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Abstract
It is well known that cheating occurs in sports. In
cup competitions, a common type of sports com-
petition, one method of cheating is in manipulat-
ing the seeding to unfairly advantage a particular
team. Previous empirical and theoretical studies
of seeding manipulation have focused on competi-
tions with unrestricted seeding. However, real cup
competitions often place restrictions on seedings to
ensure fairness, wide geographic interest, and so
on. In this paper, we perform an extensive em-
pirical study of seeding manipulation under com-
prehensive and realistic sets of restrictions. A gen-
eralized random model of competition problems is
proposed. This model creates a realistic range of
problem instances that are used to identify the sets
of seeding restrictions that are hard to manipulate
in practice. We end with a discussion of the impli-
cations of this work and recommendations for orga-
nizing competitions so as to prevent or reduce the
opportunities for manipulating the seeding.

1 Introduction
It is well known that cheating occurs in sports. One method of
cheating is where athletes or teams collude to manipulate the
outcome of a sports competition by throwing games. Another
method of cheating that arises in cup competitions is in ma-
nipulating the seeding or schedule—the initial matchups of
teams—such that a particular team wins or has an increased
chance of winning. Cup competitions are commonly used
in both sports and elections as a social choice mechanism and
having a balanced cup is a desirable property as no team gains
an advantage by being placed higher in the tree.

The problem of seeding manipulation, or schedule control,
has been well studied in the social choice literature and both
a probabilistic model of the competition and a determinis-
tic (win/loss) model have been considered [Bartholdi et al.,
1992; Lang et al., 2007; Hazon et al., 2008; Vu et al., 2009;
Williams, 2010]. For the probabilistic model, Hazon et
al. [2008] show that the problem of determining the seeding
which maximizes the probability of a team winning in a bal-
anced cup is NP-Hard. Vu et al. [2009] provide an alternative
proof of the above result and also consider additional variants

where the probability of a team beating another team is re-
stricted to a specific set of values such as the set {0, 0.5, 1}.
For the deterministic model, Williams [2010] showed that
certain sub-classes of the problem can be solved in polyno-
mial time. The computational complexity of the general prob-
lem remains open for balanced cups, although it has been the
subject of much investigation. The worst-case complexity re-
sults can be seen as a barrier to manipulation (cf. [Faliszewski
et al., 2010]). However, Hazon et al. [2008] show that simple
heuristics can be effective in approximately solving instances
of the probabilistic model. Thus, seeding is open to manipu-
lation by quite straightforward techniques.

However, previous studies of seeding manipulation have
focused on competitions with unrestricted seeding. Real cup
competitions often place restrictions on seedings to ensure
fairness, wide geographic interest, and so on. As well, previ-
ous studies have not examined the incentive to manipulate. In
this paper, we perform an extensive empirical study of seed-
ing manipulation under comprehensive and realistic sets of
restrictions. For our empirical study, we propose a general-
ized random model of cup competition problems. This model
creates a more realistic range of problem instances than in
previous work (where teams do not differ in their intrinsic
quality or rank, and the seedings are unrestricted). The ran-
dom model is used to identify the sets of seeding restrictions
that are hard to manipulate in practice. We show that for
both the probabilistic model and the deterministic (win/loss)
model, there are sets of real-world restrictions where one can
often effectively manipulate the seeding in practice. In the
case of the deterministic model, we show that an optimal ap-
proach based on constraint programming can quickly solve
almost all instances. In the case of the probabilistic model,
we show that a previously proposed heuristic adapted to the
sets of restrictions can effectively solve instances.

The goal of our work is to study which, if any, of these
seeding restrictions are hard to manipulate in practice and
which, if any, of these seeding restrictions reduce the incen-
tives to manipulate the seeding by reducing the effectiveness
of manipulation. We find that some sets of restrictions are an
effective method for reducing the incentive for seeding ma-
nipulation, especially for weakly ranked teams. Based on our
study, we provide recommendations for organizing competi-
tions so as to prevent or reduce the opportunities for manipu-
lating the seeding.



2 Background
One of the most common ways of organizing a competition
among a set of teams is a cup. In a cup, the final winner is de-
termined by a tree-like structure called a competition tree. Let
m denote the number of teams in the cup, where the names
of the teams are t1, t2, . . . , tm. The m leaves of the tree are
labeled with the names of the teams, called the seeding of the
competition. A seeding on m teams can be described by a
permutation (π1, π2, . . . , πm) of the set {1, 2, . . . ,m}, where
the team tπj is the label for the jth leaf node in the compe-
tition tree. Each internal node of the tree represents a match
(or game) between its two child nodes. A round of a cup is
defined to be all of the matches that occur at an equal height
k, 1 ≤ k ≤ log2 m, from the leaves of the competition tree.
The winner of a match advances to the next round and the
loser of the match is eliminated from the competition. The
team that advances to the root of the tree is the winner of the
competition. In this paper, perfectly balanced cups are exam-
ined and it is assumed that the number of teams is a power of
2. Balanced cups are the most widely used in practice as they
are inherently the most fair.

A seeding can be generated by a random draw but most of-
ten a person (or committee), called the scheduler, determines
the seeding. As such, seeding is open to manipulation. A
seeding manipulation strategy is any deliberate placement of
teams in the seeding in an effort to cause or increase the like-
lihood that a desired team, tw, wins the competition.

As in previous sports and voting literature, we assume that
there is available a probabilistic model of the competition in
the form of an m × m matrix P , where entry Pi,j denotes
the probability that team ti wins a match against team tj .
The probabilities could be based on past matches or on ex-
pert opinions. If the probabilities are restricted to be 0 and
1, the model is deterministic and can be represented as a di-
rected graph where the nodes are the teams and there is an
edge from ti to tj if ti wins a match against tj with certainty.
Such a graph is often referred to as a tournament graph.

3 Restrictions on Seedings
Previous studies have considered unrestricted seeding, where
any placement of teams is permitted. However, unrestricted
seedings can be undesirable in practice and restrictions are
often added to ensure that the seeding conforms to the desires
of the organizers such as, for example, that top teams do not
face each other immediately.

We have identified four different restrictions that can be
placed on the seeding process. These restrictions broadly
cover known restrictions that occur in practice.

Team ranking restriction. Let rank(t) be a function that
gives the ranking of a team t, where smaller values mean
higher rank or quality. A team ranking restriction requires
that the ranking function is known and can be objectively de-
termined. For example, the ranking function could be deter-
mined by the teams’ win-loss records over a season.

Team arrangement restriction. A primary purpose of a
seeding is to ensure that two highly ranked teams do not meet
each other early in the competition. For this purpose, a com-
monly used arrangement of the teams is as follows. For sim-
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Figure 1: (a) The arrangement of teams by rank used by the
NCAA Division I Basketball Championship. The numbers
below the leaf nodes represent the rank of the team at that
leaf. (b) A seeding can be manipulated so that all of the top
teams play each other in the first two rounds. (c) The possible
ways that the winners of the four pools of the NCAA could
be arranged. (d) Changing the rank of a team from eight to
seven can completely change their opponents.

plicity of notation, assume that rank(1) = 1, rank(2) = 2,
and so on. For m = 2 teams, the seeding is (1, 2); i.e.,
the top ranked team plays the team ranked second. Suppose
(π1, π2, . . . , π2r−1) is the seeding for 2r−1 teams. Then the
seeding for m = 2r teams is (π1,m + 1 − π1, π2,m + 1 −
π2, . . . , π2r−1m + 1− π2r−1). For example, the seedings for
four and eight teams are (1, 4, 2, 3) and (1, 8, 4, 5, 2, 7, 3, 6),
respectively. A team arrangement restriction requires that the
method for arranging teams is known and can be objectively
determined. In our experiments we used the above arrange-
ment.

Pooling restriction. Let m = 2r, for some r. Pooling
partitions the m teams into 2r−k pools each of size 2k, for
some k. The teams in a pool play each other before playing
other teams; i.e., the winner of a pool goes on to play other
teams outside of the pool. A pooling restriction requires that
the method for partitioning the teams into pools is known and
can be objectively determined. In our experiments, we used
pools of size 16 and followed the NCAA method where each
team is assigned a rank from 1 to 16, and one team of each
rank belongs to a pool.

Pool arrangement restriction. A pool arrangement restric-
tion requires that the method for arranging the order of the
pools—i.e., the order that the winners of the pools play each
other—is known and can be objectively determined. Let
P1, . . . , P2r−k be the pools. In our experiments we simply
ordered the pools in ascending order so that the winner of
pool P1 played the winner of pool P2, and so on.

In each case, the absence of a restriction means that this
aspect of the seeding (team ranking, team arrangement, pool-



ing, pooling arrangement) is under the control of the sched-
uler and is thus open to manipulation. In the case of team
ranking, in our experiments we restricted the manipulation of
a team’s rank to be within one of its true rank.

Example 1. The NCAA Division I Basketball Championship,
commonly called March Madness, is held annually in March
and April [NCAA, 2009]. The championship uses a cup struc-
ture where 64 teams are seeded in a balanced cup tree. The
teams are separated into pools of sixteen teams. Each team
is assigned a rank from 1 to 16 and only one team of each
rank may belong to a pool. The cup has four pools of teams
but the makeup of the pools is made by the scheduler. Fig-
ure 1a shows how teams are arranged within a pool. If this
arrangement was not fixed, it would be possible to guarantee
that three of the top four teams in the pool would be elimi-
nated after the second round (see Figure 1b). March Mad-
ness championships do not have a pool arrangement restric-
tion. As such, the scheduler is able to arrange the final two
rounds as they see fit. The possible arrangements of the four
pools of the NCAA Championship are shown in Figure 1c.
There is no restriction on team ranking—it is decided by the
scheduler—and the scheduler can use this to change the seed-
ing [Coleman et al., 2010]. The imprecise nature of the rank
generation allows for weaker teams to be boosted in rank and
top teams to be diminished. While it is unlikely that large
changes would be made to the rank, it is possible to modify
the rank of teams by only a difference of one and still gain a
large advantage (see Figure 1d).

Given the different restrictions, it is possible to construct
families of restrictions and classify competitions based on the
restrictions present. As a naming convention, a family of re-
strictions is considered as a four tuple where each tuple value
can be either 0 or 1 depending on the presence of the restric-
tion. An example tuple for the family without any restrictions
would be 0000. The tuple placements represent, from left to
right, the pooling restriction, the team arrangement restric-
tion, the team ranking restriction and the pool arrangement
restriction. Families that are equivalent regardless of a re-
striction being present are merged and the corresponding tu-
ple value is replaced with a don’t care value or X . The com-
plete set of families along with the restriction relationship are
shown in Figure 2. An arc from one family to another repre-
sents that a restriction was added to the source family to pro-
duce the new family. The solution set is the set of all possi-
ble seedings which conform to a given family of restrictions.
Two families are equivalent if the solution set is identical. For
more details and proofs, see [Russell, 2010, Chapter 4.4].

Each restriction of the seeding implies that the choice is
fixed without input from the scheduler. While it is possible
to fully restrict a schedule, the result may be undesirable. For
example, if geographic constraints are used to ensure unma-
nipulable pooling then top teams may be paired in the early
rounds since they happen to be geographically close. We next
describe each family of restrictions and, if possible, a real
world example which uses these restrictions is described.

The most restricted family is 1111, as all of the restric-
tions are enforced. Competitions with these restrictions arise
in the playoffs of many North American sports, including the
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Figure 2: Families of seeding restrictions. Each label is a four
tuple where 1 means fixed, 0 means unfixed and X is a don’t
care value. Don’t care values are used to denote when the
models are solution equivalent. The four tuple values repre-
sent are, from left to right, pooling, team arrangement, team
ranking and pool arrangement.

NFL, NBA, and the NHL (where the pools are restricted by
geography, for example). The next most restricted family is
1101 where only the team ranking restriction is not enforced.
An example of this would be professional tennis where the
ranking of players do not necessarily correspond to the World
Ranking of the same players. The 1100 family of restrictions
requires that the team arrangement and pooling of teams is
fixed but the ranking of teams can be modified and the ar-
rangement of pools is unfixed. Since professional tennis com-
petitions only have a single pool of teams, this family of re-
strictions could be applied to tennis as well.

The 1110 family of restrictions requires that the pooling,
team arrangement and ranking are all immutable but the pool
arrangement is not restricted. The 011X family of restric-
tions allows the pools to be unfixed but the team arrangement
and ranking are fixed. The 10X1 family of restrictions re-
quires that pooling and the arrangement of the pools are fixed
while leaving the arrangement of the teams within the pools
susceptible to manipulation. The 10X0 family of restrictions
requires a specific pooling but offers no other restriction on
the seeding. It is not known if there are any competitions
which use either the 1110, 011X , 10X1 or 10X0 families
of restrictions when generating seedings. The 010X family
of restrictions requires a specific arrangement of teams but
requires no other restrictions. This model is used in schedul-
ing the NCAA Division I Basketball Championship [NCAA,
2009] and World Cup soccer. The most unconstrained fam-
ily of restrictions is the 00XX family of restrictions. This
is the model used in previous work (e.g., [Lang et al., 2007;
Hazon et al., 2008; Vu et al., 2009; Williams, 2010]). This
type of completely unconstrained seeding is often used by lo-
cal and amateur sports.

4 Seeding Manipulation Strategies
In this section, we present the techniques we used in our ex-
periments for finding seeding manipulations.

Deterministic model. The computational complexity of
finding a seeding manipulation strategy for the deterministic
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Figure 3: (a) A cup competition denoting the winner in each
node. (b) The corresponding binomial spanning tree which
represents the result of the competition.

model is an open question, and a polynomial algorithm has
yet to be discovered. The alternative to giving up on these
problems is to apply the machinery used to solve NP-Hard
problems and look at the practical complexity of these prob-
lems. This constitutes neither a proof of efficiency or of hard-
ness but rather shows, as is done in graph isomorphism [Sor-
lin and Solnon, 2004], that these problems can be solved even
if their complexity is indeterminate.

The basic problem is determining if a given team tw is the
winner under any seeding of the tournament given the tour-
nament graph. Lang et al. [Lang et al., 2007] showed that
the least constrained problem is solved by finding a binomial
spanning tree within the tournament graph structure. The
winner of the cup represents the root of the tree. The chil-
dren are the teams winner defeated in each round from left to
right. This notion is then applied recursively to each child. If
there exists an assignment of the teams so that the edges in
the binomial spanning tree are also in the tournament graph
then the team at the root is a winner.

Example 2. Figure 3a shows a cup competition with the ex-
pected winner of each match according to the tournament
graph labeled in each node. The winner of the cup is t1 and
t1 becomes the root of the binomial tree. Since t1 defeats t2,
t3 and t5 in each successive round, t2, t3 and t5 are made the
children of t1. t2 does not win a single game so they are a
leaf node. t3 defeats t4 and t5 defeats t6 and t7. Finally, t4
and t6 are leaf nodes and t7 defeats t8, which is a leaf node.
The completely binomial tree is shown in Figure 3b.

To tackle these problems, we adapted a constraint program-
ming framework for solving sub-graph isomorphism [Zam-
pelli et al., 2010]. The constraint approach for the simple
model is described first and then additional constraints are
added to solve the other models (for more details on the con-
straint programming approach, see [Russell, 2010, Chapter
4.4]). There are m variables labeled v1, . . . vm, with the do-
main of each variable D(vi) = [1 . . .m]. Since each vari-
able is a node in a spanning tree of the tournament graph, an
AllDifferent constraint is added to ensure that no node is used
more than once, alldifferent(v1, . . . , vm). Edge constraints
are added to the variables of the graph to ensure that if there
is an assignment of vi and vj to the variables in the spanning
tree which share an edge then (vi, vj) ∈ E. Lastly, the con-
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Figure 4: The probability that a team whose rank is i positions
lower than another team would upset that team, as estimated
from all games in the 25 tournaments from 1985–2009 for the
NCAA and the grand slam tennis events from 2000–2010.

straint that v1 = tw ensures that tw wins the tournament, if
possible.

This basic constraint-based approach can be extended with
additional constraints to reflect the additional restrictions.
The most useful is a global constraint proposed by Lar-
rosa and Valiente [2002], called nRF+, that enforces slightly
stronger consistency on the children of nodes within the tree.
This ensures that for each value of a parent node there are
enough distinct values in the domains of the child nodes to
satisfy each child node. For each additional restriction, the
basic edge constraint is modified to allow only those edges
that are edges in the graph and match the appropriate criteria.
For pooling, this ensures that the lower edges on the graph
match only teams from the same pool and, for pool arrange-
ment, that the upper edges of the graph meet the correct ar-
rangement. For team arrangement, the teams must meet the
criteria for the arrangement. Modifying ranking associates a
new rank variable with each edge in the binomial tree and
restricts the rank of a given team based on the team arrange-
ment.

Representing the seeding as binomial tree over a simple list
representation, removes 2n rotational symmetries, where n is
the height of the cup tree. This representation reflects who
plays whom at each level and allows for any possible place-
ment in the cup tree as long as the restrictions are respected.

Probabilistic model. The computational complexity of
finding a seeding manipulation strategy for the probabilis-
tic model is known to be NP-Hard for balanced cups [Hazon
et al., 2008; Vu et al., 2009]. Hazon et al. [2008] propose
a number of heuristics for solving this problem and show
that for small problems the heuristics are close to optimal.
Their results showed that a heuristic called BestWin was a
good heuristic for solving these problems. However, Hazon
et al. [2008] assume there is no restriction on the seeding.

The BestWin heuristic greedily assigns the teams that tw,
the team that the scheduler wishes to unfairly advantage, is
most likely to defeat in each round. In other words, trying to
generate likely winners of subtrees that tw will defeat. This
procedure is then applied recursively to every other teams
unless that team is a leaf and would be expected to win no
games. We modified the BestWin heuristic to account for the
restrictions applied to the model. When greedily assigning an
opponent during the procedure, only those teams which do



not violate the restrictions are compared and selected. When
ranking is unfixed, each team attempts to obtain the lowest
rank possible as this increases the likelihood that they will
face weaker teams.

5 Experimental Results
While there is some evidence to suggest there is bias in seed-
ing real world cup competitions [Coleman et al., 2010], there
is no definitive data set to test the efficiency of the constraint
programming approach described above. Therefore to test the
constraint programming approach under the various restric-
tions, a set of realistic test benchmarks are generated. The
first step is to generate a realistic tournament graph.

To generate real world probability matrices and tournament
graphs, real world data was mined to determine upset ra-
tios: probability distributions of how often better teams lost to
worse teams given their difference in ranks. The NCAA Di-
vision I Basketball competition brackets from 1985 to 2009
and grand slam tennis events from 2000 to 2010 were mined
for this information. Upset ratios were constructed for each
sport from the data to give the distribution of upsets given the
difference in rank. In the case of tennis, ranks were pooled
into groups of eight to remove some of the fine grained gran-
ularity of ranking. This is also the case in the NCAA data
as there are multiple teams of each rank in each competition.
These ratios can be seen in Figure 4.

From the upset ratios, Gaussian distributions for each dif-
ference in rank were created with the means taken from the
upset ratios and the variances from the errors in the ratios. By
sampling the Gaussians, realistic probability matrices were
generated for problems of size 16, 32, 64, 128, 256. Tourna-
ment graphs are generated in a similar model by sampling the
distribution for each game to determine whether the lower
ranked team defeated the higher ranked team. The largest
cup balanced competitions found in practice are those used by
professional tennis where there are 128 participants. For each
probability matrix, every team is tested to determine whether
the probability of the team winning could be increased from
expected and, for each tournament graph, every team is tested
to determine whether there exists a seeding which would en-
sure their victory. All of the families of restrictions were
tested except the 1110 family, since it is a strictly easier vari-
ant of the 0000 family, and the 1111 family, which can be
solved in linear time using simple checks. For most families
of restrictions the random instances generated were quickly
solved (within a few seconds). Only in a single family of
restrictions, the 010X family, under the deterministic model
were there instances which timed out and there were rela-
tively few of those.

Tables 1 and 3 show the percentage of teams that could be
manipulated for a given rank and that even relatively small
restrictions can drastically reduce the number of teams which
could be made winners via seeding manipulation. As ex-
pected, it is more likely that the scheduler could generate a
seeding manipulation strategy for strong teams. The results
show that, at least on these instances, seedings can be easily
generated to manipulate the results of the tournament. There-
fore, the cup competitions are open for potential abuse by the

Table 1: Deterministic (win/loss) model (NCAA). The ef-
fect of seeding restrictions on the percentage of teams that
could be made the winner via manipulation of the seeding,
for various tournament sizes and rank of team i = 1, 4, 8,
12, 16. Each entry is the average of 100 instances.

Model Size 1 4 8 12 16
16 97 95 95 82 32
32 100 100 100 100 87

Unrestricted 64 100 100 100 100 100
(00XX) 128 100 100 100 100 100

256 100 100 100 100 100
Size 1 4 8 12 16

16 97 95 95 82 32
32 97 96 93 85 37

Pooled 64 99 99 98 88 40
(10X0) 128 99 97 96 85 44

256 98 97 96 87 39
Size 1 4 8 12 16

16 88 68 20 11 0
32 100 100 93 90 6

NCAA 64 100 100 100 100 16
(010X) 128 100 100 100 100 32−33†

256 100 100 100 100 0−51†
Size 1 4 8 12 16

16 88 68 20 11 0
32 83 65 20 7 0

Tennis 64 85 64 17 7 0
(1101) 128 86 61 16 6 0

256 84 58 17 6 0
† Percentage is given as a range as not all instances could be

solved to optimally due to resource restrictions.

scheduler of the competition from a practical point of view.
Tables 2 and 4 show the difference between the expected

probability of a team of rank i winning and the average prob-
ability of a team of the same rank winning under heuristic
manipulation. A larger difference implies there is greater in-
centive for manipulation. The results show that for uncon-
strained problems there is a significant incentive for cheating,
especially if they desire top ranked teams to win. However, as
restrictions are added this incentive is reduced. This is partic-
ularly true for those models with a team arrangement restric-
tion. For the 1101 family of restrictions, there is virtually no
incentive for changing the seeding to improve the chances of
weak teams and little incentive for even the strongest teams.

6 Discussion and Conclusion
Cup competitions are prevalent in sports. Given our experi-
mental results, it is possible to make recommendations about
the method for organizing such a competition in order to pre-
vent or reduce the possibility that a cup competition can be
manipulated in favor of a particular team by manipulating the
seeding. The basic idea is that certain combinations of restric-
tions make it either impossible or more difficult to manipulate
the seeding.

From the deterministic results in Tables 1 and 3, the oppor-
tunity for a scheduler to manipulate the competition increases



Table 2: Probabilistic model (NCAA). The effect of seed-
ing restrictions on the increase in the expected probability (×
100) of winning the competition due to seeding manipulation
over a fair seeding, for various tournament sizes and rank of
team i = 1, 4, 8, 12, 16. Each entry is the average of 100
instances.

Model Size 1 4 8 12 16
16 11.9 9.2 3.7 1.5 0.2
32 11.7 8.4 2.5 0.7 0.0

Unrestricted 64 9.5 5.8 1.6 0.3 0.0
(00XX) 128 7.4 3.9 0.8 0.1 0.0

256 5.9 2.5 0.4 0.0 0.0
Size 1 4 8 12 16

16 12.0 9.1 3.7 1.5 0.2
32 7.4 4.8 1.2 0.4 0.0

Pooled 64 4.2 2.4 0.4 0.1 0.0
(10X0) 128 2.4 1.1 0.1 0.0 0.0

256 1.3 0.5 0.1 0.0 0.0
Size 1 4 8 12 16

16 1.3 3.2 0.4 0.2 0.0
32 3.5 1.7 0.4 0.0 0.0

NCAA 64 2.1 1.0 0.2 0.0 0.0
(010X) 128 1.6 0.6 0.1 0.0 0.0

256 1.1 0.4 0.0 0.0 0.0
Size 1 4 8 12 16

16 1.7 2.9 0.4 0.2 0.0
32 1.1 1.4 0.1 0.0 0.0

Tennis 64 0.6 0.6 0.0 0.0 0.0
(1101) 128 0.3 0.3 0.0 0.0 0.0

256 0.2 0.1 0.0 0.0 0.0

as fewer restrictions are applied. Therefore, if a scheduler is
assumed to have perfect or near perfect information about the
teams in the competition, the only method for increasing the
difficulty of manipulation is to increase the number of restric-
tions on the seeding. NHL Hockey, NBA Basketball and NFL
Football, for example, do not use a scheduler as the seeding
is fully determined by the restrictions.

However, it is often the case that the scheduler will not have
perfect knowledge about the outcome of each game and must
rely on probabilistic data to construct a manipulated seeding.
Tables 2 and 4 show that there is variability in the incentive
for manipulation by the scheduler between various families of
restrictions when using a heuristic manipulation scheme. Un-
like the deterministic case, the argument made for restrictions
in the probabilistic case is that certain restrictions reduce the
incentive for cheating. Pooling restriction by itself seems to
have little effect on the ability of the scheduler to generate
a seeding which improves the probability of tw winning. In
contrast, for the heuristic tested, team arrangement has a sig-
nificant effect even when the rank is allowed to vary by one
from the actual ranking of the team.

Given these results, it seems prudent for the organizers of
the competitions to enforce team arrangement as this can re-
duce the incentive for manipulating the seeding. Pooling re-
strictions can be helpful when used in conjunction with team
arrangement but provides little protection when used without

Table 3: Deterministic (win/loss) model (Tennis). The effect
of seeding restrictions on the percentage of teams that could
be made the winner via manipulation of the seeding, for
various tournament sizes and rank of team i = 1, 4, 8, 12,
16. Each entry is the average of 100 instances.

Model Size 1 4 8 12 16
16 100 99 99 93 54
32 100 100 100 100 95

Unres. 64 100 100 100 100 100
(00XX) 128 100 100 100 100 100

256 100 100 100 100 100
Size 1 4 8 12 16

16 100 99 99 93 54
32 99 99 99 91 55

Pooled 64 99 99 98 90 60
(10X0) 128 99 99 98 89 60

256 99 99 98 90 58
Size 1 4 8 12 16

16 89 87 55 23 11
32 100 100 100 98 72

NCAA 64 100 100 100 99 94
(010X) 128 100 100 100 99−100† 81−100†

256 100 100 100 99−100† 97−100†
Size 1 4 8 12 16

16 89 87 55 23 11
32 89 80 53 26 9

Tennis 64 90 75 47 20 8
(1101) 128 90 78 46 20 8

256 91 75 45 20 8
† Percentage is given as a range as not all instances could be

solved to optimally due to resource restrictions.

additional restrictions. As in the deterministic cases, further
restrictions do decrease the probability that a team can manip-
ulate the competition but this is sometimes undesirable. For
example, fixed pooling in a competition like the NCAA Di-
vision I Championship may cause two top teams to be paired
before the lucrative Final Four portion of the competition. A
seeding that produces this result would be undesirable even
though it could reduce the incentive to manipulate.

As fully restricting the seeding is sometimes undesirable or
difficult, it is also necessary to detect cheating when it occurs.
Random drawing could be used but suffers from two issues:
the seeding may contain matchups that are undesirable and
draw rigging is a common issue because the randomization
process can be corrupted. In tennis, for example, only the top
32 players are drawn in public to ensure certain properties to
the seeding but the other 96 players are drawn by a computer
program, which could be designed to implement a manipu-
lated seeding as described in this work. Coleman et al. [2010]
examined the bias of selection in the NCAA Division I Bas-
ketball championship and concluded that the bias was due to
in part the discrepancy between the perceived ranking and ac-
tual ranking. There are many different ranking measures that
could be used to construct a likely ranking of teams and com-
pared against the results (e.g., see [Cassady et al., 2005] and
references therein). One important thing to note here is that
the quality of the detection is highly dependent on the qual-



Table 4: Probabilistic model (Tennis). The effect of seed-
ing restrictions on the increase in the expected probability (×
100) of winning the competition due to seeding manipulation
over a fair seeding, for various tournament sizes and rank of
team i = 1, 4, 8, 12, 16. Each entry is the average of 100
instances.

Model Size 1 4 8 12 16
16 4.1 3.7 1.7 1.2 0.1
32 3.8 2.7 0.9 0.4 0.1

Unrestricted 64 3.1 1.7 0.4 0.1 0.1
(00XX) 128 2.6 1.1 0.2 0.1 0.0

256 2.1 0.6 0.1 0.0 0.0
Size 1 4 8 12 16

16 4.1 3.7 1.7 1.2 0.1
32 2.6 1.8 0.7 0.3 0.0

Pooled 64 1.7 0.8 0.2 0.1 0.0
(10X0) 128 1.0 0.3 0.1 0.0 0.0

256 0.6 0.1 0.1 0.0 0.0
Size 1 4 8 12 16

16 1.5 0.8 0.3 0.2 0.1
32 1.3 0.9 0.3 0.1 0.0

NCAA 64 1.3 0.6 0.1 0.0 0.0
(010X) 128 1.1 0.4 0.1 0.0 0.0

256 0.8 0.2 0.1 0.0 0.0
Size 1 4 8 12 16

16 1.5 0.8 0.3 0.2 0.1
32 0.9 0.4 0.1 0.1 0.0

Tennis 64 0.6 0.2 0.0 0.0 0.0
(1101) 128 0.3 0.1 0.0 0.0 0.0

256 0.2 0.0 0.0 0.0 0.0

ity of the assumed ranking and, therefore, is only as good as
the ranking model used. With pooling, pool arrangement and
team pairing, it is more difficult to analyze this type of manip-
ulation. Since a fair seeding of a unfixed restriction should be
random, a deviation from random on a set of seedings would
have to be shown in order to conclude that cheating was oc-
curring. For example, if a particular team or group of teams
was always favorably pooled away from their strongest oppo-
nents and this occurred over a number of different seedings
then there would be cause for further investigation.

In conclusion, seeding manipulation is a known issue in
sports competitions [Coleman et al., 2010] and previous work
focuses on the complexity of manipulation [Lang et al., 2007;
Hazon et al., 2008; Vu et al., 2009] and on the existence of
effective techniques for manipulation [Hazon et al., 2008]. In
contrast, this work looks at examining whether seeding ma-
nipulation is possible under realistic restrictions and deter-
mining the incentive for manipulation under the same set of
restrictions. Against a scheduler with perfect knowledge, the
only effective method for reducing the possibility of manipu-
lation is to introduce additional restrictions. However, in the
probabilistic case, experimental data suggests that organizers
combating seeding manipulation should restrict the seeding
with a specific team arrangement and, if possible, other re-
strictions. This is shown to be an effective method for re-
ducing the incentive for seeding manipulation, especially for

weakly ranked teams. As a completely restricted seeding is
undesirable in some cases, detection methods such as the one
described by Coleman et al. [2010] should be used in con-
junction with the enforced restrictions. The combined use of
restrictions and detection provides the organizers of competi-
tions with tools to combat seeding manipulation by reducing
the incentive for manipulation.
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