
Consistency Propagation for Stretch Constraints

by

Lars Hellsten

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2004

c©Lars Hellsten 2004

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions or indi-

viduals for the purpose of scholarly research.

I further authorize the University of Waterloo to reproduce this thesis by photocopying

or by other means, in total or in part, at the request of other institutions or individuals

for the purpose of scholarly research.

ii

Abstract

Scheduling and rostering problems are among the most common applications of con-

straint programming. In this thesis, we explore several global constraints for rostering

problems. We demonstrate algorithms for efficiently enforcing domain consistency for these

constraints, and show empirically that achieving this strongest possible level of consistency

is not only of theoretical interest, but also has substantial value in practical applications.

The focus of the thesis is a domain consistency algorithm for the stretch constraint

based on dynamic programming. We also present an incremental version that sometimes

performs better in practice, but requires more memory. We then show how this constraint,

along with our algorithms, can be generalized to variants that subsume other rostering con-

straints from the literature. For certain other extensions of stretch that seem intuitively

simple and useful, we prove that enforcing domain consistency is NP-hard.

iii

Acknowledgements

I would like to thank my supervisor, Peter van Beek, for his many helpful suggestions, guid-

ance, and collaboration; Gilles Pesant for his assistance in providing benchmark problems

and running experiments; and my readers, Gordon Cormack, and Alejandro López-Ortiz

for their time. I also would like to express my gratitude to the Natural Sciences and Engi-

neering Research Counsel and the University of Waterloo for supporting my work through

scholarships.

iv

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 2

1.3 Contributions of the Thesis . 3

2 Background 5

2.1 Preliminaries . 5

2.2 Search Techniques . 7

2.2.1 Backtracking . 7

2.2.2 Variable Ordering . 8

2.2.3 Value Ordering . 9

2.2.4 Constraint Propagation . 9

2.3 Global Constraints . 12

2.3.1 A Motivating Example . 13

2.3.2 The alldifferent Constraint . 13

2.3.3 The Global Cardinality Constraint 16

2.3.4 The stretch Constraint . 16

2.3.5 Applying Global Constraints . 18

3 Propagation Algorithms for the Stretch Constraint 21

3.1 A Simple Propagation Algorithm . 22

3.1.1 Analysis . 25

3.2 A Faster Propagation Algorithm . 27

v

3.2.1 Computing Reachability . 27

3.2.2 Pruning Values . 29

3.2.3 Analysis . 34

3.3 Incremental Propagation . 38

3.3.1 Overview . 38

3.3.2 An Incremental Algorithm for stretch 39

3.3.3 Analysis . 44

3.4 Cyclic Rosters . 46

4 Empirical Results 48

4.1 Benchmark Problems . 48

4.2 Random Problems . 51

5 Generalizing Stretch 55

5.1 Counting Stretches . 56

5.2 Smooth Stretches . 59

5.3 Grouping Types . 60

5.4 Intractable Variations . 62

5.4.1 Forcing Shift Appearances . 62

5.4.2 Creating Multiple Rosters . 64

5.5 Other Extensions . 68

6 Conclusions 70

6.1 Stretch Problems . 71

6.2 Future Work . 71

Bibliography 73

vi

List of Tables

2.1 CSP formulation for the 4-queens problem 7

2.2 AC and binary inequalities vs. GAC and alldifferent 14

2.3 Sample scheduling constraints . 19

3.1 A simple stretch instance . 24

3.2 Building the count table . 24

3.3 Building the forward table . 30

3.4 Building the backward table . 30

3.5 Trace of MarkValues . 32

3.6 Re-establishing domain consistency after variable assignment 33

3.7 Example of weaker pruning by Pesant’s algorithm 35

3.8 Example of weaker pruning after setting s7 ← C 35

3.9 Example of weaker pruning after setting s0 ← C 36

3.10 How propagation effects are not localized 39

4.1 Benchmark instances with minimum domain size heuristic 50

4.2 Random cyclic instances . 51

4.3 Random non-cyclic instances . 53

4.4 Random non-cyclic instances 2 . 54

5.1 Finding disjoint stretches . 64

5.2 Finding disjoint stretches 2 . 65

5.3 Example transformation from 3DM to parallel stretch 69

vii

List of Figures

2.1 Solutions to the 4-queens problem . 7

2.2 Search tree using backtracking with AC . 15

2.3 Domains corresponding to Table 2.3 . 19

2.4 Solution corresponding to Table 2.3 . 20

3.1 The auxiliary graph built by IC . 40

viii

Chapter 1

Introduction

1.1 Overview

Constraint Programming (CP) is a quickly growing interdisciplinary field of Computer

Science. As a general programming paradigm for solving hard search problems, it currently

has widespread applications, and the increasing power of computer hardware makes it

amenable to solving many previously intractable problems. In this thesis, we focus on

constraint programming techniques for scheduling and rostering problems.

The history of CP traces back to the study of artificial intelligence (AI) and program-

ming languages. Logic programming languages such as Prolog have traditionally been ex-

ploited in AI because their declarative nature is useful for expressing logic and reasoning.

Constraint Logic Programming replaces unification in logic programming with constraints

to yield a more expressive and efficient model for many problems. From here, CP was

born as the general field of solving constraint satisfaction problems without drawing any

distinction between imperative, functional, or declarative forms.

One idealistic vision that many would like to see computing evolve towards is the ability

to specify a problem in some highly abstracted form involving mathematical notation, or

even natural language, and have the computer return an answer. Declarative programming

languages bring us closer to this than imperative languages, but in some sense are limited

by the fact that there is often a tradeoff between algorithmic expressibility and problem

expressibility. By this we mean that Prolog, for example, provides a very clean and elegant

1

1.2. Motivation 2

way to express a problem using logic, but more so if one does not care about how the

problem is solved. In order to solve a problem efficiently, one often needs to express the

problem in a less-than-straightforward manner. Functional languages are the opposite,

in that algorithms can be expressed in a very precise and elegant way, but the programs

do not really say much about the problem itself. In some sense, constraint programming

aims to bridge this gap by decoupling algorithmic implementation details from problem

modeling.

1.2 Motivation

One of the major application areas of CP is in scheduling and planning. Problems in this

area tend to be NP-hard combinatorial problems, and because of their difficulty, most

any approach will involve a search algorithm with heuristics. Thus, while clever one-off

algorithms can help dramatically sometimes, they are usually targeted at specific classes of

instances of the problem, and there is no guarantee that they will be able to solve general

instances efficiently in the worst case.

When one is resigned to solving a problem through brute force application of computing

power in the worst case, there may be little reason not to use CP. It is an approach

that provides an extraordinarily easy and general way of modeling problems, and most

constraint solvers will run efficiently on a wide range of problems, especially if the problem

is decomposed into constraints in an effective manner.

In many cases, the propagation techniques and heuristics employed by a constraint

solver would take a significant amount of research and development to devise from scratch;

and solving the problem in terms of already known constraints that result in good propa-

gation may be the best approach that is found in the end, despite significant effort.

Moreover, scheduling problems often arise naturally in the form of constraints placed

on certain variables. It is also quite natural for these constraints to change or be used in

different combinations. The differences in constraints may be significant enough that a one-

off algorithm or heuristic for solving one problem efficiently is completely ineffective when

applied to a slightly different problem. In such situations, the more general framework of

CP is particularly useful.

1.3. Contributions of the Thesis 3

In many business and industrial settings there are certain work tasks that must be

performed at specific times of day. Different shifts often require different types (or numbers)

of workers, and the organization may operate continuously—around the clock, seven days a

week. In such scenarios, one typically wants to create a balanced schedule for the workers.

Workers’ shifts should be compressed together as much as possible so that the same is true

of their free time; they should not work too many shifts in a row; and they should have

an appropriate amount of time off between work stretches. The stretch constraint was

introduced by Gilles Pesant in [14] as a way to model these sorts of problems. Its main

features are the ability to enforce lower and upper bounds on the number of shifts worked

in a row by an employee, and the ability to restrict the types of shifts that can occur in

succession (e.g. forcing work stretches to be followed by rest periods). It is also able to

handle rotating schedules, where there is no distinction between the beginning and end of

the roster (e.g. 24-hour, seven day a week operations). Gilbert Laporte discusses other

techniques for designing rotating schedules in [11].

1.3 Contributions of the Thesis

In this thesis we focus on sequencing problems, which we loosely define as scheduling and

rostering problems involving variables that are ordered sequentially.

Our main contribution is an algorithm for enforcing domain consistency for the stretch

constraint, which is defined in Section 2.3.4. This is a stronger level of consistency than

any previous algorithm has achieved, and our empirical results in Chapter 4 show that

the stronger consistency can make a substantial difference in practice. We also describe

a second, incremental algorithm for domain consistency, which has slightly higher space

complexity, but manages to save state between invocations to reduce the total amount of

work done.

A secondary contribution is the generalization of stretch to various forms that subsume

the change, smooth, group, count, and among constraints, all of which appear in the

literature [2]. These constraints are discussed in Chapter 5. This work is important because

in our case, and indeed most cases where domain consistency can be easily enforced, it

is more efficient to use a single constraint than to split the constraint up into multiple

1.3. Contributions of the Thesis 4

constraints that are enforced independently.

Finally, in Chapter 5 we show that certain other generalizations that seem useful and

arise naturally from stretch turn out to be intractable problems by proving the NP-

completeness of the corresponding decision problems. This implies that it is NP-hard to

achieve the strong level of consistency propagation that we were able to for the stretch

constraint.

Chapter 2

Background

2.1 Preliminaries

In this section we give definitions of the basic terminology of Constraint Programming that

we will use throughout this thesis.

Definition (CSP). A Constraint Satisfaction Problem (CSP) is a tuple 〈V ,D, C〉, where

• V = {x1, . . . , xn} is a finite set of variables.

• D = {D1, . . . , Dn} is a finite set of domains. There is always one domain Di corre-

sponding to each variable xi. We will frequently use the notation dom(x) to mean

the domain associated with x, or dom(V) =
⋃

x∈V dom(x) for a set of variables.

• C = {C1, . . . , Ck} is a set of constraints. For a constraint Ci, vars(Ci) ⊆ D is the set

of variables to which Ci applies, and Ci is a subset of the Cartesian product of the

domains of these variables.

• A value is simply an element of some domain. We will often use the term to mean a

value of a specific variable’s domain when it is clear from context (e.g. “removing a

value” never means removing that value from all domains).

Definition (Variable Assignment). A variable assignment for a given CSP is a tuple

t ∈ D1 × · · · × Dn. In other words, for each variable we pick one value from its domain.

The notation t[x] refers to the value assigned to the variable x in t.

5

2.1. Preliminaries 6

Definition (Solution). A solution to a CSP is a variable assignment S that satisfies each

of the constraints; for all C ∈ C, S ∈ C. We say that a CSP is consistent if it has a

solution, and inconsistent otherwise.

Definition (Support).

• A domain support for a value v of a variable x with respect to a constraint C is a

variable assignment t ∈ C with t[x] = v. If a value does not have a domain support

with respect to any of the constraints of a CSP, then it is useless and can be removed.

Detecting all such values is often difficult, however.

• When the domains are totally ordered, we denote the smallest and largest values in

a domain D as min(D) and max(D), respectively. An interval support for a value v

of a variable x, with respect to a constraint C, is a tuple t ∈ C such that t[x] = v

and for every y ∈ vars(C), min(dom(y)) ≤ t[y] ≤ max(dom(y)).

So, in summary, a CSP is a set of variables that each have a domain of values associated

with them, and constraints on what combinations of values are allowed to be assigned

to the variables. Our formalization of constraints is not especially intuitive, since we

rarely express a constraint as an explicit set of tuples when there is a more compact way,

and often the set vars(C) for a constraint C is made implicit by the description of the

constraint. For example, we might specify a problem in terms of arithmetic constraints

such as E : x5 + x2
2 < x9. Here, vars(E) = {x2, x5, x9}. Any variable that is not in vars(E)

is allowed to take on any value in its domain without violating the constraint.

An example of a CSP is the N -queens problem, which is to place N queens on an empty

N × N chess board in such a way that no queen can attack another. In other words, no

two queens share the same rank (row), file (column), or diagonal. Table 2.1 shows how we

might model the 4-queens problem using a variable for each column, and binary inequality

constraints. Figure 2.1 shows the two solutions.

Algorithms for solving CSPs usually attempt to reduce the domains of the variables

as much as possible while preserving all of the solutions. The general problem of deciding

whether a given CSP is consistent is obviously NP-complete, since it is trivial to model

most NP-complete problems in CSP form. In practice, though, the constraints we employ

2.2. Search Techniques 7

Table 2.1: CSP formulation for the 4-queens problem. There are four variables and

3
(
4
2

)
= 18 binary inequality constraints.

4queens({x1, x2, x3, x4})
• dom(xi) ⊆ {1, 2, 3, 4}
• xi �= xj (for i > j)

• xi �= xj − (i − j) (for i > j)

• xi �= xj + (i − j) (for i > j)

Figure 2.1: Solutions to the 4-queens problem.

x2 x3 x4x1x1 x2 x3 x4

are not just arbitrary tuples, and have a structure that is characteristic of some aspect of

the problems which they can model. The science of CP involves looking for ways to exploit

this structure to solve problems more effectively.

2.2 Search Techniques

2.2.1 Backtracking

The typical approach to solving CSPs is to use some variant of backtracking, combined

with domain reduction. The generic backtracking algorithm is essentially a refinement of

brute force search, which systematically generates all possible solutions and tests if they are

valid. In backtracking, this process is combined with consistency checks. In the simplest

backtracking approach, variables are assigned values one at a time in a recursive manner.

2.2. Search Techniques 8

After each variable is bound, we test if any of the constraints are violated by the variable

assignments that have been made to this point. If so, we retreat and try a different value for

the most recently assigned variable, avoiding the cost of needlessly binding any remaining

variables when there is no way to reach a solution. Once all possible values for a variable

under consideration have been tried, we backtrack to the variable that preceded it and try

assigning the next possible value to it.

There are more sophisticated backtracking algorithms. For example, backjumping

records the most recently bound variable that has caused a conflict with the variable

currently being considered. The variables bound after this latest conflicting variable and

before the variable under consideration have no bearing on the consistency of the problem,

so there is no point in binding them to different values until the value of the conflicting

variable has changed. Therefore, backjumping reverts directly to the most recent conflict.

This approach typically performs better than the simple backtracking described above, and

never any worse. Kondrak and van Beek outline different backtracking algorithms in [10],

and characterize them based on the nodes they visit in the search tree.

In the rest of this section we look at three of the common heuristics used to speed up

the search process in constraint solving.

2.2.2 Variable Ordering

The order in which a backtracking algorithm assigns values to variables can make a very

large difference in its running time. There are two major reasons for this: first, some

variables may be independent of any solution; second, some variables may give us more

information than others and lead to better constraint propagation. We will discuss the

latter in more detail below.

There are two main types of variable orderings:

• In a static variable ordering heuristic, the ordering is chosen before the algorithm

begins, and does not change throughout its execution.

• A dynamic variable ordering heuristic chooses the next variable to consider on the

fly, once the current variable has been bound to a value.

2.2. Search Techniques 9

Ordering variables in increasing order of the sizes of their domains is an example of

a strategy that is often useful, and can be implemented either statically or dynamically.

Often dynamic orderings work best, but some heuristics are based on information that

does not change throughout the search, or that is too expensive to be worth computing

more than once.

Variable ordering heuristics are usually based on the so-called “fail first” principle

described by Haralick and Elliott [7], which says that it is usually preferable to try branches

that are likely to fail first. On the surface this may seem counter-intuitive, since we would

like to find a solution as quickly as possible, but this is resolved by realizing that all but

a negligible amount of the time taken to find a solution is spent ruling out bad choices.

Therefore, the earlier the search detects the bad choices it makes, the faster it will complete.

2.2.3 Value Ordering

When a given variable is considered by a backtracking algorithm, it may have multiple

values remaining in its domain. The order in which these values are considered can affect

the running time of the search. In contrast to variable ordering, the goal of value ordering

heuristics is based on the “succeed first” principle: it is better to prefer values that are

most likely to yield a solution.

This difference in principles from variable ordering is explained by the fact value or-

dering only affects the order in which branches are visited in the search tree, and not the

depth or breadth of the tree. If a branch does not contain a solution, then value ordering

is useless within it, since the entire tree will be searched regardless of the ordering. It is

preferable to avoid these useless branches. This also means that value ordering is most

effective when employed as a counterpoint to a good variable ordering heuristic.

As with CSPs where there is no solution, if we want to find all solutions of a CSP, value

ordering is not helpful.

2.2.4 Constraint Propagation

Constraint propagation is the process of reducing the domains to obtain a simpler CSP

that is equivalent to the original, where equivalence is defined as having the same set of

2.2. Search Techniques 10

solutions. Reducing the domains can speed up the execution of a solver significantly, by

eliminating branches of the search tree.

Propagation algorithms are essentially inference algorithms that attempt to deduce that

certain values cannot be used in any solution that satisfies a certain constraint. We use the

term (local) consistency in reference to the goal of a propagator for a specific constraint.

Note that this differs from the notion of (global) consistency defined in Section 2.1. The

latter deals with the overall solubility of the CSP. We will see that local consistency does

not imply global consistency, and vice-versa.

There are different kinds of consistency that occur frequently, some of which are stronger

than others, and we mention several of them below. It is useful to classify propagators

according to the level of consistency they achieve, although it should be noted that the

effectiveness of a particular class depends heavily on the constraint considered. For some

constraints, anything other than domain consistency may be too weak to be of much

interest. Certain types of consistency may be inapplicable (e.g. bounds consistency when

the domains are not totally ordered). In other some cases, what initially appears to be a

weaker form of consistency may even turn out to be equivalent to domain consistency.

Arc Consistency

Arc consistency (AC) is the most elementary type of consistency, and applies to binary

constraints. Recall that a support for a value of a domain with respect to some constraint

is a variable assignment that is consistent with the constraint. A binary constraint on

(x1, x2) is AC if dom(x1) and dom(x2) are both non-empty, each value in dom(x1) has a

support, and each value in dom(x2) has a support.

Unlike any of the subsequent levels of consistency we discuss, AC is simple enough that

it is commonly applied on a global basis. A CSP consisting entirely of binary constraints,

or a binary constraint network, is said to be AC if each of the binary constraints is AC.

As we alluded to above, simply propagating AC for each constraint does not ensure global

AC. The removal of values when considering a specific constraint may cause the CSP to

become non-AC with respect to a constraint that was previously considered.

Iteratively propagating AC for every constraint solves this problem, but it turns out to

be feasible and often less expensive to propagate global AC using a direct algorithm that

2.2. Search Techniques 11

considers all of the constraints at once. The problem has been well-studied, largely because

any CSP can be transformed into a binary constraint network. The two most common

approaches are compared by Bacchus and van Beek in [1]. (However, such transformations

often require exponentially greater space and running time than the original non-binary

constraint.) Many algorithms for propagating global AC have been proposed. Mohr and

Henderson [13] were the first to achieve the optimal worst-case complexity of O(ed2) with

their AC-4 algorithm. Here e is the number of binary constraints, and d is the size of the

largest domain. The bound corresponds to the worst-case complexity of the input size;

when each constraint consists of O(d2) tuples. Several other AC algorithms have since

been proposed that also achieve theoretical optimality, for example by Bessiére [4].

Bounds Consistency

The remaining types of consistency we cover apply to constraints on arbitrary numbers

of variables. Unlike in binary constraint networks, it is impractical to consider such con-

straints as a set of allowed tuples. As a result, any efficient propagator must take into

account the specific structure of the constraint involved. Therefore, it does not make sense

to consider constraint-independent algorithms for achieving consistency globally as with

AC.

Bounds consistency is often of interest when the domains are totally ordered. A con-

straint C is bounds consistent if for every x ∈ vars(C), both min(dom(x)) and max(dom(x))

have an interval support in C. Bounds consistency is often particularly useful for con-

straints involving intervals, where supports for the minimum and maximum values likely

imply support for everything in between. For some constraints, bounds consistency implies

range consistency.

Range Consistency

Like bounds consistency, range consistency is specific to totally ordered domains. A con-

straint C is range consistent if for every x ∈ vars(C), every v ∈ dom(x) has an interval

support in C. For constraints where an interval support implies a domain support, range

consistency is equivalent to domain consistency.

2.3. Global Constraints 12

Domain Consistency

Domain consistency is sometimes called generalized arc consistency (GAC), and as that

name implies, it is a generalization of AC to non-binary constraints. A constraint C is

domain consistent if for every x ∈ vars(C), every v ∈ dom(x) has a domain support.

Propagating domain consistency means removing every value that cannot appear in some

variable assignment that satisfies C. It is therefore the strongest level of local consistency

possible.

In general, deciding if a CSP is globally domain consistent is NP-complete, since the

case where all domains are empty is equivalent to deciding whether there is a solution.

However, deciding whether an individual constraint is domain consistent is often tractable.

2.3 Global Constraints

We can classify the types of constraints we deal with in CP into two categories: k-ary

constraints, and global constraints. The former are simply, as the name implies, constraints

that act on k variables at once, for some fixed value of k. The most common type are binary

constraints, which act on two variables; for example, arithmetic constraints of the form

x1 < x2, x1 �= x2, etc. Global constraints act on an arbitrary number of variables, often

depending on the specific problem instance they are being applied to.

All of the constraints we discuss in this thesis are global constraints. There are two

particularly compelling reasons why global constraints are important. The first is that they

provide a way to formulate complex relationships between variables. Such relationships

may not be easy to express otherwise, and for many of the constraints discussed later

in this thesis, modeling them as binary constraints would complicate their formulation

substantially (this will become obvious once we introduce the constraints).

Secondly, the use of global constraints can lead much better domain reduction than

would otherwise be possible. There are many global constraints, such as those we intro-

duce later in this section, which are amenable to efficient domain consistency propagation,

whereas other representations of the constraint would not even come close. This is because

they have a global structure of which one can only capture bits and pieces with just a fixed

number of variables worth of information.

2.3. Global Constraints 13

2.3.1 A Motivating Example

To motivate much of our discussion during the consideration of specific global constraints,

we present an example of a realistic sequencing problem. Consider a computing support

help desk staffed by students from 9am until 5pm, Monday to Friday. The diligent scholars

work part-time for several hours a week to help subsidize the lavish lifestyle that graduate

school entails. For various reasons of convenience, each day is broken down into hour-long

shifts, to which the staff is assigned. Creating the weekly timetable is often challenging,

because it must be planned around the classes and other activities of the workers.

The obvious way to model this problem includes a variable for each of the 40 shifts

during the work week, {s0, s1, . . . , s39}, with the domains indicating which staff members

are available to work the shift. This allows us to easily account for the shifts where certain

staff members are unavailable. But this alone is clearly unacceptable. One possible solution

to this CSP would be to simply assign each variable the first value in its domain, possibly

resulting in one student working all 40 shifts!

To be more realistic, we need to prescribe a minimum and maximum number of shifts

that each person will work. For this, binary constraints would only be sufficient if the

maximum number of shifts is one. Otherwise, one must look at more than two variables

to determine if the conditions are satisfied. Short of reformulating the problem as a CSP

exponential in the maximum number of shifts, global constraints are necessary. We thus

devote the rest of this section to some specific global constraints that can help us solve our

problem, and to further developing this example with the help of additional constraints.

2.3.2 The alldifferent Constraint

The alldifferent constraint is one of the simplest and most common global constraints.

As the name indicates, it forces all variables to be assigned different values. Régin de-

scribes an algorithm based on bipartite matching for achieving domain consistency for

alldifferent in [17] which has complexity O(dn
√

n), where d is the maximum number

of values in any variable’s domain, and n is the number of variables.

In order to see how this constraint might be useful, we revisit the help desk example.

Suppose that the noon hour shifts tend to be particularly busy, and that in order to fairly

2.3. Global Constraints 14

alldifferent({x1, x2, . . . , xn})
• xi �= xj for i �= j

distribute the workload, we want to avoid having the same person work two different noon

hour shifts during the week. The variables x(8i+3) correspond to these shifts, and one

solution is to impose the 10 binary constraints:

x(8i+3) �= x(8j+3) where 0 ≤ i < j ≤ 4

But using n(n−1)/2 binary constraints is not a very compact representation if one has

to list them all. Using alldifferent, we only need a single constraint:

alldifferent(x3, x11, x19, x27, x35)

Table 2.2: AC and binary inequalities vs. GAC and alldiffferent.

Variable AC domains GAC for alldifferent

x1 {1, 2, 3, 5} {5}
x2 {1, 2, 3} {1, 2, 3}
x3 {1, 2, 3} {1, 2, 3}
x4 {1, 2, 3} {1, 2, 3}
x5 {1, 2, 3, 4, 5} {4}

More importantly than the representation, enforcing AC on the binary constraints is

far less powerful than enforcing domain consistency (or even weaker forms of consistency

like range or bounds consistency) on the alldifferent constraint. This is illustrated in

Table 2.2. Now, imagine solving this example using standard (chronological) backtracking

with AC propagated on the binary constraints after each variable assignment, with variables

and values considered in lexicographic order. Figure 2.2 shows the corresponding search

tree, in which all but the path from the root to the rightmost leaf represents wasted work

that does not lead to a solution. In contrast, modeling the problem with the alldifferent

2.3. Global Constraints 15

constraint and propagating domain consistency ensures that no backtracking occurs – the

search tree becomes linear.

Figure 2.2: Search tree using backtracking with AC.

2

x4x4

x3x3

x4 x4

x3 x3

3 3

x4 x4

2

x3x3

x2

x3

x5

x4

x2 x2 x2

x1

1

2

3

4

11

3 3

3

1 2

2

51 2

1

We can also use the alldifferent constraint to address the problem of restricting

the number of shifts each person works during a week, by formulating the problem slightly

differently. Let hi denote the maximum number of hours the i-th staff member should work

during the week. Instead of having a single type of value for each employee, we introduce

hi values for employee i, and an alldifferent constraint over all variables. Since none

of the values corresponding to worker i can be used more than once, he is allocated at

most hi shifts. This formulation has the drawback of significantly increasing the number of

2.3. Global Constraints 16

values, which will increase the cost of propagating domain consistency, and may blow up

the size of the search tree by an exponential factor. It also does not address the problem

entirely, since we still would like to place a lower bound on the number of shifts worked.

Otherwise, a few employees who don’t mind working many hours may monopolize all of

the shifts. Fortunately, the constraint we describe next resolves all of these concerns.

2.3.3 The Global Cardinality Constraint

The Global Cardinality Constraint (gcc) is a generalization of alldifferent. It allows us

to place a minimum and maximum cardinality on the occurrences of each value.

gcc({x1, x2, . . . , xn}, {l1, . . . , lk}, {u1, . . . , uk})
• The number of variables assigned value vi is at least li, and at most ui

The alldifferent constraint, of course, corresponds to the special case where li = 0

and ui = 1 for all values vi. Now we can express the limits on the number of shifts

each employee works in the help desk example in a natural way, following the original

formulation of the problem.

The existence of the gcc constraint does not make alldifferent obsolete, as propaga-

tion algorithms for the latter are faster. The best known algorithm for domain consistency

of gcc is an O(n2d) approach by Régin based on network flow theory [18]. In [16], an

efficient bounds consistency algorithm is presented by Quimper et. al.

2.3.4 The stretch Constraint

In most staffing problems, we would like to restrict the number of shifts a person works

in a row, in addition to their overall weekly workload. Placing a gcc constraint over all of

the shifts in a single day may not be a reasonable solution, since it would require that we

know ahead of time who is going to work on a given day. An equally important concern

is that the shifts not be too spread out. For example, it should be possible to ensure that

all of shifts assigned to a specific worker on a given day occur in one contiguous sequence

of shifts.

2.3. Global Constraints 17

The stretch constraint solves this problem by allowing us to constrain the length of

any maximal contiguous block of shifts all assigned the same type (also called a stretch).

This constraint also is the basis for most of the original contributions of this thesis, so we

will describe it in more detail than the global constraints we have considered up to this

point.

We call the variables that the stretch constraint acts on shift variables, and we will

label them S = {s0, s1, . . . , sn−1} to distinguish them from other types of variables in a

CSP. Each shift variable, of course, corresponds to a shift in a roster, and they are assumed

to be ordered by index. Note that the variables are indexed from 0. This is for convenience

when performing modular arithmetic for problems in which we want to consider sn−1 and s0

to be adjacent. We will discuss such circular versions of the problem in detail in Chapter 3.

Values represent shift types, and are labeled T = {τ1, τ2, . . . , τm}.
For a given assignment of values to variables, a stretch is a maximal sequence of consec-

utive shift variables that are assigned the same value. Thus, a sequence si, si+1, . . . si+k−1

is a stretch if si = si+1 = · · · = si+k−1, i = 0 or si−1 �= si, and i + k = n or si+k �= si.

We say that such a stretch begins at si, has span (alternatively, length) k, and is of type

value(si). We write span(sj) = k once the value of sj has been bound to denote the span

of the stretch through sj. The formulation of the constraint is summarized as follows.

stretch({s0, s1, . . . , sn−1}, Π, shortest, longest)

• dom(si) ⊆ T = {τ1, . . . , τm}
• shortest[si] ≤ span(si) ≤ longest[si]

• si = si+1 or (si, si+1) ∈ Π

The elements of the set Π ⊆ T × T are ordered pairs called patterns. A stretch of

type τi is allowed to be followed by a stretch of type τj, τj �= τi, if and only if (τi, τj) ∈ Π.

Note that pairs of the form (τk, τk) are redundant, since by the definition of a stretch two

consecutive stretches do not have the same value. The shortest and longest are arrays

that map shift types to lengths, indicating the minimum and maximum lengths allowed

for a stretch of any given type. We call a stretch of type τ through a variable sj valid if it

2.3. Global Constraints 18

satisfies

shortest[τ] ≤ span(sj) ≤ longest[τ].

The stretch constraint was originally proposed by Gilles Pesant in [14] as a means to

solve real-world timetabling problems. Pesant’s original propagation algorithm was based

on a series of heuristics, and although it often works well in practice and has a fairly good

running time, it does not achieve anything as strong as domain consistency, which we

will show in Chapter 3. In order to be successful, it needs a favourable variable ordering

or the absence of bad luck. The running time of Pesant’s algorithm is O(m2l2), where l

is the maximum length of any stretch. In Chapter 3, we provide a domain consistency

algorithm that has worst-case complexity comparable to this, and does better if l is large.

More recently, Pesant has done work on a regular expression constraint [15] for which he

has given an algorithm to enforce domain consistency. This constraint is able to model

stretch instances. However, it is not clear how to use it to model cyclic instances, and its

theoretical worst-case runtime and space complexity are both O(nm2l), which we are able

to beat.

2.3.5 Applying Global Constraints

Now that we have a few global constraints in our arsenal, we are ready to revisit the

problem described in Section 2.3.1. We will formulate a CSP to create a roster for a single

week. Since the shifts do not run for 24 hours, we would like to avoid considerng the last

shift of a day and the first shift of the next day to be adjacent. Therefore, we will insert

dummy variables (whose domains only contain a dummy rest value, R) between each block

of eight variables. We will use the example constraints on worker schedules in table 2.3 to

formulate the CSP using both the stretch and gcc constraints. Figure 2.3 illustrates the

corresponding variable domains.

The number of consecutive shift ranges in Table 2.3 map directly to bounds on stretch

lengths, and the ranges for the number of shifts each workers can have in total map to the

gcc lower and upper bounds. Therefore, we can model the example in a straightforward

manner using both the gcc and stretch constraints. The lower and upper bounds for the

rest shift type R in the gcc constraint is either 4, or the constraint may simply not be

applied to the rest shifts, s8, s17, s26, and s35. The stretch instance must include these

2.3. Global Constraints 19

Table 2.3: Sample scheduling constraints. Each worker has an associated range for work-

load (the total number of hours of workload they are willing to work during a week), a

range of the number of shifts they are willing to work in a row, and a list of times they are

unavailable to work.

Name Shift Type Workload Length Times Unavailable
Alice A [5, 5] [2, 3] 9:00-13:00 Mon, Wed, Fri; 14:00-16:00 Tue, Thu
Bob B [5, 8] [2, 5] 9:00-17:00 Mon, Tue, Fri
Clara C [5, 10] [5, 5] 12:00-15:00 Mon, Wed, Fri; 15:00-17:00 Thu, Fri
Dave D [10, 15] [3, 5] 9:00-11:00 Mon, Tue, Wed; 13:00-14:00 Tue, Wed, Thu
Elise E [10, 10] [4, 6] 14:00-17:00 Wed, Thu, Fri

Figure 2.3: Domains corresponding to the times workers are available in Table 2.3. Rows

and columns correspond to shift type (values) and shifts (variables), respectively. A row

and column is shaded if the domain of the corresponding variable contains the correspond-

ing value.

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 4320190 1 2 3 4 5 6 7 8 9 10 12 13 14 15 1611 17 18

B
C
D
E
R

A

Monday FridayWednesdayTuesday Thursday

variables, however, since their purpose is to force stretches to be interrupted. We set

shortest[R] = longest[R] = 1. We do not require patterns, so Π includes all ordered pairs.

One of the possible solutions to the CSP is shown in Figure 2.4.

2.3. Global Constraints 20

Figure 2.4: The highlighted stretches indicate one possible solution to our example.

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
������

�����
�����

�����
�����
�����

���
���
���

���
���
���

����
����
����
����

���
���
���
���

�����
�����
�����
�����

���
���
���
���

�����
�����
�����
�����

��
��
��
��

����
����
����
����

���
���
���
���

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 4320190 1 2 3 4 5 6 7 8 9 10 12 13 14 15 1611 17 18

Monday FridayWednesdayTuesday Thursday

B
C
D
E
R

A

Chapter 3

Propagation Algorithms for the

Stretch Constraint

In this chapter, we will present three propagation algorithms for enforcing domain consis-

tency for stretch. The first algorithm, DC (Domain Consistency), is simplest conceptually

and sometimes works best in practice because of its low overhead. It also forms the basis

for the extended variants of stretch that we discuss later. The second algorithm, FC

(Fast Consistency), is a slightly more complicated improvement of DC, but has a better

worst-case asymptotic complexity. Finally, IC (Incremental Consistency) is an incremen-

tal algorithm that trades off space for quick overall running time. We initially restrict our

attention to non-cyclic instances of the problem.

All three algorithms rely on the observation that any stretch that appears in a solution

is independent of the stretches chosen before and after it, aside from the enforcement of the

patterns. Pattern enforcement only depends on the variables adjacent to the stretch, and

so when considering whether a stretch appears in a solution, we only need to consider the

variables in the stretch, and the two neighbouring ones. So we just need an efficient way

to determine whether there are appropriate sequences of stretches as prefixes and suffixes

for each possible stretch. We call such sequences supporting sequences.

Definition (Supporting Sequences).

• Consider a set of k stretches beginning at each of si1 , si2 , . . . , sik , where i1 < i2 <

21

3.1. A Simple Propagation Algorithm 22

· · · < ik, and having types τ1, . . . , τk respectively, where τi �= τi+1. Also let span(sip) =

ip+1 − ip and (τp, τp+1) ∈ Π for all p < k. We call this a sequence of stretches, which

covers si1 , . . . , sik , sik+1, . . . , sik+q−1 where q = span(sik).

In words, we simply mean a contiguous sequence of stretches that would be a solution

to the stretch instance restricted to the variables it covers.

• We call a non-empty sequence of stretches forward compatible with stretch type τ if

(τp, τ) ∈ Π, where τp is the type of the last stretch in the sequence, and backward

compatible if (τ, τp) ∈ Π, where τp is the type of the first stretch in the sequence.

Additionally, the empty sequence of stretches is forward and backward compatible

with all types. We will usually just use the term compatible when it is obvious from

context which of these is meant.

• A prefix support for a stretch beginning at si is a sequence of stretches that covers

variables s0, . . . , si−1. (This sequence may be empty.)

• A suffix support for a stretch ending at si is a sequence of stretches that covers

variables si+1, . . . , sn−1. (This sequence may also be empty.)

3.1 A Simple Propagation Algorithm

Our first algorithm is based on a simple dynamic programming approach which counts

the total number of solutions. The algorithm works by considering prefix supports. If

we have initially assigned some shift type τ to variables sr, sr+1, . . . , sn−1, then the total

number of solutions given this assignment at the end of the roster is simply the number of

solutions to the stretch instance with the same parameters, but restricted to the variables

s0, s1, . . . , sr−1, and with the added constraint that (value(sr−1), value(sr)) ∈ Π. In other

words, the number of prefix supports ending at sr−1 that are compatible with value(sr)

with respect to Π. The choices of r and τ are arbitrary, as long as the stretch satisfies the

length constraints for τ .

An alternative way to look at the problem is one of computing reachability in a directed

graph; the nodes in the graph are (variable, type) pairs, and arcs correspond to stretches.

3.1. A Simple Propagation Algorithm 23

Our goal is to find all edges that are in some path from some node (s0, τ1) to some node

(sn−1, τ2). Here a prefix support is a path from the beginning of the roster to some node,

and a suffix support is a path from some node to the end of the roster. If the roster

needs to be cyclic, then we may have edges between the ending and beginning positions,

the additional constraint that the beginning and ending nodes chosen correspond to valid

patterns, and we will want to consider many variables as starting and ending points, not

just s0 and sn−1. The set of all edges found will indicate which values are part of some

solution, and which values can be safely removed.

Since the subproblems of counting prefix supports can be solved without any informa-

tion about what assignments are made to subsequent variables (beyond where the support

ends), we can turn what initially appears to be an exponential approach into a polynomial

time dynamic programming one. A subproblem can be parameterized by an index r, and

a shift type τ . The index indicates that the subproblem is over variables s0, . . . , sr−1, and

τ indicates the shift type assigned to sr−1.

The algorithm CountSolutions fills in a two-dimensional table count[r, τ] that stores

the number of solutions to the subproblem beginning at index r with previous shift type τ ,

making sure to only consider valid stretches (that satisfy the given lower and upper bounds

on their length).

Algorithm CountSolutions()

1. initialize all entries of count to 0

2. (* consider all the initial stretches *)

3. foreach τ ∈ dom(s0) do

4. for l ← 1 to min(longest[τ], n) do

5. if τ /∈ dom(sl−1) then break

6. if l ≥ shortest[τ] then count[l, τ] ← 1

7. (* extend all prefix supports *)

8. for r ← 1 to n − 1 do

9. foreach (τj, τk) ∈ {dom(sr−1) × dom(sr)} ∩ Π do

10. for l ← 1 to longest[τk] do

11. if r + l > n or τk /∈ dom(sr+l−1) then break

12. if l ≥ shortest[τk] then count[r + l, τk] ← count[r + l, τk] + count[r, τj]

3.1. A Simple Propagation Algorithm 24

Each element count[i, τ] stores the number of ways of forming a prefix support that

reaches position i (meaning the final stretch in the sequence ends at position i− 1), where

the value of the last stretch in the support is τ . The total number of solutions is then just

the sum of the number of ways of reaching position n over all shift types.

The following small example demonstrates how CountSolutions works. We consider a

roster with three shift types A, B, and C with the bounds on the stretch lengths and initial

domains as shown in Table 3.1 and pattern set Π = {(A,B), (A,C), (B,A), (C,A)}. It

is easy to see that the initial configuration is domain consistent. There are five solutions:

{AAABBBAA, AABBBAAA, AAACCCCC, CCCCCAAA, AACCCCAA}. Each value

present in the domains is used in at least one solution. Table 3.2 shows the count table.

The rightmost column tells us that there are four solutions ending in a stretch of type A,

and one solution ending in a stretch of type C. Column 4 tells us that there is a prefix

support ending at s3 whose last stretch type is C (namely, CCCC). Note that not all a

prefix supports appear in a solution.

Table 3.1: (left) Bounds on stretch length; (right) Initial domains.

τk shortest[τk] longest[τk]

A 2 4

B 3 3

C 4 5

s0 s1 s2 s3 s4 s5 s6 s7

A A A A A A

B B B B

C C C C C C C C

Table 3.2: Building the count table.

1 2 3 4 5 6 7 8

A 0 1 1 0 0 0 2 4

B 0 0 0 0 1 1 0 0

C 0 0 0 1 1 1 2 1

To modify the algorithm for propagation, we simply need to determine which values

3.1. A Simple Propagation Algorithm 25

in each domain are part of some solution. This information can be gathered with a sec-

ond pass over the count array. We need a second (n + 1) × m array begins suffix where

begins suffix[r, τk] indicates whether a stretch of type τk beginning at r is contained in any

solution (i.e. begins a suffix support). If a stretch has a prefix support and a suffix support,

then we know that it is contained in a solution. We check whether this is the case for each

possible stretch during this second phase, and mark values as being not prunable when it

is known that they appear in a solution. At the end of the execution the prunable table

indicates which values did not appear, and in lines 15-17 those values are removed.

Algorithm DC()

1. initialize all entries of begins suffix to false

2. initialize all entries of prunable to true

3. foreach τ ∈ T do begins suffix[n, τ] ← true

4. for r ← n − 1 downto 0

5. foreach τj ∈ dom(sr) such that count[r, τj] > 0 do

6. max stretch ← 0

7. foreach τk ∈ T such that (τj, τk) ∈ Π do

8. for l ← 1 to longest[τj] do

9. if r + l > n or τj /∈ dom(sr+l−1) then break

10. if l ≥ shortest[τj] and begins suffix[r + l, τk] = true then

11. begins suffix[r, τj] ← true

12. max stretch ← max(max stretch, l)

13. for l ← 1 to max stretch do

14. prunable[r + l − 1, τj] ← false

15. for i ← 0 to n − 1 do

16. foreach τk ∈ dom(si) do

17. if prunable[i, τk] = true then remove τk from dom(si)

3.1.1 Analysis

It is clear from the loop bounds that the loop from lines 8-12 in algorithm CountSolutions

dominates the running time. Lines 11-12 are executed O(nm2l) times, where we define

3.1. A Simple Propagation Algorithm 26

l = max1≤j≤m(longest[τj]), so this is the overall time complexity of the algorithm. The

space complexity is O(nm), since we require a 2-dimensional table with (n + 1) rows for

positions 0, . . . , n, and m columns, one for each shift type. This is obviously optimal.

Similarly, lines 9-12 and line 14 of algorithm DC consist of O(1) operations that execute

O(nm2l) times, and the algorithm requires O(nm) space. So the overall runtime complexity

is O(nm2l) and the overall space complexity is O(nm).

Note that there may actually be exponentially (in n) many solutions, so that the integers

stored in count would require O(n) space to represent, and O(n) time to add. We ignore this

factor, because the algorithm can just as easily be implemented using a table of boolean

values to indicate whether a prefix support exists, as with the begins suffix table. We

thought it instructive to present the algorithm in a form that provides more information.

One possible application of the counts computed is as a guide to help the CSP solver’s

variable and value ordering heuristics.

Lemma 3.1. Algorithm CountSolutions sets count[i, τj] to a value greater than zero if

and only if there is a solution to the subproblem over the variables s0, s1, . . . , si−1 with

si−1 = τj.

Proof. We can prove this by induction on i. In the base case, i = 1, it is easy to see that

count[1, τj] = 1 if and only if there is a stretch of length 1 beginning at s0 with value τj.

The algorithm begins by trying all such initial stretches on lines 3-6.

Now suppose the result holds for count[i′, τ ′
j] where i′ < i. Now, inside the loop on lines

8-12, an element count[i, τj] is added to (thus ensuring count[i, τj] > 0) if and only if there

exist i′, τ ′
j with i′ < i, τ ′

j �= τj, with (τj, τj′) ∈ Π such that count[i′, τ ′
j] > 0 and there is a

valid stretch of type τj of length i−i′ starting at si′ . Recall that by a valid stretch, we mean

that each of the variables si′ , . . . , si−1 contains τj, and shortest[τj] ≤ i − i′ ≤ longest[τj].

Since count[i′, τ ′
j] > 0, by the induction hypothesis there is a solution to the subproblem

consisting of the first i′ variables. Since extending this solution with a feasible stretch of

τj does not violate any of our constraints on stretches, there is a solution to the first i

variables that ends with a stretch of type τj.

Lemma 3.2. Algorithm DC sets begins suffix[i, τj] = true if and only if there is a solution

to the full problem with a stretch of type τj beginning at i − 1.

3.2. A Faster Propagation Algorithm 27

Proof. An argument similar to the previous proof shows this, the only difference being we

induct on n − i rather than i.

Lemma 3.3. Algorithm DC sets prunable[i, τj] = false if and only if there is some solution

with si = τj.

Proof. The algorithm sets prunable[i, τj] = false if and only if it can find some values i1, i2

with i1 ≤ i < i2 such that a stretch of τj from i1 to i2 − 1 is feasible, count[i1, τj] > 0,

and there exists some τk such that (τj, τk) ∈ Π and begins suffix[i2, τk] = true. (Note

that since i < i2, begins suffix[i2, τk] contains its final value by the time prunable[i, τj] is

considered.)

The next theorem, which follows directly from the previous lemma, states that the

algorithm enforces domain consistency.

Theorem 3.4. Algorithm DC prunes a value τ from a domain Dsi
if and only if there is

no satisfying assignment with si = τ .

3.2 A Faster Propagation Algorithm

Our second propagator uses a similar approach, also based on dynamic programming, but

takes advantage of the fact that stretches constitute intervals in order to eliminate a factor

of l = max1≤j≤m(longest[τj]) from the running time.

3.2.1 Computing Reachability

The basis of the FC algorithm, like DC, is to use dynamic programming to compute, for each

variable si and type τj, whether there is a prefix support for a stretch beginning at si that

is compatible with τj with respect to the set of patterns. The results of this computation

are stored in a matrix of values, forward (see Algorithm ComputeForward). Likewise, we

compute whether there is a suffix support for a stretch ending at si that is compatible with

τj, and store the result in backward (see Algorithm ComputeBackward). These are similar

to the count and begins suffix arrays of the DC algorithm.

3.2. A Faster Propagation Algorithm 28

Once the support information is computed, it is used by a second step that prunes

the domains. To make the first step as efficient as possible, we actually store the support

information in forward and backward as arrays of prefix sums over the variables. The

element forward[τ, i] indicates the number of variables sj with j < i− 1 such that a prefix

support covers s0, s1, . . . , sj, and ends with a stretch type compatible with τ . The prefix

sums allow us to, for a given type, query whether a prefix support ends within an arbitrary

range in constant time. For example, the difference forward[τ, i + 1]− forward[τ, j] (j ≤ i)

is greater than zero if and only if there is some prefix support beginning at s0 and ending

between sj−1 and si−1 (inclusive) that is compatible with τ .

Another prefix array, runlength, is precomputed at the beginning of each stage of the

algorithm. For each type τ and variable si, it stores the size of the maximal contiguous

block of variables whose domains contain τ , up to and including si (or including and

following si for ComputeBackward). This gives an upper bound on the maximum length of

a stretch ending (or beginning) at si, which may be less than longest[τ]. Note that to make

the algorithm concise, we use 1-based indices when looping over variables, rather than the

0-based indices used for shift variables. Indices 0 and n + 1 correspond to initial values.

Algorithm ComputeForward()

1. foreach τ ∈ T do forward[τ, 0] ← 0

2. foreach τ ∈ T do forward[τ, 1] ← 1

3. foreach τ ∈ T do

4. for i ← 0 to n do

5. runlength[τ, i] ← 0

6. for i ← 1 to n do

7. foreach τ ∈ dom(si−1) do

8. runlength[τ, i] ← runlength[τ, i − 1] + 1

9. for i ← 1 to n do

10. foreach τ ∈ T do forward[τ, i + 1] ← forward[τ, i]

11. foreach τj ∈ T do

12. hi ← i − shortest[τj]

13. lo ← i − min(longest[τj], runlength[τj, i])

14. if hi ≥ lo and forward[τj, hi + 1] − forward[τj, lo] > 0 then

3.2. A Faster Propagation Algorithm 29

15. foreach τk ∈ T such that (τj, τk) ∈ Π do

16. forward[τk, i + 1] ← forward[τk, i] + 1

Algorithm ComputeBackward()

1. foreach τ ∈ T do backward[τ, n + 1] ← 0

2. foreach τ ∈ T do backward[τ, n] ← 1

3. foreach τ ∈ T do

4. for i ← 1 to n + 1 do

5. runlength[τ, i] ← 0

6. for i ← n downto 1 do

7. foreach τ ∈ dom(si−1) do

8. runlength[τ, i] ← runlength[τ, i + 1] + 1

9. for i ← n downto 1 do

10. foreach τ ∈ T do backward[τ, i − 1] ← backward[τ, i]

11. foreach τj ∈ T do

12. lo ← i + shortest[τj]

13. hi ← i + min(longest[τj], runlength[τj, i])

14. if hi ≥ lo and backward[τj, lo − 1] − backward[τj, hi] > 0 then

15. foreach τk ∈ T such that (τj, τk) ∈ Π do

16. backward[τk, i − 1] ← backward[τk, i] + 1

Consider again the example from Section 3.1, which considered the stretch instance

in Table 3.1. Suppose that suppose we assign s2 ← A (see Table 3.6). This has the effect

of reducing the set of possible solutions to {AAABBBAA, AAACCCCC}. When we run

our algorithm, it should remove the value C from the domains of s0, s1, and s2, and A

from s5. Table 3.3 shows the forward table computed after this assignment has been made.

The execution of ComputeForward can be traced by looking at successive columns in the

table. Table 3.4 shows the backward table.

3.2.2 Pruning Values

Once we have computed the forward and backward support information, we are ready to

begin pruning values from domains. This process proceeds by considering, for each type,

3.2. A Faster Propagation Algorithm 30

Table 3.3: Building the forward table.

0 1 2 3 4 5 6 7 8 9

A 0 1 1 1 1 1 1 2 3 4

B 0 1 1 2 3 3 3 3 4 5

C 0 1 1 2 3 3 3 3 4 5

Table 3.4: Building the backward table.

0 1 2 3 4 5 6 7 8 9

A 3 3 3 3 2 1 1 1 1 0

B 5 4 3 3 3 3 2 1 1 0

C 5 4 3 3 3 3 2 1 1 0

every possible stretch of that type. We check if a stretch is in a solution by examining the

forward and backward matrices to see if there are supports that can come before and after

the one we are considering. If so, we mark the type we are considering, for each of the

variables in the stretch. The final pruning step then prunes any value that has not been

marked.

In order to make the marking linear in n for each τj, we traverse the variables in reverse

order, maintaining a queue of possible ending positions. For each position i, we pop any

elements from the front of the queue that cannot possibly end a stretch of type τj beginning

at i. A position j ≥ i is not a possible ending position if j − i + 1 > longest[τj], or if there

exists some k, i ≤ k ≤ j such that the variable sk does not contain τj in its domain, i.e.

j − i + 1 > runlength[τj, i]. Notice that if a position is not a valid ending position for i,

it is also not valid for any position smaller than i, so it is always safe to remove invalid

positions from the queue.

We also need to ensure that recording the marked intervals is efficient. However, this is

easy, since the ending positions we consider are non-increasing. Therefore, each interval we

add either extends the previous interval, or is disjoint from the previous interval. We end

3.2. A Faster Propagation Algorithm 31

up with an ordered list of O(n) disjoint intervals which cover a total of O(n) values. We

can therefore iterate through the list of intervals and mark all variables within each interval

in O(n) time. The merging of intervals is implemented in algorithm MergeInterval.

Algorithm MergeInterval(s, e)

1. while true do

2. [s′, e′] ← the front element of the interval list (if non-empty)

3. if the list of intervals is empty or e < s′ then

4. add [s, e] to the front of the list and return

5. remove [s′, e′] from the interval list

6. e ← e′

Algorithm MarkValues()

1. initialize all entries of prunable to true

2. initialize all entries of runlength to 0

3. for j ← 1 to m

4. for i ← 1 to n do

5. if τj ∈ dom(si−1) then runlength[τj, i] ← runlength[τj, i − 1] + 1

6. foreach τ ∈ T do

7. clear queue and list of intervals

8. for i ← n downto 0 do

9. if i > 0 and backward[τ, i] − backward[τ, i + 1] > 0 then

10. push (i − 1) onto queue

11. if forward[τ, i + 1] − forward[τ, i] = 0 then continue

12. repeat

13. e ← front of queue

14. remove ← (longest[τ] < e − i + 1) or (runlength[τ, e] < e − i + 1)

15. if remove = true then pop front of queue

16. until remove = false or queue is empty

17. if queue is not empty then

18. e ← front of queue

19. if e − i + 1 ≥ shortest[τ] then

3.2. A Faster Propagation Algorithm 32

20. call MergeInterval(i, e)

21. foreach (s, e) in the list of intervals do

22. for i ← s to e do

23. prunable[i, τ] ← false

Algorithm FC()

1. call ComputeForward

2. call ComputeBackward

3. call MarkValues

4. for i ← 0 to n − 1 do

5. foreach τ ∈ dom(si) do

6. if prunable[i, τ] = true then

7. remove τ from si

Table 3.5 shows an execution trace of MarkValues on the example from the previous

section. Finally, Table 3.6 shows the result, in which domain consistency has been re-

established.

Table 3.5: Trace of MarkValues.

τ = A

i queue intervals

8 {7} {}
7 {7} {}
6 {7} {[6, 7]}
5 {} {[6, 7]}
4 {} {[6, 7]}
3 {2} {[6, 7]}
2 {2} {[6, 7]}
1 {2} {[6, 7]}
0 {2} {[0, 2], [6, 7]}

τ = B

i queue intervals

8 {} {}
7 {} {}
6 {5} {}
5 {5} {}
4 {5} {}
3 {5} {[3, 5]}
2 {} {[3, 5]}
1 {} {[3, 5]}
0 {} {[3, 5]}

τ = C

i queue intervals

8 {7} {}
7 {7} {}
6 {7, 5} {}
5 {7, 5, 4} {}
4 {7, 5, 4} {}
3 {7, 5, 4} {[3, 7]}
2 {} {[3, 7]}
1 {0} {[3, 7]}
0 {} {[3, 7]}

3.2. A Faster Propagation Algorithm 33

Table 3.6: (left) Domains after setting s2 ← A; (right) Domains after re-establishing

domain consistency.

s0 s1 s2 s3 s4 s5 s6 s7

A A A A A A

B B B

C C C C C C C

s0 s1 s2 s3 s4 s5 s6 s7

A A A A A

B B B

C C C C C

3.2. A Faster Propagation Algorithm 34

3.2.3 Analysis

It is clear that the three stages of the algorithm all terminate, and that each primitive

operation in the pseudo-code can be performed in O(1) time. Examining the bounds of the

for loops, we see that ComputeForward and ComputeBackward run in O(nm2) time, where

n is the number of shift variables and m is the number of shift types. MarkValues runs in

O(nm) time, since we iterate through all variables once for each shift type, building a list

of disjoint intervals over [1, n]. For a given shift type, each variable results in at most one

queue insertion, and each element in the queue can form at most one interval. Therefore,

there are at most O(n) intervals. A single call to MergeInterval can take O(n) time, but

since each interval can be removed at most once, the overall running time for a given shift

type is O(n).

To achieve domain consistency, we simply need to run these three stages, and remove

values which were not marked. The latter step can be performed in O(nm) time, simply by

iterating over an n×m matrix indicating which variable-value pairs (si, τ) are contained in

some solution. The overall algorithm therefore runs in O(nm2) time, and requires O(nm)

space. In contrast, Pesant’s original stretch propagator runs in O(m2l2) time, where l is

the maximum of the maximum lengths of the shift types. In applications of the stretch

constraint that have been seen thus far, l is a small value (6 ≤ l ≤ 9). Thus, our algorithm

is more expensive to achieve by a linear factor.

One of the limitations of Pesant’s algorithm that he discusses is its inability to consider

the entire sequence. It is possible for a value in a variable’s domain to be inconsistent

because it is incompatible with the domain values of a different, far away variable in the

sequence of shifts. Even though the domain filtering acts locally, considering variables near

a variable that was assigned to, sometimes the changes will cascade throughout the roster.

However, this is not always the case, and particularly for large instances can cause Pesant’s

filtering method to fail where ours succeeds.

The following is a small example that proves our algorithm achieves stronger propaga-

tion (see Table 3.7). We begin with an instance that is initially domain consistent, thus

ensuring that any inconsistent values are introduced by incomplete pruning, and were not

present to begin with. The problem instance is for a circular roster, with n = 8, m = 3,

and no pattern restrictions (Π contains all ordered pairs of shift types).

3.2. A Faster Propagation Algorithm 35

Table 3.7: (left) Bounds on stretch lengths; (right) Initial domains.

τk shortest[τk] longest[τk]

A 2 4

B 5 5

C 2 4

s0 s1 s2 s3 s4 s5 s6 s7

A A A A A A

B B B B B

C C C C C

It is easy to see that this configuration is domain consistent. There are three solutions:

AAAACCCC, ABBBBBAA, and CBBBBBCC. Each value of each variable’s domain is

used in some solution. We first assign the value C to variable s7, and then to variable s0

(see Table 3.8).

Table 3.8: Domains after setting s7 ← C.

Algorithm s0 s1 s2 s3 s4 s5 s6 s7

Pesant’s A A A A

Algorithm B B B B B

C C C C C

Domain A A A A

Consistency B B B B B

C C C C C

After the second assignment, since no stretch of B’s can be shorter than 5, clearly

choosing the value A for s1, s2 or s3 requires a stretch of 5 C’s, which is a violation of

the maximum stretch of C’s. Therefore, after the second assignment, the solution can be

determined. Pesant’s algorithm observes that it is possible to choose a stretch of A’s or

B’s beginning at s1 without violating the length constraints for those values, but does not

consider the cascading effect of removing values from those domains.

Having shown that our algorithm enforces a stronger level of consistency than Pesant’s

algorithm, we now show that our algorithm achieves domain consistency. In order to justify

3.2. A Faster Propagation Algorithm 36

Table 3.9: Domains after setting s0 ← C.

Algorithm s0 s1 s2 s3 s4 s5 s6 s7

Pesant’s A A A

Algorithm B B B B B

C C C C C

Domain

Consistency B B B B B

C C C

that our algorithm achieves domain consistency, we must prove that a value is removed

from a variable if and only if that value is not contained in some solution to the constraint.

We turn our attention to some facts about the intermediate computations.

Lemma 3.5. The prefix sums computed by ComputeForward and ComputeBackward record,

for each type τ and position p, the number of previous positions for which some sequence

of stretches exists that can be appended with a stretch of type τ . More precisely:

(a) The value of forward[τ, p], 1 ≤ p ≤ n + 1 as computed by ComputeForward is equal

to the number of variables si with i < p such that some prefix support spans variables

s0, s1, . . . , si−1, and is either empty, or ends with a stretch of type τ ′ where (τ ′, τ) ∈ Π.

(b) The value of backward[τ, p], 0 ≤ p ≤ n as computed by ComputeBackward is equal to

the number of variables si with i ≥ p such that some suffix support spans variables

si, si+1, . . . , sn−1, and is either empty, or begins with a stretch of type τ ′ where (τ, τ ′) ∈
Π.

Proof. We prove (a) by induction on p. Case (b) is analogous and omitted. In the base

case, p = 1, an empty sequence of stretches is compatible with any type. The algorithm

handles this on lines 1-2. For p > 1, suppose as our induction hypothesis that the lemma

holds for p′ < p. Clearly this hypothesis implies that if we already know forward[τ, p − 1],

it is sufficient to take forward[τ, p] = forward[τ, p − 1] and then increment this count by

3.2. A Faster Propagation Algorithm 37

one if and only if there is a prefix support compatible with τ spanning s0, . . . , sp−2. All

prefix supports ending at an earlier shift variable have already been counted. We must

show that this is precisely what the algorithm does.

Consider iteration p − 1 of the outer loop, on lines 9-16. This is the only time a

given forward[τ, p] entry will be modified. Line 10 initializes forward[τ, p] to the count

for the previous variables. All types τ ′ compatible with τ are considered in the j loop,

on lines 11-16. The values lo and hi computed give the range of all possible starting

points for a stretch of type τ ′ ending at sp−2. Moreover, by our induction hypothesis,

forward[τ ′, hi + 1]− forward[τ ′, lo] gives the number of variables between lo− 1 and hi− 1

(inclusive) where a prefix support compatible with τ ′ ends. If this value is greater than zero,

we can append a stretch of type τ ′ to one such support, and obtain a prefix support spanning

s0, . . . , sp−2, which corresponds to the algorithm setting forward[τ, p] = forward[τ, p−1]+1.

If there is no such support, the count will never be incremented.

Theorem 3.6 (Correctness of the algorithm). MarkValues marks a value (p, τj) if

and only if there is some solution which assigns shift type τj to sp.

Proof. First, suppose (p, τj) is marked. This means that during iteration j of the outer

for loop, and some iteration u ≤ p of the inner for loop, the interval [u, v] was recorded,

for some v ≥ p. Thus, forward[τj, u + 1] − forward[τj, u] > 0. By the lemma, there exists

a prefix support spanning variables s0, s1, . . . , su−1, such that the support is either empty,

or the last stretch is compatible with τj. We also know that v was removed from the front

of the queue, and must have been pushed onto the queue during some iteration k ≥ u.

Therefore, backward[τj, k] − backward[τj, k + 1] > 0, so there exists some suffix support

spanning variables sk+1, sk+2, . . . , sn−1 that is either empty, or such that the first stretch

is compatible with τj. Moreover, line 15 removes any positions v′ from the front of the

queue which are too distant from u to satisfy longest[τj], or for which a stretch from u to

v′ is impossible. Meanwhile, line 19 ensures e is far enough from u to satisfy shortest[τj].

Hence, we can form a feasible stretch of type τj covering variables su, su+1, . . . , sv, prefix

this stretch with a support covering all of the preceding variables, and append to it a

support covering all of the remaining variables, giving a solution which assigns τj to sp.

Conversely, consider a solution which assigns τj to sp. Let su and sv be the first and last

variables in the stretch containing τj. We have backward[τj, v+1]−backward[τj, v+2] > 0

3.3. Incremental Propagation 38

by the lemma. Therefore, inside the j th iteration of the outermost loop, we will push v

onto the queue when i = v. When i = u, we have forward[τj, u + 1] − forward[τj, u] > 0,

so the repeat loop will be entered. Following this loop, v must remain on the queue;

the condition on line 14 cannot have been satisfied yet, as we know a stretch of type τj

can exist spanning su, su+1, . . . , sv. Therefore, in line 20 [u, v′] will be added to the list

of intervals, for some v′ ≥ v. It follows that all pairs (i, τj) such that u ≤ i ≤ v will be

marked, including (p, τj).

3.3 Incremental Propagation

3.3.1 Overview

An incremental propagator is one that can maintain state between calls (besides the content

of the domains), which it uses to reduce the overall workload. For example, although it

may be somewhat costly to initially enforce domain consistency for an arbitrary set of

domains, removing a value may have a limited, localized effect that is cheap to produce.

Often when it does not, there are a lot of values being removed, so the work being done is

useful work that would need to be done eventually. So it often is possible to amortize the

total running time of the propagation over a sequence of domain modifications and achieve

better overall run-time than if the algorithm was run from scratch each time.

Propagating stretch incrementally is somewhat difficult, because the side-effects of

removing a value are not localized. Table 3.10 gives an example where removing the value

A from s0 causes only one other change—removal of the value A from s9. In general,

removing a value can potentially affect any value in the domain of any variable, and leave

all others untouched. As a result, we do not see how to guarantee better than O(knm)

complexity for a sequence of k invocations of a propagator. Any algorithm that could do so

would likely be impractical to implement. Furthermore, any incremental propagator would

likely have a worst-case runtime complexity similar to that of FC, because it is possible

for a single domain modification to cause O(nm) values to be removed. Nevertheless, in

practice the constraint solver may make frequent calls to the propagator where very little

work is required, so even if an incremental propagator has poor worst-case theoretical

3.3. Incremental Propagation 39

performance, it may still be useful.

Table 3.10: (left) Bounds on stretch lengths; (right) Initial domains.

τk shortest[τk] longest[τk]

A 3 3

B 4 4

C 4 4

D 2 2

E 1 2

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

A A A A A A A A

B B B B B B

C C C C C C C C

D D D D

E E E E

3.3.2 An Incremental Algorithm for stretch

An incremental algorithm for stretch, which we will label IC, is possible. The approach

draws on ideas from Pesant’s regular expression constraint propagator [15], but uses dy-

namic computation of edges to save time and space. Unfortunately, our algorithm needs

to trade a factor of O(l) space in order to reduce overall running time. (Recall that

l = max1≤j≤m(longest[τj]).) However, the total running time over O(nm) value deletions

is O(nm2l), which equals the running time of DC per invocation! The amortized cost

per value deletion is O(ml), which is also a significant improvement over the O(nm2) cost

per deletion of FC. In fact, even if FC is run only n times—once when each variable is

bound—its total running time of O(n2m2) is worse than this incremental approach. When

the extra memory overhead is not a big concern, IC is preferable to FC.

The implementation of IC is where our earlier notion of treating the problem as a graph

reachability one is particularly useful. We construct an auxiliary directed graph with nodes

(si, τj, p) for each si, and τj ∈ dom(si), and p = 1, . . . , longest[τj]. This representation

denotes the p-th variable in a stretch of type τj corresponding to variable si. We also add

special start and finish nodes, which represent the beginning and end of the roster.

The auxiliary graph also has edges, of course, but as mentioned, they are implicit and

determined on the fly to save space. With each node (s, τ, p), we only associate an indegree

and an outdegree. We store these in the tables indegree[s, τ, p] and outdegree[s, τ, p]. The

3.3. Incremental Propagation 40

start node has an outgoing edge to each node of the form (s0, τj, 1). Each node of the form

(sn−1, τj, p) where p ≥ shortest[τj] has an outgoing edge to the finish node. Each node of

the form (si, τj, p) has an edge to (si+1, τj, p+1) if p < longest[τj], as well as edges to every

node of the form (si+1, τk, 1) if i + 1 < n, (τj, τk) ∈ Π, and p ≥ shortest[τj]. (Naturally, all

of the described edges only exist when both of their endpoints exist.)

Figure 3.1: The graph built by IC for the example in Table 3.1 . Deleted nodes are not

shown.

�
�
�
�

��
��
��
����

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���

���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

s0 s1 s3 s4 s5s2 s7s6

(C,1)

(A,2)

(C,2)

(A,3)

(B,1)

(C,1)

(C,3)

(B,1)

(B,2)

(C,1)

(C,2)

(C,4)

(B,2)

(B,3)

(C,2)

(C,3)

(C,5)

(A,1)

(B,3)

(C,3)

(C,4)

(A,1)

(A,2)

(C,4)

(A,2)

(A,3)

(C,5)

(A,1)

Thus, there are O(nml) nodes in the graph, and O(nm2l) implicit edges. The idea is

that each node corresponds to some amount of progress that has been made toward finding

a solution. If there is a path from the start node to (si, τj, p), and a path from (si, τj, p)

to the finish node, it means that there is a solution which makes the assignment si := τj

where si is the p-th variable in its stretch. Using a standard graph reachability test like

breadth-first search, we can find all nodes that are reachable from the start node, and all

nodes that can reach the finish node. Any node which does not fall into both of these

categories can be deleted. We discuss precisely what it means to delete a node below, and

how it affects the domain values, but for the moment the reader should take it for granted

3.3. Incremental Propagation 41

that this process will make the variables domain consistent, and produce a graph which

can be used later for incremental updates.

It is clear that each node has at most O(m) outgoing edges, which can easily be enu-

merated, but it is not obvious that we can enumerate incoming edges efficiently. A node

corresponding to p = 1 may have O(ml) incoming edges, one for each type and stretch

length from the preceding variable. Fortunately, there are only O(nm) such nodes, whereas

every node corresponding to p > 1 has precisely one incoming edge from a node correspond-

ing to p − 1. Thus, as long as we make sure our algorithm only traverses or removes each

edge a constant number of times, the analysis will remain simple.

The final detail to describe is how the deletion of nodes works. A node can be deleted

either during the initialization stage, or during propagation, if its associated shift type is

removed from the domain of its associated variable. When a node is deleted, we also delete

all incoming and outgoing edges. This involves decrementing the outgoing or incoming

edge count of the other endpoint of the edge. If either of these counts ever becomes zero

for a node, it too is deleted, since there is either no path to it from the start node, or no

path from it to the finish node. Our implementation maintains a queue of nodes scheduled

for deletion, and an array which indicates a node is deleted or has been scheduled for

deletion, to ensure that no unnecessary work is performed. Node deletions also tell us

when to prune values from domains. For a given (si, τj) pair, we know that the value is

used in some solution if and only if there is some p such that (si, τj, p) is reachable from the

start node, and has a path to the finish node. Therefore, we maintain an auxiliary count

for each (variable, value) pair indicating how many corresponding active nodes there are.

The appropriate counter gets decremented every time a node is deleted, and when one of

these counters reaches 0, it is safe to prune the corresponding value from the domain.

Pseudo-code for the initialization phase is given below. In this phase, the edges of

the graph are determined using a reachability test and the edge counts for each node are

updated accordingly. Then, the graph is scanned for nodes which have an indegree or

outdegree of 0. These nodes are scheduled for removal. Finally, the removal algorithm is

run.

Algorithm IC-Initialize()

1. set all entries of indegree, outdegree, and activecount to 0

3.3. Incremental Propagation 42

2. set all entries of deleted to false

3. set delete queue to be initially empty

4. (* traverse forward from start node towards finish node *)

5. for i ← 0 to n − 1 do

6. foreach τj ∈ dom(si) do

7. for p ← 1 to longest[τj] do

8. activecount[si, τj] ← activecount[si, τj] + 1

9. if indegree[si, τj, p] > 0 or (i = 0 and p = 1) then

10. if p < longest[τj] and i < n − 1 then

11. outdegree[si, τj, p] ← outdegree[si, τj, p] + 1

12. indegree[si+1, τj, p + 1] ← indegree[si+1, τj, p + 1] + 1

13. if p ≥ shortest[τj] then

14. if i = n − 1 then

15. (* create edge to finish node *)

16. outdegree[si, τj, p] ← outdegree[si, τj, p] + 1

17. else

18. foreach τk such that (τj, τk) ∈ Π do

19. (* create edge to beginning of next stretch *)

20. outdegree[si, τj, p] ← outdegree[si, τj, p] + 1

21. indegree[si+1, τk, 1] ← indegree[si+1, τk, 1] + 1

22. (* eliminate all dead ends *)

23. foreach (si, τj, p) do

24. if (outdegree[si, τj, p] = 0 or indegree[si, τj, p] = 0) and not deleted[si, τj, p] then

25. deleted[si, τj, p] ← true

26. add (si, τj, p) to delete queue

27. run IC-Delete

3.3. Incremental Propagation 43

Algorithm IC-Delete()

1. while delete queue is not empty do

2. (si, τj, p) ← pop front of delete queue

3. indegree[si, τj, p] ← 0

4. outdegree[si, τj, p] ← 0

5. (* check if the value can be pruned *) activecount[si, τj] ← activecount[si, τj] − 1

6. if activecount[si, τj] = 0 then

7. remove τj from dom(si)

8. (* delete outgoing edges *)

9. if p ≥ shortest[τj] and i < n − 1 then

10. foreach τk such that (τj, τk) ∈ Π do

11. if not deleted[si+1, τk, 1] then

12. indegree[si+1, τk, 1] ← indegree[si+1, τk, 1] − 1

13. if indegree[si+1, τk, 1] = 0 then

14. deleted[si+1, τk, 1] ← true

15. add (si+1, τk, 1) to delete queue

16. if p < longest[τj] and i < n − 1 and not deleted[si+1, τj, p + 1] then

17. indegree[si+1, τj, p + 1] ← indegree[si+1, τj, p + 1] − 1

18. if indegree[si+1, τj, p + 1] = 0 then

19. deleted[si+1, τj, p + 1] ← true

20. add (si+1, τj, p + 1) to delete queue

21. (* delete incoming edges *)

22. if p > 0 then

23. if not deleted[si−1, τj, p − 1] then

24. outdegree[si−1, τj, p − 1] ← outdegree[si−1, τj, p − 1] − 1

25. if outdegree[si−1, τj, p − 1] = 0 then

26. deleted[si−1, τj, p − 1] ← true

27. add (si−1, τj, p − 1) to delete queue

28. else

29. foreach (τk, q) such that (τk, τj) ∈ Π and shortest[τk] ≤ q ≤ longest[τk] do

30. if not deleted[si−1, τk, q] then

3.3. Incremental Propagation 44

31. outdegree[si−1, τk, q] ← outdegree[si−1, τk, q] − 1

32. if outdegree[si−1, τk, q] = 0 then

33. deleted[si−1, τk, q] ← true

34. add (si−1, τk, q) to delete queue

Notice that each edge is only traversed twice; once in each direction during the initial-

ization phase. During the propagation phase, we only look at edges that are to be deleted.

Therefore, each edge gets looked at three times in total. As a result, the algorithm per-

forms O(nm2l) operations on edges. The actual propagation algorithm is simple with the

infrastructure we have built.

Algorithm IC(si, τj)

1. (* τj has been removed from dom(si) *)

2. for p ← 0 to longest[τj] do

3. if not deleted[si, τj, p] then

4. deleted[si, τj, p] ← true

5. add (si, τj, p) to delete queue

6. run IC-Delete

3.3.3 Analysis

As mentioned above, the overall time complexity of the algorithm is O(nm2l), and the

space complexity is O(nml). It is clear from the bounds on the loops that lines 1-26 of

algorithm IC-Initialize satisfy this, assuming the patterns are stored using an efficient

data structure such as an adjacency list. The algorithm adds O(nml) nodes to the delete

queue, which is discussed below. All invocations of IC require O(l) work in lines 1-5, and

since each invocation corresponds to removal of a value, the total work required to remove

all values is only O(nml).

Now, when considering IC-Delete, notice that during the course of searching for a

solution, the main while loop is executed precisely once for each node that is deleted. For

each node deleted, the loop attempts to remove all incident edges, which takes O(1) time

per edge. Lines 6-15 clearly run in O(m) time, and lines 29-34 take O(ml) time, but only

3.3. Incremental Propagation 45

run if p = 1. Since there are O(nml) total nodes, and O(nm) nodes with p = 1, the overall

runtime of IC-Delete indeed satisfies O(nm2l).

To prove the correctness of the algorithm, we establish the relationship between domain

consistency, and the consistency the algorithm maintains in the auxiliary graph. Most of

the details regarding how the edges are formed were discussed and justified in the previous

section, so we omit them here.

Definition (IC-graph consistency). The auxiliary graph built by IC is consistent if for

every node (si, τj, p) that is not deleted, there is some solution that makes the assignment

si := τj, where si is the p-th variable in its stretch, and if every node that is deleted does

not correspond to an assignment of this form in any solution.

Lemma 3.7. The IC algorithm maintains IC-graph consistency.

Proof. The algorithm works by initially removing all nodes which do not have both a path

from the start node to themselves, and a path from themselves to the finish node. We take

this to be already evident, as it is a standard manipulation of a graph. The justification

that this is equivalent to the aforementioned form of consistency is that for a given solution,

we can construct a path from the start node to the finish node, with every node along the

path representing a variable assignment.

When a value is removed from a domain, the algorithm removes all nodes corresponding

to that variable and value, thereby eliminating all paths corresponding to solutions that

are no longer possible. Consistency is maintained after a deletion if and only if all nodes

whose entire set of supporting paths (paths from the start node to the finish node which

include the node) pass through the deleted node are removed. To see that this condition is

satisfied, consider any path v1, v2, . . . , vk−1, vk, vk+1, . . . , vp−1, vp where the vi are the nodes

on the path; v1 is the start node, vp is the finish node, and vk is the deleted node. When

a node is deleted, all of its incident edges are removed, and the corresponding indegree or

outdegree counts of adjacent nodes are decremented accordingly. If such a count becomes

zero, that node is scheduled to be removed as well. Now, if every supporting path through

vr (r < k) includes vk, then the same must be true for vr+1, . . . , vk−1. Therefore, when vk

is removed, all outgoing edges from vk−1 will be deleted, resulting in its eventual deletion.

When vk−1 is deleted, vk−2 will be scheduled for deletion for the same reason. Repeating

3.4. Cyclic Rosters 46

this as many times as needed, eventually vr will be deleted. The same idea can be used for

r > k. Eventually all nodes which depend on the originally deleted node will be deleted in

this fashion, and therefore consistency is maintained.

Theorem 3.8. The IC algorithm enforces domain consistency.

Proof. It follows from definition 3.3.3 that the assignment si := τj is made in some solution

if and only if in the corresponding consistent auxiliary graph, there is some p such that

(si, τj, p) is active (not deleted). Since by lemma 3.7, our algorithm maintains consistency

of the auxiliary graph, and since it removes values from domains precisely when there is

no such p, the algorithm maintains domain consistency.

3.4 Cyclic Rosters

For the cyclic version of the problem we are not assured that a stretch starts at position

0, and the first and last stretch must differ. These requirements are easy to account for

in the DC and FC algorithms by simply trying all possible starting positions and starting

values, and adding a check to ensure that a stretch that ends at position n − 1 does not

have the same value as the initial stretch. The modified algorithm wraps around from the

end of the roster to consider the shift variables prior to the starting position as being at

the end. So, for a starting position of k, the stretch problem considered would consist of

variables sk, sk+1, . . . , sn−1, s0, s1, . . . , sk−1 in that order. A value is only removed from a

domain if it does not become marked as valid during any of the invocations, which means

there is no starting position and starting value for which it appears in a solution.

Naively, a modified algorithm using this technique for the circular problem must be

invoked O(nm) times. We can improve this by choosing some fixed variable si and only

considering the possible stretches through si. Then the slowdown is at worst O(m ×
max {longest[τ] : τ ∈ T }). By always choosing the variable si that minimizes the product

|dom(si)| × max{longest[τ] : τ ∈ dom(si)} we can greatly reduce this slowdown in most

typical problems. If si is simply the most recently bound variable, we will have |dom(si)| =

1, giving an upper bound of O(max{longest[τ] : τ ∈ T }) on the slowdown for cyclic

instances. At worst, this gives a slowdown of O(ml).

3.4. Cyclic Rosters 47

Modifying the incremental algorithm is more complicated, since we do not want to

run the algorithm from scratch for each starting point. One solution is to maintain O(ml)

different auxiliary graphs, and only remove a value when all of the auxiliary graphs indicate

the value does not appear in a solution. This begins to make the memory cost unwieldy,

however. Therefore, for cyclic instances, the non-incremental algorithms are preferable.

Chapter 4

Empirical Results

We implemented our domain consistency algorithm for the stretch constraint using the

ILOG Solver C++ library, Version 4.2 [9] and compared it to an existing implementation

of Pesant’s [14] algorithm which enforces a weaker form of consistency (denoted hereafter

as WC; also implemented using ILOG Solver).

4.1 Benchmark Problems

Our first class of experiments is benchmark problems. These results are by Hellsten,

Pesant, and van Beek, and originally appeared in [8]. The experiments were run on a 3.0

GHz Pentium 4 with 1 gigabyte of main memory.

Our benchmark instances were gathered by Laporte and Pesant [12] and are known

to correspond to real-life situations. The problems range from rostering an aluminum

smelter to scheduling a large metropolitan police department (see [12] for a description of

the individual problems). The constraint models of the benchmark instances combine one

or more cyclic stretch constraints with many other constraints including global cardinality

constraints [18] and sequencing constraints [19]. The problems are large: the largest stretch

constraint has just over 500 variables in the constraint.

On the benchmark problems, our DC propagator offers mixed results over the previ-

ously proposed propagator when considering just CPU time (see Table 4.1). When the

number of fails is roughly equal, our stronger consistency can be slower because it is more

48

4.1. Benchmark Problems 49

expensive to enforce. However, our DC propagator also sometimes leads to substantial

reductions in number of fails and CPU time. Overall, we conclude that our propagator

leads to more robust and predictable performance on these problems. All of the benchmark

problems are solved in under one second by our propagator, whereas the propagator based

on the weaker form of consistency cannot solve one of the problems in less than twenty

seconds.

4.1. Benchmark Problems 50

Table 4.1: Number of failed branches and CPU time (sec.) for cyclic rostering problems

from the literature. The variable ordering heuristic fills in weekends first, followed by week

days chronologically, and within days either (left) chooses the next shift using minimum

domain size, or (right) lexicographically. The value ordering is random.

WC DC

fails time fails time

atc-1 6 0.01 4 0.00
atc-2 11 0.01 0 0.08
atc-3 48335 13.02 9 0.06
atc-4 108 0.03 25 0.18
alcan-1 0 0.00 0 0.01
alcan-2 970 0.17 967 0.39
burns 1 0.00 80 0.08
butler 2 0.01 1 0.10
heller 3671 1.34 88 0.27
horot 0 0.01 0 0.01
hung 22 0.05 0 0.93
laporte 200 0.04 37 0.05
lau 3 0.01 0 0.09
mot-1 0 0.00 0 0.05
mot-2 9 0.01 9 0.05
mot-3 3331 0.76 17 0.06
slany1 0 0.00 0 0.00

WC DC

fails time fails time

atc-1 2 0.00 2 0.01
atc-2 266 0.04 1 0.06
atc-3 100982 21.86 2 0.04
atc-4 2356 0.30 1 0.09
alcan-1 0 0.00 0 0.01
alcan-2 955 0.17 995 0.39
burns 6 0.01 6 0.04
butler 2 0.00 2 0.10
heller 3259 1.24 88 0.27
horot 1 0.01 0 0.01
hung 3 0.04 0 0.93
laporte 223 0.04 28 0.04
lau 6 0.01 0 0.09
mot-1 3 0.00 3 0.05
mot-2 9 0.01 9 0.05
mot-3 2799 0.59 39 0.08
slany1 0 0.01 0 0.00

4.2. Random Problems 51

4.2 Random Problems

Table 4.2: Number of failed branches, CPU time (sec.), and number of problems solved

within 10 minutes when finding first solution for random cyclic stretch problems. Each fail

and time value is the average of only the tests that completed within the time bound of

10 minutes. A total of 50 tests were performed for each combination of n and m.

WC DC

n m fails time solved fails time solved

50 4 7628.1 0.09 50 0 0.01 50

6 100089.6 1.21 48 0 0.04 50

8 138855.7 2.14 50 0 0.08 50

100 4 666002.1 10.17 42 0 0.06 50

6 281044.4 3.15 38 0 0.15 50

8 757859.3 11.32 40 0 0.30 50

200 4 246781.2 4.40 19 0 0.26 50

6 3.5 2.64 24 0 0.59 50

8 2.9 6.60 22 0 1.09 50

400 4 50653.1 1.19 15 0 1.02 50

6 90051.8 1.75 17 0 2.40 50

8 10.2 0.01 14 0 4.25 50

To systematically study the scaling behavior of the algorithm, we also considered ran-

dom problems. Like the benchmark problems, these results also originally appeared in

[8]. The experiments on the random instances were run on a 2.40 GHz Pentium 4 with 1

gigabyte of main memory.

In our first random model, problems were generated that consisted of a single cyclic

stretch over n shift variables and each variable had its initial domain set to include all

m shift types. The minimum shortest[τ] and the maximum longest[τ] of the lengths of

any stretch of type τ where set equal to a and a + b respectively, where a was chosen

uniformly at random from [1, 4] and b was chosen uniformly at random from [0, 2]. These

4.2. Random Problems 52

particular small constants were chosen to make the generated problems more realistic, but

the experimental results appear to be robust for other choices of small values. No pattern

restrictions were enforced (all ordered pairs of shift types were allowed). A random variable

ordering was used since, as Pesant [14, p.193] notes, “This not only makes the problem

harder to solve but also approximates a more realistic context in which fragments of the

sequence may be preassiged or fixed through the intervention of other constraints.” In

these pure problems nearly all of the run-time is due to the stretch propagators. These

problems are trivial for domain consistency, but not so for the weaker form of consistency.

We recorded the number of problems that were not solved by WC within a fixed time

bound (see Table 4.2). As n increases, the difference between DC and WC becomes

dramatic.

In our second random model, problems consisted of a single non-cyclic stretch. The

domain of each variable was set in two steps. First, the initial domain of the variable was

set to include all m shift types. Second, each of the shift types was removed from the

domain with some given probability p, 0.0 ≤ p < 0.2. The minimum and the maximum

of the lengths of any stretch of type where set equal to a and a + b respectively, where a

was chosen uniformly at random from [1, 25] and b was chosen uniformly at random from

[0, 2]. No patterns were enforced and a random variable ordering was again used. The WC

propagator finds these non-cyclic problems much easier than the previous cyclic problems.

Nevertheless, on these problems whenever WC is faster than DC the improvement is

negligible, whereas our DC propagator can be dramatically faster than WC (see Table 4.3).

Finally, the same random model was used to compare each of the three algorithms we

presented in Chapter 3. These results show that IC achieves slightly better performance

than FC, but for large instances, the difference may not be substantial enough to warrant

the extra memory usage.

4.2. Random Problems 53

Table 4.3: WC versus DC when finding first solution for random non-cyclic stretch

problems: ten best improvements in time (sec.) of WC over DC and ten best improvements

in time (sec.) of DC over WC. A total of 1500 tests were performed for each value of n.

A blank entry means the problem was not solved within a 10 minute time bound.

10 best for WC 10 best for DC

n WC DC WC DC

100 0.05 0.13 0.00

0.00 0.06 0.05

0.00 0.06 0.05

0.00 0.06 164.69 0.05

0.00 0.06 145.58 0.05

0.00 0.06 126.70 0.00

0.00 0.06 51.64 0.05

0.00 0.06 38.11 0.05

0.00 0.06 0.80 0.00

0.00 0.06 0.69 0.00

200 0.06 0.88 0.06

0.05 0.77 0.06

0.05 0.77 0.06

0.05 0.55 0.06

0.06 0.41 0.06

0.13 0.48 0.06

0.13 0.42 0.08

0.11 0.42 0.11

0.17 0.44 0.17

0.17 0.42 0.17

4.2. Random Problems 54

Table 4.4: Average CPU time (sec.) to find the first solution for random non-cyclic stretch

problems. A total of 50 tests were performed for each combination of n and m.

DC FC IC

100 8 0.09 0.03 0.02

16 0.38 0.07 0.05

32 1.55 0.16 0.16

200 8 0.44 0.15 0.08

16 1.80 0.30 0.23

32 7.44 0.68 0.55

400 8 1.90 0.62 0.45

16 7.85 1.28 0.96

32 31.79 2.88 2.01

800 8 7.36 2.48 1.65

16 31.30 5.28 3.34

32 128.66 12.25 6.86

Chapter 5

Generalizing Stretch

Because so many scheduling problems turn out to be NP-hard, the fact that stretch

is easily solvable in polynomial time is noteworthy. It begs the question of whether we

can generalize the constraint to make it more useful, and whether we can apply the same

techniques used in designing our original algorithm to solve such a wider class of problems.

It would also be useful to know what kind of generalizations definitely cannot be solved

efficiently (unless P = NP).

In this chapter, we examine several natural modifications of stretch. Some of them

lend themselves to efficient domain consistency algorithms, and others are proven NP-

hard. To avoid generalizing the constraint in a frivolous manner, we focus on extensions

that subsume existing constraints from the literature, or that are intended to be useful for

specific kinds of realistic problems.

As we discussed in Chapter 2, independently enforcing domain consistency with respect

to two separate constraints does not imply that domain consistency is enforced on the

combination of the constraints. Therefore, when we are able to generalize stretch to

subsume some additional constraint, the new constraint and accompanying propagator

provide the potential for more powerful propagation than what would be achieved by

using separate independent propagators. Moreover, for several of these constraints our

propagators are the first published algorithms for achieving domain consistency.

55

5.1. Counting Stretches 56

5.1 Counting Stretches

Counting problems arise frequently in rostering, such as when one wants to restrict the

number of shifts an employee might work during a week, or the number of days off. The only

form of counting that we have considered within the stretch constraint is the restriction

of stretch lengths. These restrictions are only local though, in the sense that the validity

of a given stretch depends only on whether it has prefix and suffix supports, and not on

the structure of any of the supports in particular. It would be useful to also be able to

constrain properties of the roster on a global basis using a single constraint, rather than

a gcc constraint in combination with a stretch constraint, for example. Consider the

change constraint, proposed by Beldiceanu in [3] and defined as follows. Notice that the

notion of counting changes—pairs of consecutive variables that differ in value—is equivalent

to counting stretches.

change(C, {s0, s1, . . . , sn−1})
• dom(C) ⊆ {0, 1, . . . , n − 1}
• C equals the number of variables si such that si �= si+1

This constraint has a useful and powerful property that we have not discussed yet: the

possible change counts in a solution are indicated by a variable. In order to constrain

the number of stretches allowed, we can initially configure the domain of C accordingly,

or even introduce additional constraints into the CSP that act on C and one or more

other variables. This is much more expressive than a version of the constraint in which

the possibilities are related to fixed parameters; for example, the specification of an exact

count, or a range of possible counts. Beldiceanu argues that we should always try to

compose constraints in this fashion [2].

It is quite straightforward to propagate domain consistency for change using dynamic

programming, although Beldiceanu describes a more generic propagation algorithm for a

whole family of constraints which does not necessarily achieve domain consistency. As

with our DC algorithm for stretch, we can use the fact that if we choose an arbitrary

sequence of stretches covering the first k variables of the roster, then the problem reduces

to an equivalent subproblem over the remaining n − k variables. Each subproblem can

5.1. Counting Stretches 57

be specified as a tuple (p, r, τ), where p is the number of variables that have already been

assigned values; r is the number of changes we require amongst the remaining variables

sr, . . . , sn−1; and τ is the type used for the previous stretch, and therefore disallowed as

a type of the beginning of the stretch beginning at r. By computing similar information

with the order of the variables reversed as in DC, we obtain all the information we need

to prune the domains. Some extra steps are necessary to ensure that the C variable also

has its domain pruned.

Overall, this simple approach yields an algorithm that runs in O(n3m) time and requires

O(n2m) space. It is likely possible to do better, but it is the similarity to our DC algorithm

that is of interest here. Indeed, we omit the details of an algorithm for the change constraint

alone, and instead focus on a modifying DC so that it enforces both the stretch and

change constraints, giving the new counted stretch constraint.

counted stretch(C, {s0, s1, . . . , sn−1}, Π, shortest, longest)

• shortest[si] ≤ span(si) ≤ longest[si]

• si = si+1 or (si, si+1) ∈ Π

• dom(C) ⊆ {0, 1, . . . , n − 1}
• C equals the number of variables si such that si �= si+1

It is possible to modify both the DC and IC algorithms to enforce domain consistency

for counted stretch. The cost is an extra factor of O(n) in both space and runtime. We

present the algorithm counted DC below, which is a modification of the DC algorithm.

The idea is to combine the approach described above for the change constraint alone

with our existing dynamic programming approach, by adding a dimension to the tables

which counts the number of stretches. That is, count[i, τ, c] now stores the number of ways

of forming a prefix support that reaches position i, where the value of the last stretch in

the support is τ , and the support consists of c stretches. Similarly, begins stretch[i, τ, c]

indicates whether a stretch of type τ beginning at si is contained in any solution, and

begins a suffix support that consists of c stretches.

Algorithm BuildCounts()

1. initialize all entries of count to 0

5.1. Counting Stretches 58

2. (* consider all the initial stretches *)

3. foreach τ ∈ dom(s0) do

4. for l ← 1 to min(longest[τ], n) do

5. if τ /∈ dom(sl−1) then break

6. if l ≥ shortest[τ] then count[l, τ, 1] ← 1

7. (* extend to all prefix supports *)

8. for r ← 1 to n − 1 do

9. foreach (τj, τk) ∈ {dom(sr−1) × dom(sr)} ∩ Π do

10. for l ← 1 to longest[τk] do

11. if r + l > n or τk /∈ dom(sr+l−1) then break

12. if l ≥ shortest[τk] then

13. for c ← 1 to n − 1 do

14. count[r + l, τk, c + 1] ← count[r + l, τk, c + 1] + count[r, τj, c]

Algorithm counted DC()

1. initialize all entries of begins stretch to false

2. initialize all entries of prunable to true

3. foreach τj ∈ T do

4. foreach c ∈ C do

5. begins stretch[n, τj, c] ← true

6. for r ← n − 1 downto 0

7. foreach τj ∈ dom(sr), c ∈ {0, . . . , n} such that count[r, τj, c] > 0 do

8. max stretch ← 0

9. foreach τk ∈ T such that (τj, τk) ∈ Π do

10. for l ← 1 to longest[τj] do

11. if r + l > n or τj /∈ dom(sr+l−1) then break

12. if l ≥ shortest[τj] and begins stretch[r + l, τk, c + 1] > 0 then

13. begins stretch[r, τj, c] ← 1

14. max stretch ← max(max stretch, l)

15. for l ← 1 to max stretch do prunable[r + l − 1, τj] ← false

16. for i ← 0 to n − 1 do

17. foreach τk ∈ dom(si) do

5.2. Smooth Stretches 59

18. if prunable[i, τk] = true then remove τk from dom(si)

19. for c ← 0 to n do

20. seen ← false

21. foreach τ ∈ T do

22. if count[n, τ, c] > 0 then seen ← true

23. if not seen then remove c from C

Using analysis similar to that used in Chapter 2, the runtime complexity turns out to be

O(n2m2l), and the space complexity O(n2m). The proof of correctness is also analogous.

The IC algorithm can be modified in a similar fashion, with the set of nodes being

augmented with an extra dimension that indicates the stretch count. A node of the form

(si, τj, p, c) corresponds to si being assigned value τj, where si is the p-th variable in its

stretch, and this stretch is the c-th stretch in the solution.

Two related constraints described by Beldiceanu in [2] are the among and count con-

straints. The former includes a set of values Σ as a parameter and constrains the number

of variables that are assigned one of the types from this set. The latter is simply for the

special case where the set of values is a singleton.

among(C, {s0, s1, . . . , sn−1}, Σ)

• dom(C) ⊆ {0, 1, . . . , n − 1}
• Σ ⊆ T
• C equals the number of variables si ∈ Σ

Both of these constraints appear in real world solvers, and both can be incorporated

into stretch in much the same way as the change constraint. For example, counted DC

can be modified so that the count parameter c is incremented by the length of the stretch

being considered if that stretch is of a type in Σ (and not incremented otherwise).

5.2 Smooth Stretches

The smooth constraint is similar to change, except that rather than counting all changes, it

only counts large changes. A change between si and si+1 is large if it satisfies |si−si+1| > T ,

5.3. Grouping Types 60

so we are assuming the values in the domain of each si are integers now. As with the change

constraint, we try to avoid having fixed parameters, so T is a variable. smooth turns out to

be a generalization of change, which corresponds to the case where dom(T) = {0}. Thus,

we can create an even more general stretch constraint.

smoothed stretch(C, T, {s0, s1, . . . , sn−1}, Π, shortest, longest)

• shortest[si] ≤ span(si) ≤ longest[si]

• si = si+1 or (si, si+1) ∈ Π

• dom(C) ⊆ {0, 1, . . . , n − 1}
• dom(T) ⊆ {0, 1, . . . , d}, where d = max(τ ∈ dom({s0, . . . , sn−1}))
• C equals the number of variables si such that |si − si+1| > T

It is fairly straightforward to see how to modify the counted DC algorithm in a naive

way to enforce domain consistency for this constraint. For a fixed value of t, anywhere

the original algorithm would use the table entry count[r, τj, c + 1] for a pattern (τi, τj), we

modify it to instead refer to the entry count[r, τj, c] if |τi − τj| ≤ t. Repeating this for each

t ∈ dom(T), we can find out which values of t have solutions and which can be pruned.

The intersection of the prunable tables generated by all invocations tells us which values

can be pruned from the shift variables, and the intersection of the change count values tells

us how to prune C. The running time is therefore O(n2m2l|dom(T)|).
Unlike the counted stretch constraint, having T as a variable costs us in running time.

If we instead set t to be a fixed parameter, the algorithm would have the same complexity

as counted stretch. This shows that in practice it may sometimes be beneficial to provide

specialized versions of a constraint.

5.3 Grouping Types

Another type of constraint proposed by Beldiceanu in [2] is the group constraint. Its notion

of a group is very similar to the notion of a stretch. A group is a maximal sequence of

variables whose types are all chosen from a set G, which is given as a parameter. The

constraint allows one to specify the size of the smallest and largest groups, the minimum

5.3. Grouping Types 61

and maximum distances between groups (or between a group and the beginning or end of

the roster), the total number of groups in a solution, and the number of variables who take

their value from G. If we treat all of the values in G as one type, and the values not in

G as a second type, this almost becomes a combination of counted stretch and among.

The only difference is that group says that there must be groups whose lengths are exactly

equal to the lower and upper bounds.

group(Cg, Cv, {s0, s1, . . . , sn−1},G, MinGroup, MaxGroup, MinDist, MaxDist)

• Cg ⊆ {0, . . . , n} the number of groups

• Cv ⊆ {0, . . . , n} is the number of variables si such that value(si) ∈ G
• The smallest group is of size MinGroup

• The largest group is of size MaxGroup

• The distance between groups or a border and a group is at least MinDist

• The distance between groups or a border and a group is at most MaxDist

One can use an approach similar to our algorithm for counted stretch to enforce con-

sistency with respect to Cg and Cv. To handle the fact that groups are like stretches whose

variables can be assigned different values, it is easiest to consider groups one variable at

a time. This can be accomplished by augmenting the dynamic programming subproblems

with an extra parameter p, indicating how many variables in the group currently being

considered have been assigned, similar to how we constructed the auxiliary graph for the

IC algorithm. To handle the MinGroup and MaxGroup parameters, we can add two ex-

tra boolean parameters to the dynamic programming subproblems, indicating whether a

group of size MinGroup or a group of size MaxGroup has been included in the support the

subproblem corresponds to. The MinDist and MaxDist parameters are handled exactly

like shortest and longest.

The dynamic programming subproblems end up being specified by tuples of the form

(r, p, ingroup, minused, maxused), where the last three parameters are boolean parameters.

The boolean valued ingroup parameter takes the place of the τ parameter for the most

recent stretch type for previously discussed constraints, since we only need to know whether

the previous value was in G or not. Thus, the space required is O(23nl) = O(nl), where

5.4. Intractable Variations 62

l = MaxGroup. When considering each subproblem, there are at most m possible values

to consider for the next variable, and so the running time is O(nml).

It is quite feasible to combine the group constraint with the concepts of stretches, and

even smoothed and counted stretches, into one super stretch constraint that combines all

of these concepts, using the same principles we have discussed throughout this chapter.

We have elected to discuss the concepts separately for simplicity, and because it is unlikely

that any realistic problem would require all of these features simultaneously. Moreover,

a domain consistency algorithm for such a constraint would likely be impractical to use

for anything but very small problems, because all of the variables and parameters to keep

track of would result in inordinately high time and space complexity.

5.4 Intractable Variations

In this section, we present some variations of the constraint that seem simple and useful,

but turn out to be NP-complete to fully propagate.

5.4.1 Forcing Shift Appearances

It is often useful to force a shift of a certain type to occur at least once. For example,

there may be a mandatory cleaning shift that we want to include in a daily roster, but we

don’t care when it occurs. One approach would be to simply schedule the cleaning shift at

a fixed time by binding variables ahead of time to create a pre-defined stretch. This has

the drawback that it may limit the possible arrangements for the remaining shifts though.

It would be better if we were to incorporate this capability directly into the constraint:

forced shift stretch({B1, . . . , Bm}, {s0, s1, . . . , sn−1}, Π, shortest, longest)

• shortest[si] ≤ span(si) ≤ longest[si]

• si = si+1 or (si, si+1) ∈ Π

• Bj = 1 if there is a stretch of type τj, and 0 otherwise

The idea is that if we want to force a stretch of a certain type to appear, we can set

the domain of the corresponding Bj variable to {1}. (It is easy to force no stretch of a

5.4. Intractable Variations 63

given type to appear by simply removing the type from all domains.) Unfortunately, this

constraint turns out to be much harder than stretch.

Theorem 5.1. Deciding whether an instance of forced shift stretch has a solution is

NP-complete.

Proof. A witness for the problem is a set of supports, one for each value in each variable’s

domain. This is polynomial in n and m, which shows that the problem is in NP. To show

completeness, we proceed with a reduction from HamiltonianPath.

An instance of HamiltonianPath consists of an undirected graph G = (V,E), and

the answer is “yes” if and only if there is a path in G that visits each vertex precisely

once. We introduce a shift type τv for each vertex v ∈ V , and |V | shift variables. Each

shift variable’s domain contains all types. For each edge (u, v) ∈ E, we let (τu, τv) be a

pattern in Π. Finally, set Bv = {1} for each v ∈ V . It is easy to see that by construction,

G contains a Hamiltonian path if and only if the corresponding forced shift stretch

instance has a solution, and the construction has size O(|V |2).

Corollary 5.2. Enforcing domain consistency for forced shift stretch is NP-hard.

A consequence of this is that any constraint which individually restricts the number

of occurrences of each shift type is intractable. Consider the stretch constraint where the

minimum length shortest[τi] and the maximum length longest[τi] of every stretch of type τi

is replaced with a set variable li which contains the lengths of the possible stretches of that

type. Unfortunately, it is intractable to enforce domain consistency on such a generalized

stretch constraint.

As another example, consider the stretch constraint which is extended to include do-

main variables ci, where ci denotes the number of possible stretches of type τi. Such

a constraint would prove useful in modeling real-life rostering problems (see [12] for ex-

amples). Unfortunately, it is intractable to enforce domain consistency on this extended

stretch constraint. One can model restrictions on the number of stretches of a certain

type using a combination of a (regular) stretch constraint and a generalized cardinality

constraint over auxiliary variables. However, the amount of pruning achieved by enforcing

domain consistency on such a decomposition will necessarily be less than on the extended

5.4. Intractable Variations 64

stretch constraint since individually the problems are tractable but the combination is

intractable (see [5]).

5.4.2 Creating Multiple Rosters

All of the constraints we have presented have dealt with the problem of creating a single

roster. It may, however, be useful to try to create a second roster using only values that

were not assigned to the first roster. For example, each roster might represent a job that

is composed of multiple tasks, each of which can only be completed by certain workers.

Thus, workers do not spend all their time working on a single job, and could be scheduled

to work on another job during any remaining shifts. In other words, we would like to find

disjoint solutions to a stretch instance: a set of solutions such that no two of them assign

the same value to any variable.

One way to model this problem is by iteratively solving several CSPs. Each CSP

includes a stretch constraint (and possibly other constraints). When a solution is found to

the first CSP, we remove the corresponding values from the initial domains of the variables,

and solve the new CSP. This is repeated until we have as many solutions as we need or

no more solutions are possible. It turns out that this will not necessarily generate the

maximum number of solutions. Consider the example stretch instance in Table 5.1. The

maximum number of disjoint solutions is two. One such pair of solutions is AAABCC and

CCBAAA. However, what if the first solution that the constraint solver finds is CCBBCC?

Removing these values from the domains gives the stretch instance in Table 5.2, which

has no solutions.

Table 5.1: (left) Bounds on stretch length; (right) Initial domains.

τk shortest[τk] longest[τk]

A 3 3

B 1 2

C 2 2

s0 s1 s2 s3 s4 s5

A A A A A A

B B

C C C C C C

5.4. Intractable Variations 65

Table 5.2: (left) Bounds on stretch length; (right) Initial domains.

τk shortest[τk] longest[τk]

A 3 3

B 1 2

C 2 2

s0 s1 s2 s3 s4 s5

A A A A A A

C C

Not only does the simple greedy approach above fail to produce a maximum set of so-

lutions, but it may produce a much smaller set. One might hypothesize that a more clever

greedy approach might work better. The problem also looks suspiciously like something

that might be solved using network flow theory on one of the graph representations pre-

viously used to model stretch. Any maximum set of disjoint solutions will form disjoint

paths in such a graph. However, because all stretches are not the same length, it turns out

that this does not work either. The problem turns out to be NP-complete.

As we have stated it, this is an optimization problem. It can be turned into a CSP by

introducing a variable whose values are the numbers of disjoint sets possible, and replacing

each shift variable with m indicator variables which are 0 if the corresponding value is

not used in the solution, and k if it is used in the k-th disjoint solution. We will spare

the details, since proving that the decision version of the problem is NP-complete suffices

to imply that it is NP-hard to enforce domain consistency for any polynomial-sized CSP

formulation.

parallel stretch

Given an instance of the stretch constraint, and a value K, deter-

mine if there is a set of K or more disjoint solutions. That is, a set

of at least K solutions, no two of which assign the same value to

any variable.

Theorem 5.3. Deciding parallel stretch is NP-complete.

5.4. Intractable Variations 66

Proof. We will reduce from the three-dimensional matching problem, 3DM. An instance

of 3DM consists of a set M ⊆ W ×X×Y , where W , X, and Y are disjoint sets having the

same number of elements, q. An instance is a “yes”-instance iff there is a subset M ′ ⊆ M

such that |M ′| = q and no element of W , X, or Y appears in more than one element of

M ′. See for example [6] for more details on 3DM and a proof of NP-completeness.

The idea is to construct a stretch instance where each element of M corresponds to

a distinct solution by defining the stretch lengths so that only stretches corresponding to

elements of M interlock in a way that leads to a solution. Each solution will consist of four

stretches. The first, second, and third of these correspond to the elements of W , X, and Y ,

and the minimum and maximum stretch lengths are constrained so that for each element in

one of these sets, any corresponding stretch must include a certain variable. This ensures

that two disjoint solutions cannot include the same element. The fourth stretch is used

to ensure that only triples contained in M can be considered in solutions. Any sequence

for the first three stretches which does not correspond to an element of M will not have a

corresponding fourth stretch that can be appended to fill out the roster.

To arrange our stretches so that any two stretches of a type τ corresponding to an

element of W , X, or Y necessarily overlap, consider the mapping ϕ : W ∪ X ∪ Y → N in

which the i-th element in W (the order is set arbitrarily), the j-th element in X, and the

k-th element in Y map to i, j(q + 1), and k(q + 1)2 respectively. Define φ : W ×X × Y →
N as φ(v) = ϕ(vW) + ϕ(vX) + ϕ(vY), where vW , vX , and vY indicate the components

of v corresponding to sets W , X, and Y . This maps each element in M to a number

whose digits in base-(q + 1) indicate the components of the triple. Now, for each value

u ∈ W ∪ X ∪ Y , we will create a corresponding value in our stretch instance, with

shortest[u] = longest[u] = ϕ(u). We also create tail stretch values for each v ∈ M , with

shortest[v] = longest[v] = φ(v). The domains are defined as follows:

• For each w ∈ W , variables s0, s1, . . . , sϕ(w)−1 contain w. The total number of variables

containing w is exactly the length of any stretch of type w.

• For each x ∈ X, variables s1, s2, . . . , sq+ϕ(x)−1 contain x. The total number of these

variables is q + ϕ(x) − 1, and since ϕ(x) > q − 1, any two valid stretches of type x

must overlap.

5.4. Intractable Variations 67

• For each y ∈ Y , variables sq+2, sq+3, . . . , sq+q(q+1)+ϕ(y)−1 contain y. The total number

of these variables is q(q + 1) + ϕ(y) − 2. Again, since ϕ(y) > q(q + 1) − 2, any two

valid stretches of type y overlap.

• For each v ∈ M , variables sφ(v), sφ(v)+1, . . . , sn−1 contain v, where n = (q + 1)3. The

purpose of these variables is to ensure that only triples corresponding to elements of

M can be chosen in a solution to the stretch problem.

We have set up our stretch lengths and domains so that for any v ∈ W × X × Y , a

corresponding prefix support containing three stretches can be found. Moreover, this prefix

support covers precisely the first φ(v) variables. There will be a stretch of type v from

sφ(v) to the end of the roster if and only if v ∈ M . Table 5.3 gives an example of a roster

produced by this transformation. Notice that triples that are not in M such as (w1, x1, y2

do not correspond to solutions. Choosing stretches of types w1, x1, and y2 covers variables

s0 up to s21, but there is no tail stretch to append.

The correctness of our transformation follows easily from the construction. For any

solution M ′ ⊆ M to a “yes”-instance of 3DM, it is clear by construction that there is a

set of q disjoint solutions to the parallel stretch instance, since no two elements of M ′

share the same component, and they each have a corresponding tail stretch. Conversely,

a solution to parallel stretch of size q corresponds to a “yes”-instance of 3DM by

virtue of the previously noted properties that no two solutions can use a stretch of a given

type; and each choice for the first three stretches of a solution covers a distinct number of

variables, which can only be extended to the end of the roster if the first three stretches

correspond to an element of M .

It is obvious that we can verify a solution to parallel stretch in polynomial time,

by checking the stretches in the solution to ensure they are valid and do not overlap. The

transformation we have given from 3DM can also be computed in polynomial time, since

the resulting stretch problem has O(q3) variables and O(q3) values.

Resource optimization problems are often NP-complete, so it is to be expected that most

stretch variations of an optimization nature are intractable. As another example, consider

a variation in which only solutions in which the number of shift types (e.g. employees) does

not exceed some threshold are considered. Whereas parallel stretch would be useful to

5.5. Other Extensions 68

maximize the productivity of a fixed number of workers, this is something of a counterpart

and would be useful to minimize the number of workers needed to perform a fixed task.

However, this problem is also NP-complete, by a simple reduction from Min-Cover.

5.5 Other Extensions

The extensions we described in the first part of this chapter all correspond to existing

constraints that have been proposed in the literature and are useful in practice. For

example, the counted stretch constraint would be useful if we wanted to restrict the

number of employee changeovers that occur during a work schedule. With the original

stretch constraint, we could attempt to accomplish this by narrowing the bounds on

stretch lengths, but this would not work effectively if we want to still allow very short or

very long work stretches. A application of the smoothed stretch is to force some property

to change gradually. If the values represent production quantity, one may want to set high

values near Christmas time, low values earlier in the year, and force the quantities to be

ramped up over time.

There are many more tractable variations of stretch that may be useful which we have

not discussed, since they do not generalize previously studied constraints. Most of these

can be solved using small modifications to one of the algorithms we have presented. Some

examples are:

• Restrict the length of the k-th stretch for some k, or the possible types of the k-th

stretch to some subset of the shift types. It is simple to augment the propagator for

counted stretch to handle arbitrarily many constraints of this form.

• Allow different pattern sets to be used for specific pairs of variables, or specific stretch

counts.

• Define a cost function for each variable or stretch that depends on the type, and only

permit solutions whose cost does not exceed a certain value. This can be done by

modifying the DC algorithm to store the minimum cost in its tables rather than the

number of solutions.

5.5. Other Extensions 69

Table 5.3: (top) Bounds on stretch length; (bottom) Domains; The parallel stretch in-

stance corresponding to the 3DM instance with M = {(w1, x1, y1), (w1, x2, y2), (w2, x2, y2)}.
Here q = 2, and t1, t2, and t3 correspond to the values of M in the order they are listed.

τk shortest[τk] longest[τk]

w1 1 1

w2 2 2

x1 3 3

x2 6 6

y1 9 9

y2 18 18

t1 14 14

t2 2 2

t3 1 1

s0 s1 . . . s4 . . . s7 . . . s13 . . . s16 . . . s25 s26

w1

w2 w2

x1 . . . x1

x2 . . . x2 . . . x2

y1 . . . y1 . . . y1 . . . y1

y2 . . . y2 . . . y2 . . . y2 . . . y2

v1 . . . v1 . . . v1 v1

v2 v2

v3

Chapter 6

Conclusions

Much of the past research on CSPs has focused on binary constraint networks, in which

all constraints apply only to pairs of variables. This class of CSPs is justifiably interesting,

because any non-binary constraint network can be transformed into a binary one. However,

in practice CSPs are rarely solved this way because the domains of the transformed problem

can become exponentially large, and any inherent structure in the problem can be muted.

Recent trends involve placing more emphasis on techniques for solving CSPs expressed

using N -ary constraints.

The study of non-binary constraints presents some of its own unique issues. Most

of the work on binary CSPs of course does not generalize easily, if at all, to higher-arity

constraints. This means that most work must focus on specific constraints. However, there

are infinitely many constraints that one might imagine! Far fewer are useful or interesting.

We feel that one of the most important goals in the area should be to produce constraints

that are as general as possible while maintaining efficient consistency propagation, since

it is often better for propagation to model a problem using a single constraint rather than

multiple independent ones.

One approach to generalization is to extend existing constraints where possible, so

that they can handle a wider class of problems. This is one of the contributions of this

thesis, and an earlier example is the gcc constraint, which generalizes alldifferent. It

is also useful to identify the limits of these generalizations–what kind of changes make it

intractable to achieve certain levels of consistency? This way we have a clear demarcation

70

6.1. Stretch Problems 71

of what problems can be solved within a constraint family.

6.1 Stretch Problems

This thesis presented efficient algorithms for enforcing domain consistency propagation

of the stretch constraint, both incrementally, and non-incrementally. We showed how

to extend the stretch constraint and our domain consistency algorithms to generalize

multiple constraints from the literature. We also discussed other types of generalizations

for which enforcing domain consistency is intractable.

The experimental results comparing our algorithm to Pesant’s original algorithm under-

score the importance of being able to enforce a strong level of consistency. While Pesant’s

algorithm is actually quite effective most of the time, there are occasional instances that

it cannot solve in any reasonable period of time. Being able to enforce domain consistency

guarantees that any bottlenecks are outside of the stretch propagator, and are related

to the constraint solver and interference by any other constraints which are also being

propagated.

6.2 Future Work

The treatment of the stretch constraint in this thesis solves most of the algorithmic side

of the problem of propagating domain consistency. It may be possible to squeeze small

performance improvements out of our FC algorithm, but in practice these would likely

not make a huge difference in performance. Of greater interest is the O(nml) memory

consumption of the IC algorithm. An incremental approach that lowers this to the optimal

complexity of O(nm) would be useful, and eliminate the main reason one might prefer to

use FC.

One other promising avenue for future work is Pesant’s recent regular expression con-

straint [15], and his corresponding algorithm for enforcing domain consistency. It allows a

sequence of variables to be constrained to match a given regular expression or DFA. Indeed,

this constraint subsumes the original stretch constraint, and although it has higher worst-

case complexity than our approach, its expressive nature allows it to handle a wide variety

6.2. Future Work 72

of problems. If it could be combined with counting features to handle our extensions of

stretch, it would be an extremely useful and general constraint.

Bibliography

[1] F. Bacchus and P. van Beek. On the conversion between non-binary and binary

constraint satisfaction problems. In Proceedings of the Fifteenth National Conference

on Artificial Intelligence, pp. 311–318, Madison, Wisconsin, 1998.

[2] N. Beldiceanu. Global constraints as graph properties on structured networks of ele-

mentary constraints of the same type. (T2000/01) (2000).

[3] N. Beldiceanu. Pruning for the cardinality-path constraint family. Technical Report

T2001/11A, SICS, 2001.

[4] C. Bessière. Arc-consistency and arc-consistency again. Artificial Intelligence 65

(1994), 179–190.

[5] C. Bessière, E. Hebrard, B. Hnich, and T. Walsh. The complexity of global constraints.

In Proceedings of the Nineteenth National Conference on Artificial Intelligence, San

Jose, California, 2004.

[6] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman, 1979.

[7] R. M. Haralick and G. L. Elliott. Increasing tree search efficiency for constraint

satisfaction problems. Artificial Intelligence 14 (1980), 263–313.

[8] L. Hellsten, G. Pesant, and P. van Beek. A domain consistency algorithm for the

stretch constraint. In Proceedings of the Tenth International Conference on Principles

and Practice of Constraint Programming, Toronto, 2004.

73

BIBLIOGRAPHY 74

[9] ILOG S. A. ILOG Solver 4.2 user’s manual, 1998.

[10] G. Kondrak and P. van Beek. A theoretical evaluation of selected backtracking algo-

rithms. In Proceedings of the Fourteenth International Joint Conference on Artificial

Intelligence, pp. 541–547, Montréal, 1995.

[11] G. Laporte. The art and science of designing rotating schedules. J. of the Operational

Research Society 50 (1999), 1011–1017.

[12] G. Laporte and G. Pesant. A general multi-shift scheduling system. J. of the Opera-

tional Research Society (2004). Accepted for publication.

[13] R. Mohr and T. C. Henderson. Arc and path consistency revisited. Artificial Intelli-

gence 28 (1986), 225–233.

[14] G. Pesant. A filtering algorithm for the stretch constraint. In Proceedings of the Sev-

enth International Conference on Principles and Practice of Constraint Programming,

pp. 183–195, Paphos, Cyprus, 2001.

[15] G. Pesant. A regular language membership constraint for finite sequences of variables.

In Proceedings of the Tenth International Conference on Principles and Practice of

Constraint Programming, Toronto, 2004.

[16] C.-G. Quimper, P. van Beek, A. López-Ortiz, A. Golynski, and S. B. Sadjad. An effi-

cient bounds consistency algorithm for the global cardinality constraint. In Proceed-

ings of the Ninth International Conference on Principles and Practice of Constraint

Programming, pp. 600–614, Kinsale, Ireland, 2003.

[17] J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proceedings

of the Twelfth National Conference on Artificial Intelligence, pp. 362–367, Seattle,

1994.

[18] J.-C. Régin. Generalized arc consistency for global cardinality constraint. In Pro-

ceedings of the Thirteenth National Conference on Artificial Intelligence, pp. 209–215,

Portland, Oregon, 1996.

BIBLIOGRAPHY 75

[19] J.-C. Régin and J.-F. Puget. A filtering algorithm for global sequencing constraints.

In Proceedings of the Third International Conference on Principles and Practice of

Constraint Programming, pp. 32–46, Linz, Austria, 1997.

	Introduction
	Overview
	Motivation
	Contributions of the Thesis

	Background
	Preliminaries
	Search Techniques
	Backtracking
	Variable Ordering
	Value Ordering
	Constraint Propagation

	Global Constraints
	A Motivating Example
	The alldifferent Constraint
	The Global Cardinality Constraint
	The stretch Constraint
	Applying Global Constraints

	Propagation Algorithms for the Stretch Constraint
	A Simple Propagation Algorithm
	Analysis

	A Faster Propagation Algorithm
	Computing Reachability
	Pruning Values
	Analysis

	Incremental Propagation
	Overview
	An Incremental Algorithm for stretch
	Analysis

	Cyclic Rosters

	Empirical Results
	Benchmark Problems
	Random Problems

	Generalizing Stretch
	Counting Stretches
	Smooth Stretches
	Grouping Types
	Intractable Variations
	Forcing Shift Appearances
	Creating Multiple Rosters

	Other Extensions

	Conclusions
	Stretch Problems
	Future Work

	Bibliography

