therefore, the class
returned by the decision tree will be one both if the leaf node has six 1’s and one 0
and if the leaf node has four 1’s and three 0’s. Instead, the tree can also report the
probability for the class. For example, in the case of six 1’s and one 0, the probability
would be 0.86, while in the case of four 1’s and three 0’s, the probability would be
0.57. Then, each tree’s vote would be weighted with the probability associated with
the class it chooses. In the two example cases, the weights would be 0.86 and 0.57
for the two trees.

The classifier proposed in this thesis relies on dynamic features, namely, hardware
performance counter values. These features encode both information about the target
architecture for which the program is being optimized and information about the
program itself. To extract these features, the program being optimized must be
run once. This requirement may be a barrier to adoption as it lengthens the overall
compilation cycle. One potential avenue to explore to make the compilation cycle less
onerous is the decoupling of the architecture features from the program features. One
could explore the creation of a short-running program that would only need to be run
once per target architecture, rather than once for every program being optimized,
and that would generate the architecture features in one pass. These architecture
features could then be subsequently used in the optimization process in conjunction
with static features extracted from the body of the program, similar to the static
features extracted by Fursin et al. [14].
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