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Abstract

Decision trees have been a popular machine learning technique for some time. Labelled
data, examples each with a vector of values in a feature space, are used to create a structure
that can assign a class to unseen examples with their own vector of values. Decision trees
are simple to construct, easy to understand on viewing, and have many desirable properties
such as resistance to errors and noise in real world data. Decision trees can be extended to
include costs associated with each test, allowing a preference over the feature space. The
problem of minimizing the expected-cost of a decision tree is known to be NP-complete. As
a result, most approaches to decision tree induction rely on a heuristic. This thesis extends
the methods used in past research to look for decision trees with a smaller expected-cost
than those found using a simple heuristic. In contrast to the past research which found
smaller decision trees using exact approaches, I find that exact approaches in general do
not find lower expected-cost decision trees than heuristic approaches. It is the work of
this thesis to show that the success of past research on the simpler problem of minimizing
decision tree size is partially dependent on the conversion of the data to binary form.
This conversion uses the values of the attributes as binary tests instead of the attributes
themselves when constructing the decision tree. The effect of converting data to binary
form is examined in detail and across multiple measures of data to show the extent of this
effect and to reiterate the effect is mostly on the number of leaves in the decision tree.

111



Acknowledgements

I would like to thank my supervisor, Peter van Beek and my readers Robin Cohen and
Forbes Burkowski for taking the time to make this thesis better than I could have on my
own.

The School of Computer Science at the University of Waterloo and all those involved
in making it as successful as it is.

Christian Bessiere, Emmanuel Hebrard, and Barry O’Sullivan for their work on “Min-
imising Decision Tree Size as Combinatorial Optimisation” which has inspired this thesis.
Especially to Emmanuel Hebrard for providing direction.

The University of California Irvine Machine Learning Repository[3] and those who
contribute to it. Special thanks to Moshe Lichman for the quick response to my request
for data.

Most of all I would like to thank my friends and fellow students who were there with
me through the duration of this work.

v



Dedication

I dedicate this thesis to my family, the people who have always been there for me and
will continue to be there. Without them I would not have had the time nor inspiration to
get to where I am today.



Table of Contents

List of Tables

List of Figures

1 Introduction

1.1
1.2
1.3
1.4

Motivation . . . . . . . .
Objectives . . . . . . . .
Contributions . . . . . . . . .

Outline of the Thesis . . . . . . . . . . . . .

2 Background

2.1
2.2
2.3
24

2.5
2.6
2.7

Decision Trees . . . . . . . . . . .
Data Representation: Effect on Decision Tree Size . . . . . . . . ... ...
Ockham’s Razor . . . . . . . . . .. ..
Heuristics . . . . . . . . o
2.4.1 Entropy . . . ...
2.4.2 Information Gain . . . . . . .. ... L Lo
2.4.3 Cost Heuristics . . . . . .. . ...
Missing Values . . . . . . . .. L L
Pruning . . . . . . .

SUMMATY . . . . o v e s e

vi

ix

xii

=W W N -

=



3 Related Work
3.1 ID3 . . . e
3.2 C4.5 . e
3.3 ID34 . .
3.4 Best-first Decision Tree . . . . . . . . . . ..
3.5 Constraint Programming Approach . . . . . . . . ... ... ... .....
3.6 ICET . . . . . . e

3.7 Summary ... oL e

4 Proposed Method
4.1 D4 Algorithm . . . . . . .. .
4.2 Input/Output . . . . . . ...
4.3 Algorithm . . . . . . ..

4.4 Summary . . ...

5 Experimental Evaluation
5.1 Data . . . oL
5.2 Decision Trees with Cost . . . . . . . . . . . . ...
5.3 The Benefit of Binary . . . . . . . . . ..
5.4 Effect of Binary Attributes on a Variety of Data . . . . . . ... ... ...

5.5 Summary ... e

6 Conclusion
6.1 Conclusions . . . . . . . .

6.2 Future Work . . . . . . . .

APPENDICES

vii

20
20
23
24
24
27
29
30

31
31
33
34
38

39
40
41
42
46
52

54
o4
55

56



A Constraint Program 57

A1 Variables . . . . . . .. 57
A.2 Constraint Program . . . . . . . . ... 0o 58
A.3 Symmetry Breaking . . . .. ... oo o 60
References 61

viil



List of Tables

2.1

3.1

5.1

5.2

Dataset of patients labelled with their diagnosis. Each row represents a
patient while each column represents the results of a test conducted on a
patient. A question mark represents missing test results for a patient. . . .

Formulation of the problem of finding the smallest decision tree. The left
column contains variables related the structure of the decision tree and the
data it is built from. The right column contains more information about the
variables and how they are related to the decision tree. . . . . . . ... ..

Datasets from the UCI Machine Learning Repository used to test D4 algo-
rithm. The datasets are sorted by second column (the number of examples
in the dataset). The third and fourth columns are the number of attributes
in the dataset and the average number of values for those attributes. The
second to last column contains the number of classes, while the last column
is the number of top attributes that can be searched completely in under
an hour. The ‘Lenses’ and ‘Hayes Roth’ datasets can look at every pos-
sible decision tree with all combinations of all the attributes at all depths
considered. . . . . . .

Cost datasets from the UCI Machine Learning Repository used to test D4
algorithm. The columns in the table represent the number of examples,
attributes, average number of values, and classes for each dataset. . . . . .

X



2.3

0.4

2.5

2.6

Expected costs of decision trees grown on the datasets from the UCI Machine
Learning Repository. The left three columns contain information about the
decision tree generated by C4.5 and the three columns on the right generated
by D4. The three columns for each algorithm contain the average expected
costs, sizes and generalization accuracies of the decision trees generated.
The dark gray highlighted cell represents the only dataset where the D4
algorithm was able to find a decision tree of lower expected cost than C4.5.
The light gray highlighted cells represent an insignficant cost reduction by

Comparison between WEKA’s J48, the D4 algorithm and Bessiere et al.’s
constraint programming (CP) method on categorical data. Both D4 and CP
were allowed to run for five minutes after finding it’s last solution, while J48
had no timelimit. Each cell represents the average decision tree size from
each of the 10-fold cross-validation runs. . . . . . . . ... ... ... ...

Comparison between WEKA’s J48, the D4 algorithm and Bessiere et al.’s
constraint programming (CP) method on categorical data. Each cell rep-
resents the average decision tree classification accuaracy from each of the
10-fold cross-validation runs. . . . . . . . ... ... L.

Comparison between WEKA’s J48 and constraint programming (CP) method
on categorical data. Average decision tree size (number of nodes) is reported
for each algorithm. The ‘% of Data’ column represents the percentage of
data used in the training set. The ‘WEKA’ column contains the results of
J48 run on non-binary data from [5]. The ‘CP First’ and ‘CP Best’ columns
contain the results of the CP method from the same paper (both the first and
best decision trees found). The last two columns are original and contain
WEKA’s J48 algorithm’s result when run on both binary and non-binary



5.7

2.8

5.10

5.9

Comparison of decision tree size between binary and non-binary features
on an assortment of data. The first column on the left gives a descrip-
tion of the data being used. The code 4f 4v 10e means the data has four
features, four values per features and ten examples, while 2-5v specifies a
range of values. The table is broken up into three sections: D4 run with
no minimum number of examples required for a leaf and no pruning, D4
run with a minimum of one example required for a leaf and no pruning,
and the default pruning settings of WEKA’s J48. In each of those three
sections there are two columns representing the normal data as well as the
data converted to have binary attributes using the method used by Bessiere
et al.[5]. The three highlighted columns are to show that binary decision
trees are normally smaller than their non-binary counterparts. When there
is a minimum number of examples required in a leaf, binary decision trees
are no longer smaller, as there are no longer empty leaves in the non-binary
tree. This removes empty leaves and shrinks the size of the decision trees on
data with non-binary attributes. In this experiment only the best attribute
was examined as determined by the heursitc, D4 preformed no searching or
backtracking. . . . . .. L L L

Comparison of decision tree size between binary and non-binary features
on an assortment of data. Continuation of Table 5.7 with ten features as
opposed to four. . . . . ...

Trends found when comparing decision tree sizes of datasets with similar
dimensions. The first column is the group that is being averaged, whether
it be datasets with a hundred examples (100e), four features (4f), or eight
values per feature (8v). The second column is the ratio between the size
of decision trees found using the original data and the decision trees found
using the data converted to have binary attributes. The third column is the
ratio between the size of decision trees found using the original data with a
requirement that every leaf have at least one example and the decision trees
found using the data converted to have binary attributes. . . . . . . . . ..

Comparison of decision tree accuracy between binary and non-binary fea-
tures on an assortment of data. This table contains the training accuracies
of the decision trees in Tables 5.7 and 5.8. . . . . .. . ... .. ... ...

X1



List of Figures

2.1

4.1

5.1

5.2

2.3

Decision tree built from Table 2.1 using the C4.5 algorithm. Patients are
first tested on their response to antibiotics, with a full response immediately
diagnosing patients with a bacterial infection. . . . . . . .. ... .. ...

Pictorial of the D4 algorithm. The left-most group of people represent pa-
tients or examples used as input into the algorithm. After being passed
through the algorithm the patients are grouped by their diagnosis and or-
ganized in the decision tree by the values of their tests. . . . . . . ... ..

Bar graph showing the average size of the decision trees generated by each
algorithm on each dataset. The Y-axis marks the average size of the ten
decision trees generated by each algorithm, while the X-axis contains the
datasets. Each dataset contains six bars representing the six algorithms.
J48 with all pruning turned off generated the largest decision trees while J48
using binary data with pruning turned on generated the smallest decision
trees. The D4 algorithm searches through many possible trees to find a
smaller decision tree using multi-variate data, while the CP algorithm does
the same thing but using binary data. . . . . . . .. ... ... ... ...

Bar graph showing the average accuracy of the decision trees on test data
generated by each algorithm on each dataset. The Y-axis marks the average
accuracy of the ten decision trees generated by each algorithm, while the X-
axis contains the datasets. Each dataset contains six bars representing the
six algorithms. The CP algorithm generated decision trees with considerably
lower accuracies. . . . . . ... oL

Effect of converting attributes to binary. The left decision tree has multi-
valued attributes while the right decision tree has binary attributes. Notice
the number of tests stays constant despite the decrease in size. . . . . . . .

xii



Chapter 1

Introduction

Decision trees are a simple yet powerful tool for predicting the class label of an example.
There are many areas which can benefit from the use of decision trees, including image
processing, medicine, and finance (these examples and more can be found in [28, p.26]).
Trees are constructed from a set of training examples that share attributes and a selection of
labels. These examples are recursively split into groups based on the value of the attribute
being tested at a given node and sent down a branch that is associated with that value.
At the end of these paths of branches are leaf nodes, or a collection of examples that all
agree on what class they belong to. So when a new example is sent down the root of the
tree, it will be examined by each attribute along the way, moving down the appropriate
branches. At the end of a path of branches in the decision tree are similar examples in a
leaf node, all sharing a classification that will be used to label the new example.

Hyafil and Rivest[]&] show that the problem of finding an optimal decision tree for most
measures of quality is NP-complete. Consequentially, a top down, single pass, heuristic-
driven induction method is used in the construction of decision trees. Although, in practice
on real world data, it might be possible to find decision trees that are smaller, or cost less
than the trees found using the heuristic by searching the space of possible decision trees
in a clever way. This chapter introduces the problem this thesis hopes to solve, outlines
the motivation for this direction of work, states certain objectives, and summarizes the
contributions of this thesis.

Generally, smaller trees are sought after when constructing decision trees. The depth of
a tree can be kept small by considering the information content of the examples given a split
using different attributes. The popular heuristic information gain is one way to accomplish
the growth of decision trees with shorter path lengths to leaf nodes. A generalization of



the problem of finding decision trees with short paths from the root to its leaves is to add
weights to the attributes at each split in the tree. Costs, risks, delays and other measures
of preference over attributes can be included in the heuristic in a way that reduces the
expected path length while preferring attributes at each point in the path with low costs.
This creates a balancing act between the cost and accuracy of the resulting decision tree
and optimizing for one doesn’t necessarily lead to the optimization of both. The solution
proposed in this thesis to the problem of minimizing the expected-cost of decision tree is
to iterate over a subset of viable decision trees with a bias for trees that maximize the
‘information gain over cost’ heuristic.

1.1 Motivation

In past research, C. Bessiere, E. Hebrard, and B. O’Sullivan[5] made an attempt to use
constraint programming and other techniques to find the smallest decision tree consistent
with some training data (classifying all training examples correctly). They reasoned that
smaller decision trees were preferable for their simplicity, having relatively fewer attributes
and perhaps because they would have greater generalization accuracy. Bessiere et al. found
that no matter which technique they used (whether it be a SAT-solver, constraint program-
ming, or linear programming), modern optimization methods could not find the smallest
decision tree on anything but the smallest of datasets.

Part of the original motivation for Bessiere et al.’s work was to minimize the number of
tests conducted on a patient during a diagnosis. Where they minimized the total number
of internal nodes and leaves of decision trees, I look to minimize only the number of internal
nodes representing tests in the tree. Of course not all tests are the same when it comes to
their monetary cost, the time they take, the risk involved, etc. Imagine in the worst case,
the need for an exploratory surgery on a patient. Although a decision tree that classifies
all examples could be built with just one testing node (results of an exploratory surgery),
the cost of that test would be very high for the patient. In between this and conducting an
infinite number of zero costs tests that provide no information, we find limited resources of
hospitals, wait times for biopsy and blood test results, financial burdens of different tests
and many other reasons why some tests may be preferred over others. So the work of this
thesis hopes to extend Bessiere et al.’s model to include a cost for each attribute used in the
construction of decision trees. Although the motivation and experiments in this thesis are
focused on medical examples, the methods introduced work to generalize past results on
minimizing decision tree size by adding weights to each attribute and in turn minimizing
the expected cost of the decision tree.



1.2 Objectives

The objective of this thesis is to extend and simplify Bessiere et al.’s model to allow for
attributes and classes with more than two values and to associate costs with attributes
used to split the examples of the decision tree. The goal was to find decision trees with
multi-valued attributes substantially smaller than those found by a heuristic and to find
decision trees with expected-cost lower than those found by a cost heuristic.

This thesis introduces and explains a new top-down breadth-first decision tree induction
algorithm with backtracking and any-time behaviour (having the best solution so far ready
at any-time in the algorithms runtime). The goal is to extend past optimization attempts
to allow for a more general approach to minimizing different decision tree measures.

It is also the goal of this thesis to take an in-depth look at data used for constructing
decision trees. More specifically, I analyse the effects of converting data to have binary
valued attributes and a binary classification.

1.3 Contributions

Bessiere et al.[5] reported finding decision trees significantly smaller than those found using
Ross Quinlan’s C4.5 algorithm|[36] with pruning turned off. Although the D4 algorithm
can find smaller decision trees, they are not nearly as small as those generated by Bessiere
et al. due to them converting their data to binary. Also, in most cases the expected-cost
of decision trees cannot be reduced past the expected-cost of decision trees found using the
standard single pass heuristic methods. I also show that converting the attributes in data
to many attributes with two values, results in smaller decision trees than the unpruned
trees generated by the C4.5 algorithm. This goes against expectations when considering
the straight conversion of a decision tree with multi-value attributes to a decision tree with
binary value attributes, but accounts for some of the results seen in Bessiere et al.’s work.

In this thesis I introduce a new algorithm that I call D4. It is a descendant of the Ross
Quinlan’s ID3 algorithm[35] with some extensions that allow constraints and searching of
the solution space that a simple heuristic cannot provide. It runs on categorical data with
any number of attributes, values per attribute, and examples. A top-down breadth-first
approach is taken when generating decision trees, with the addition of backtracking when
certain bounds are passed. The D4 algorithm is highly customizable in the way it performs
a search. It can generate a single decision tree equivalent to a decision tree induction
algorithm that simply maximizes a heuristic or in contrast can do a complete search of



all decision trees that meet a certain criteria. Of course as the number of attributes and
examples get large in a dataset, the less likely it is for a complete search to be accomplished.
The D4 algorithm allows for searching a subset of the solution space as well as randomly
generating decision trees with bias from a heuristic. The algorithm is an any-time algorithm
and will return the best decision tree found so far when stopped. Although it cannot
always find decision trees that perform better under a certain measure, the benefits from
the extensibility and customizability of the algorithm make D4 a worthwhile addition to
the ID3 family.

1.4 Outline of the Thesis

The remainder of this thesis will be structured as follows.

Chapter 2 starts off by explaining the history of decision tree induction. Decision trees
are explained in detail and measures of both size and cost of attributes are examined.
Ockham'’s razor as it applies to decision trees is defined and debunked as being more than
a guideline for constructing accurate decision trees. Chapter 2 also discusses different
heuristics used in decision tree construction, missing values in training and test data, and
the pruning of decision trees.

Chapter 3 is an examination of several decision tree induction algorithms. The famous
depth-first ID3 and C4.5 algorithms are explained and a best-first decision tree induction
algorithm is examined to contrast D4’s breadth-first approach to decision tree induction.
ID3+ introduces the idea of backtracking in decision tree induction to avoid pitfalls such as
insufficient examples and features during decision tree construction, which my algorithm,
D4, expands on. Bessiere et al.’s work using constraint programs to optimize decision tree
size is discussed and critiqued as this work is a direct extension of it. Finally, ICET, an
evolutionary approach to decision tree induction is discussed for its use of attribute costs
and misclassification costs.

Chapter 4 discusses the D4 algorithm introduced in this thesis, while Chapter 5 evalu-
ates its effectiveness. Chapter 5 contains other results pertaining to the search for smaller
or lower cost decision trees using backtracking and randomization.

Chapter 6 closes off the thesis with remarks on what has been accomplished and an
inclusion of future directions for the optimization of decision tree cost. Appendix A at the
end of this thesis is included to describe a remodelling of the constraint program in [5] to
work on Choco[19] and other constraint solvers. This model does not appear anywhere



else in the thesis as it does not achieve anything that has not already been accomplished,
but relates to my work and can be helpful to those looking to explore this area further.



Chapter 2

Background

The background contains a brief overview of decision trees, their size, and how to construct
them. It will begin by discussing the problem of finding the smallest /lowest-cost decision
tree, where it is used, what the data decisions are built from look like, why it is so hard to
find small decision trees, and even why we are motivated to find them.

The first section will briefly describe decision trees and the decision tree construction
problem. Then Ockham’s razor will be discussed and how it relates to constructing decision
trees will be explained. The popular heuristic, information gain, its use of entropy, and why
heuristics are used at all will be examined. As this thesis looks to understand minimizing
the expected cost of decision trees, heuristics that take cost into account will also be
surveyed. Although my proposed algorithm does not take missing values into account
and does not use pruning, both are important when considering decision trees and will be
briefly explained at the end of this chapter.

A basic understanding of algorithms and complexity in computer science is assumed.
The goal of this chapter is to give the reader an outline of the problem of finding decision
trees of low expected cost and the literature surrounding that problem. Further information
about decision trees can be found in the survey by Murthy[2&] and information about cost-
sensitive decision tree induction algorithms can be found in the survey by Lomax and
Vaderal[21].



2.1 Decision Trees

Decision trees have been used in machine learning for many years and their widespread use
can be attributed to their ease of construction and readability. There are many application
areas that decision trees are used in: some examples taken from [28 p.26] are agriculture,
astronomy, financial analysis, image processing, manufacturing and production, medicine,
plant diseases, and software development.

Hyafil and Rivest[1&] show that constructing optimal binary decision trees, with the
smallest number of expected tests to classify an example, is NP-complete. They prove com-
pleteness by taking the known NP-complete problem 3DM, finding a three-dimensional
matching, reducing it to £FC'3, the exact cover set problem where the subsets available con-
tain exactly three elements, and then finally reducing £C3 to the problem of constructing
an optimal binary decision tree. Their results show that finding a decision tree that clas-
sifies a set of examples with the minimum number of tests is NP-complete and the result
is generalizable to assigning a cost to each test. Thus, any algorithm that finds a decision
tree with the lowest average expected cost of the paths in the decision tree is not going to
scale well on large data sets. In these situations, a heuristic is used to find near optimal
solutions.

More so, Moret[26, p.603] shows that different decision tree measures, such as tree size
and expected cost, are pairwise incompatible and thus optimizing for one measure means
not optimizing for the others. Approximation is also difficult. Laber and Nogueira[2 1] show
that the binary decision tree problem does not admit an o(log n)-approximation algorithm,
Adler and Heeringa[l] show this holds true for the decision tree problem with weighted
tests and Cicalese et al.[9] show it holds true for the weighted average number of tests.

Table 2.1 shows how the data for decision trees are formatted. Each row in the dataset
represents an example, or specifically in the case of the infection dataset, a patient that
had a series of tests conducted on them. Each column contains the results from a test and
is referred to as a value of an attribute. The last column represents what class the example
falls in, or again more specifically, the diagnosis of the patient. The aim of constructing a
decision tree is to group patients with a similar diagnosis together by comparing the results
of their tests in the hopes to later find new patients’ diagnoses.

Finding similar patients is accomplished by choosing an attribute and splitting the
examples into groups based on which value of the attribute or result from the test they
received. Figure 2.1 shows the decision tree grown using C4.5. The ‘Antibiotics’ test is
chosen for the root and the examples 2, 6, 8, 12, and 14 are sent down the leftmost branch
because those patients did not respond at all to the antibiotics. Examples 1, 9, and 15



Table 2.1: Dataset of patients labelled with their diagnosis. Each row represents a patient while each
column represents the results of a test conducted on a patient. A question mark represents missing test
results for a patient.

Patient Stool Culture | Temperature | Blood Work | Antibiotics || Infection
1 ? none normal ? full bacterial
2 normal none ? ? none none
3 abnormal ? high viral unclear viral
4 normal ? normal unclear unclear none
5 normal none normal bacterial unclear bacterial
6 abnormal | viral high ? none viral
7 ? ? ? viral unclear viral
8 normal none high unclear none none
9 normal none high unclear full bacterial

10 normal ? normal viral unclear viral
11 ? none high bacterial unclear bacterial
12 abnormal none normal viral none none
13 abnormal ? high unclear unclear none
14 normal viral normal unclear none viral
15 ? none high ? full bacterial

went down the rightmost branch because the antibiotics cleared the infection and the rest
of the examples were unclear and went down the middle branch. Once the data have been
split, it can be seen that the rightmost group of patients have all been diagnosed with a
bacterial infection (or are all classified the same). These patients represent a leaf node in
the tree that is labelled ‘Bacterial’. Any future patients’ infection cleared by antibiotics
will allow for a diagnosis of a bacterial infection (or any example with the value ‘full’ for
the attribute/test ‘Antibiotic’ will be classified as ‘Bacterial’). The complete tree is built
by repeating the splitting process on the remaining groups of examples until all of the
subgroups’ classifications are the same.

The details behind building decision trees have been left vague up until this point and
the following sections will go on to explain the effects of decision tree size on accuracy,
how to choose an attribute using a heuristic function, incorporating attribute costs into
the model, what to do when values are missing and how to deal with noisy, missing, and
erroneous data.



Antibiotic Response

none unclear full
none Vlral unclear bacterlal viral

( - )( - [ None ][Bactenal][ Viral |

Figure 2.1: Decision tree built from Table 2.1 using the C4.5 algorithm. Patients are first
tested on their response to antibiotics, with a full response immediately diagnosing patients
with a bacterial infection.

2.2 Data Representation: Effect on Decision Tree Size

When working with decision trees, having attributes and a classification with only two
possible values makes induction easier and has some advantages that will be explained
later. Real world data does not necessarily come in this form though, so a method for
converting examples into binary form is required. I will discuss the two most prominent
ways of converting data into binary in this section, both a direct conversion and a method
that preserves the cardinality of the attribute set. Consider the following example,

@attribute stool {normal,abnormal}

@attribute culture {none,viral}

Q@attribute temperature {normal,high}

@attribute blood_work {unclear,bacterial,viral}
Q@attribute antibiotic_response {none,unclear,full}
@attribute class {none,bacterial,viral}

@data
normal, none, high, bacterial, full, bacterial



To directly convert the example into binary form using the method used by Bessiere
et al.[5], a new attribute has to be created for each value belonging to non-binary at-
tributes, meaning nine attributes in place of five. For example, the attribute blood_work
will become blood_work_unclear, blood_work _bacterial, and blood_work viral. So since the
example has the value bacterial for the original attribute, blood_work_bacterial will be set
to true while the other two are set to false. Since the class has more than two values,
it will be split into two subsets. The values viral and none will be grouped together as
both require no treatment. The example now has nine binary attributes and a binary class
(0,0,1,0,1,0,0,0,1,1) and translates to having normal stool, no culture, high temperature,
clear blood work, bacterial results from blood-work, non-viral results blood-work, an an-
tibiotic response, a clear antibiotic response, a full antibiotic response, and is classified as
a bacterial infection.

Another method for converting features into binary is proposed by Friedman et al[l].
It involves splitting the values of the attribute into subsets and finding the combination
of subsets that maximizes information gain. Splitting the values of the attribute into
two groups allows the size of the problem to stay the same as no new attributes are
created. For the above example, there would be two attributes again that need to be
made into binary attributes. The attribute antibiotic_response will become the attributes
antibiotic_response_unclear and antibiotic_response_full, which group together no antibi-
otic response and an unclear response into the same attribute. The class would be grouped
in a similar way as before.

Concentrating on binary classes while ignoring attributes, Polat et al.[32] propose a
way to turn multi-class classification problems into binary classification problems using a
one-against-all approach. The method uses C4.5 to create a decision tree for each class,
labelling examples positive if they are in that class and negative otherwise. Using these
decision trees together greatly improves classification accuracy over using a single decision
tree that has more than two classes.

2.3 Ockham’s Razor

The most popular version of Ockham’s razor, “entities must not be multiplied beyond
necessity” is a common axiom stated without reference to Ockham by John Punch[31].
The better of two equally accurate hypotheses will be simpler and make less assumptions
to avoid the possibility of errors. Historically, Ockham’s razor has been used in machine
learning and specifically when constructing decision trees, to justify smaller hypotheses.

10



This section will outline why it is important not to rely too heavily on the razor when
constructing decision trees.

Ockham’s razor, named so by Sir William Hamilton in 1852 in honour of William of
Ockham'’s effective use of similar principles, has many interpretations. In this work, it will
be taken to mean that a decision tree with fewer nodes is a simpler tree. There are clear
benefits to a smaller tree as it is both easier to understand and contains fewer (possibly
costly and time consuming) tests. A false interpretation of the razor would be to attribute
higher classification accuracy to these “simpler” decision trees. It should be remembered
that Ockham’s razor is a heuristic, not a guarantee.

The Ockham Razor bound, derived from [6], is a theoretical bound relating to Ockham’s
razor. Given two hypotheses with the same error on a training set S of size m, errg(h),
the upper bound on the generalization error on a testing set generated by a probability
distribution D with probability greater than 1 — 4, errp(h) will be higher for hypotheses,
h, with a longer description length, |Al,

Vh € H,errp(h) < errg(h) + 4/ W (2.1)

The above formula may lead us to believe that decision trees with a smaller description
length, or size, will always have better classification accuracy on unseen data. In general
though, this is not the case and is merely a guarantee on the upper bound of the error.

Domingos|10] proposed separating the razor into two separate razors to consider when
discussing knowledge discovery. The first is that simplicity should be preferred in itself
and the second and false one can be stated as:

Given two models with the same training-set error, the simpler one should be
preferred because it is likely to have lower generalization error[l0, p.2].

Domingos[10] goes on to debunk some of the theoretical arguments for this version of the
razor and to discuss the “no free lunch” theorem. Wolpert and Macready[!5] state that
“any two algorithms are equivalent when their performance is averaged across all possible
problems.” Another way to look at it is: for every domain where a smaller decision tree
has better accuracy on unseen data, there is another domain where the opposite is true.
Thus, it is important to know your domain and know what you are optimizing for.

The reader may be familiar with the pruning of decision trees to avoid over-fitting
and thus assume that the general goal is creating smaller trees to improve the accuracy on
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unseen data. Over-fitting is when the error on training data is low, while the generalization
error (error on testing data) is higher. The pruning that happens is to make sure that all
the branches in the tree have statistical significance and have enough examples to justify a
split or classification. Given sufficient data, there is no need to reduce the size of the tree.

Although Ockham’s razor provides no theoretical guarantees that smaller decision trees
always have higher accuracy on unseen data, does experimentation on real world data show
that smaller trees do provide better classification accuracy on unseen data? Domingos|!()]
provides two sets of evidence against the idea that smaller decision trees provide higher
classification accuracy. There have been experiments that contradict the relationship be-
tween simplicity and accuracy, as well as the success of more complex models increasing
accuracy in practice.

Murphy and Pazzani[27] investigate the relationship between the size of decision trees
and their accuracy on test data. They consider decision trees with perfect accuracy on
training data. Their findings show, on average, the smallest consistent decision trees are
less accurate than slightly larger decision trees. However, with no prior knowledge, simpler
hypotheses should be preferred as they improves accuracy when learning simple concepts
and the opposite bias provides no benefit for more complex concepts.

Webb[11] examines Ockham’s razor and specifically addresses what he calls Ockham
thesis, “Given a choice between two plausible classifiers that perform identically on the
training set, the simpler classifier is expected to classify correctly more objects outside the
training set.” This version of the razor is more general than Murphy and Pazzani’s version
as it includes decision trees that are not consistent with the training data. By adding
complexity to both pruned and unpruned decision trees generated by C4.5, Webb was able
to increase predictive accuracy. The increased accuracy provides experimental evidence
against Ockham thesis.

Needham and Dowe[29] look to support the validity of Ockham’s Razor by consider-
ing message length of a hypothesis (the log probability of a hypothesis given the data) as
opposed to node cardinality (or the size of the decision tree). Although the new measure
for simplicity outperforms node cardinality on certain tasks, the results “did not provide
undisputed evidence for Ockham’s Razor principle.” In fact, they found the shortest mes-
sage lengths preformed worse than those slightly larger, despite a trend of shorter message
lengths having lower prediction error across all the trees considered.
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2.4 Heuristics

Heuristics are a way to use available data in a problem to provide guidance in finding a
solution when an exhaustive search is not practical. Bessiere et al.[5] show this by finding
three exact methods for finding optimal decision trees do not scale well to anything but
the smallest data sets. The use of a heuristic allows an algorithm to estimate a solution
or part of a solution to aid in the search for an optimal or good solution. In regard to
decision trees, heuristics are used to choose which attributes should be used to structure
the data. For example, the information gain heuristic uses the number of examples with
certain properties to choose an attribute that reduces entropy and consequently the number
of splits required to reach a leaf node[35].

Murthy[28, p.10], in work on evaluating and comparing attribute evaluation criteria,
comes to the conclusion that no attribute selection rule is superior to any of the others,
but the comparison of the heuristics can outline which heuristics one would use in different
settings. Although the choice of heuristic can be unclear, choosing the right stopping
criterion and pruning methods to avoid over-fitting is important. I found these conclusions
to be true when comparing and combining the heuristics used in [2], although the similarity
of the heuristics played a significant role.

The following two subsections will describe entropy and information gain, the widely
popular splitting criteria that is also used in this thesis.

2.4.1 Entropy

The now famous Shannon’s entropy was popularized by Quinlan in ID3 and C4.5’s infor-
mation gain heuristic. Entropy is the measure of unpredictability and the information gain
heuristic seeks to reduce the entropy from a set of examples by grouping them so their
classifications are more in agreement.

The entropy, H, of a discrete random variable, X, with possible values x4, ..., x, and
probability P(z;) is defined as,

H(X)=— Z P(x;)logs P (). (2.2)

It is assumed P(x;)loga P(x;) = 0 when the probability of a value is 0 or 1.
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In reducing entropy, the predictability of a classification becomes higher and with no
entropy it can be predicted that the group of examples represents their common classifica-
tion.

2.4.2 Information Gain

To continue with the process of creating a decision tree, I have included a worked out
example of calculating the information gain of an attribute. Information gain is the change
in entropy from the current node to the weighted sum of the entropies of its children given
the selection of a splitting attribute.

The entropy function for the infection database example is the sum of the probabilities
of a certain classification/diagnosis (bacterial, viral, none) multiplied by the information
content of that classification,

entropy( b Y n ) =— <L> log, <L>
b+v+n'b+v+n b+uv+n b+v+n b+v+n
v v
a (b+v+n>10g2(b+v+n>
n n
B <b+v+n>10g2 <b+v+n>'

The above equation uses b to represent the number of examples classified as bacterial
infections, v as the number of examples classified as viral infections and n as examples
classified as no infection.

Information gain calculates the entropy of the examples after the split on some attribute
and subtracts it from the entropy of the examples at the node you are splitting. In this
example, |E?| is the number of examples in node i classified as bacterial and |E;| is the
number of all of the examples associated with node 7. The set V} contains the values for
attribute k. The set E; C E; is all of the examples in E; that have value v; € Vi, when
tested on attribute k. The information gain is then given by,

. |EY| |EY| |EP| |E;| |E%| |EY| |E?|
IG(node;, attributey) = ent Z”—Ejt AR A R
(nodeq, attributes) = en mpy(|Ez'|’ |Eil” |Ez'|) = Bl mpy(|Ej|7 |Ej|” |Ej|)
k

(2.3)
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Starting at the top of the decision tree for the infection dataset, there are 15 examples
with 5 of each of the classifications. The attribute chosen for this example is the one
with the highest information gain, antibiotic response. There are 5 examples that have
no response, 3 examples with a full response and 7 examples with an unclear result. For
each of the three values of antibiotic response, the examples are again split up into their
classification to calculate entropy for the examples with each value,

5 5 5 ) 023

IG(root, Antibiotics) = entropy(ﬁ, R 1—5) - Eentropy(g, 5 5)
3 ; (3 0 0)

— —entropy(=, =, =

1573303

7 ; (2 3 2)

15T T

=1.5—10.333 x (04 0.529 + 0.442)
—0.200 x (0+0+0)
—0.467 x (0.516 + 0.524 + 0.516)
= 0.535.

The calculation of each attribute’s information gain is done every time an attribute
needs to be selected for splitting the examples up and the one with the highest information
gain is chosen. An attribute unused by an ancestor node will have to be selected each time
the data is recursively split until the examples at each leaf node can be used to confidently
label them with a classification.

2.4.3 Cost Heuristics

The original goal of this thesis was to extend the constraint programming method to
minimize the size of decision trees proposed by Bessiere et al.[5] to include a cost for each
attribute. The reasoning behind extending their method of searching for decision trees
using a tree size heuristic is that not all tests are created equal. If the data for an example
to be classified need to be collected in some way, finding the value of an attribute could take
time, cost resources, or have a significant risk associated with it. The task of minimizing
the size of a decision tree without taking into consideration the cost of the tree is incomplete
in domains such as health care. Although this thesis only concentrates on the cost of a
test, there are many other ways to include costs when building decision trees[43].

15



There has been some work done on adding costs to attributes in the past, through the
inclusion of costs into the greedy search function in some way[30][31][11]. There has also
been work done to minimize the cost incurred from misclassification and some work that
does both in a way similar to my approach[12]. These are discussed further in Chapter 3.

The cost heuristics considered when designing my algorithm are adopted from Turney’s]
cost-sensitive classification of decision trees. This section looks at the heuristics used in
cost-sensitive decision tree construction algorithms IDX, CS-ID3, EG2, and ICET. All of
the heuristics share the ratio of information gain over cost and thus share similar perfor-
mance when minimizing cost measures of decision trees.

The cost heuristic used in Norton’s algorithm IDX[30] which was inspired by GOTA[16]
considers both change in information gain (AZ;) and the cost (C;) of adding the next branch
level 17,

Al
C;
No justification for this ratio is given beyond the past successes of information gain in

reducing the height of a decision (the length of the path to a leaf node) combined with the
fact that we wish to reduce the expected cost.

Cost-Sensitive ID3[11] (CSID3) modifies Nez’s heuristic used in EG2[31] without any
justification and ends up with the heuristic,

(2.4)

AL?

C;

I chose to use the heuristic used in CSID3 in my experiments as none of the heuristics
performed better than any other[12] and it contained no parameter to adjust.

(2.5)

The information cost function (ICF) considers a cost/benefit approach to designing the
heuristic[31]. Nez also includes the parameter 0 < w < 1 to allow the user to calibrate
the factor of economy, or how much cost is taken into consideration when choosing an
attribute,

280 — 1
ICF, = —/———. 2.6
(Ci+ 1) (26)
There is no information on how to set the parameter w. Turney[/2] uses the heuristic from

EG2 in ICET (with the w parameter set to 1) to allow for greater control over the cost
bias, although he claims that there is no reason to choose one heuristic over another.
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2.5 Missing Values

A lot of real world data is not complete or error free. There is a strong possibility of
encountering missing values for the attributes of training examples and any future examples
we hope to classify. There are many approaches to dealing with missing values and some of
those will be discussed below. Information about dealing with missing values in data that
have attribute costs and misclassification can be found in [23], [22], and [17]. Although
I am discussing missing values in the background, my work does not handle or deal with
missing values in any way.

When building a classifier, the easiest route would be to completely ignore any exam-
ples that have missing values in them. However, if the number of training examples is
limited and a high percentage of the data is missing, doing so would be wasting informa-
tion. Another approach is to only ignore examples with a specific attribute missing in the
calculations for the heuristic of that same attribute. This still wastes information and an
alternate approach can be found in Quinlan’s C4.5[36]. Quinlan handles missing values for
attributes by sending each example down every branch with a weight attached to it. If
the value is known, then that weight is 1 for its corresponding branch, while the weight is
0 for all other branches. Otherwise, the weight of an example for a given value’s branch
is the frequency of that value in the examples at the current node. When encountering a
missing value for an attribute in an example to be classified, the example is similarly split
and weighted according the the probabilities of each possible value.

It is possible that the reason for missing data is the same across all of the examples
collected for training. In this situation, missing data is actually information and can be
taken advantage of when building decision trees. One way to do this is to add an additional
branch to associate with examples that have missing values for an attribute. That way,
when future examples with a missing value for an attribute need to be classified and are
tested on that attribute, they can be sent down the branch associated with missing values.
A similar approach could be to hold examples with a missing value for an attribute at the
node where the attribute is tested. This node would be treated as a leaf node when an
example to be classified is missing a value for that attribute.

A classification centric design for dealing with missing values builds a decision tree
for each unclassified example. If the example has a missing value for an attribute, that
attribute is not considered in the construction of the decision tree. This problem relates to
the problem of selecting subsets of attributes to learn on and would be used in conjunction
with other approaches for building a decision tree when values are missing in the training
data.
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Lastly, it is also possible to use imputation to replace missing values in the data with
a value chosen using statistics about the data. This could be as simple as choosing the
average value among the examples or the average value among the examples with the
same classification. It can also be much more complicated and use a statistical method or
machine learning itself to impute the missing values. For example, setting the attribute
with missing values as the class and using the examples with known values, will allow C4.5
to classify the missing values in the data.

2.6 Pruning

A common way to improve the generalization accuracy of decision trees is to prune off
sub-trees and replace them with leaves. To avoid over-fitting (the problem of matching
the training data while losing accuracy on test data) it is important to have enough data
to support a classification. Pruning sacrifices accuracy on training data by combining
examples in multiples leaves into one leaf in the hopes of improving accuracy on unseen
data. There are two main types of pruning, pre-pruning and post-pruning. Pre-pruning
stops the growth of trees when splitting the data is no longer beneficial and results in
decision trees that are not consistent with the training data. Post-pruning is done after a
consistent decision tree is grown and uses a subset of the training data that was set aside
to determine where to prune in the decision tree.

A difficulty with real world data is that it can contain noise that our learners would
use in the construction of the model. The idea of pruning was proposed by Breiman|[3] as
an alternative to stopping the growth of a decision tree. Pruning is the act of revisiting a
decision tree after it is constructed and removing sections of the tree that are not supported
by the data or contributing to the classification accuracy of the tree. Otherwise trees can
become too large and over-fit the data. This means that errors and noise have been used
in the construction of the decision tree and the accuracy of the decision tree on unseen
data will suffer. The reader is directed towards [36],[25],[24],[25],[8],[7], and [12] for more
information about specific pruning methods .

2.7 Summary

In this chapter I covered the background for this thesis, namely decision trees and research
related to constructing them. I discussed what decision trees are, how they are created

No decision trees were pruned in the making of this thesis.
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and the hard problem of finding an optimal decision tree. I also looked at Ockham’s razor
and how it relates to the decision tree problem. Heuristics, including cost heuristics, were
discussed as they are a necessary component when building small, low-cost decision trees.
I also briefly looked at missing values in data and what pruning is and how it can improve
decision trees.

In the next chapter I will discuss research related to my thesis, including the C4.5
algorithm which I compare my approach against as well as a constraint programming
approach that I re-evaluate in Chapter 5.
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Chapter 3

Related Work

This chapter covers a few algorithms to give a historical sense of the D4 algorithm intro-
duced in this thesis, it covers different decision tree construction strategies related to depth,
breadth, and best first growth of decision trees and describes the algorithms extended by
D4 and that I compared D4 against to determine its performance.

The D4 algorithm is a successor to the ID3 algorithm as it does not include the exten-
sions made in the C4.5 algorithm, although extensions of my own are made. In Chapter 5,
I evaluate D4 on data with attributes that have costs and use C4.5 to create a simple deci-
sion tree using the same cost heuristic used in D4. The ID3+ algorithm, another extension
to ID3, introduces the idea of backtracking to resolve issues seen in the construction of
decision trees, such as running out of attributes or examples as the tree is grown. I found
this idea useful and extended the use of backtracking to include upper-bounds on decision
tree size and cost. I also discuss a constraint programming approach that works on binary
data, as the results of the approach will be re-evaluated later in this thesis.

3.1 ID3

In 1986, Ross Quinlan introduced ID3, a way to inductively build decision trees[35]. 1D3
belongs to a family of learning systems called ‘Top-Down Induction of Decision Trees’,
where a tree is built recursively by splitting up data and sending subsets of the data down
branches until some stopping condition is met. Quinlan recognized that the generation
of all decision trees for a data set would only be possible for small induction tasks and
designed ID3 to build a single, although not optimal, tree from a subset of the available
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data. If the decision tree does not classify all of the training data correctly, a subset of the
incorrectly classified data is added to the original subset and ID3 is run again. Algorithm
1 presented below uses information gain to choose which attribute to use when splitting
the data.

Algorithm 1 Quinlan’s ID3

Let E be all training examples, A be the attribute

while Decision tree made with £/ C E does not classify £ do
Randomly select subset of examples, £” where E' C E”
E' + E"
ID3(FE', A)

end while

function ID3(E’, A)
if e € £’ belong to the same class then
return a leaf node labelled with this class
end if
if A= (0 then
return a leaf node with the most common class as label
end if
a < a' € A that maximizes gain(a’)
for v; € a do
Let E! C E' with value v; € a

if B/ = () then
create a leaf node with the most common class as label
else
ID3(E!, A —{a})
end if
end for

end function

The following equation for entropy is the same as Shannon’s entropy (equation 2.2)
seen in Chapter 2. The number of positively classified examples, p, and the number of
negatively classified examples, n, are used to find the probabilities used in the entropy
calculation. It is used in ID3’s information gain calculation as an impurity measure,

P n ] n
0] .
g2p+n

I(p,n) =— b log (3.1)

p+n p+n ptn
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The equation for E(A) is a weighted sum of the entropies of the possible values, value
1 to value v, an attribute can have,

— pi + 1
=3 (e (32)

Below is the classic information gain heuristic seen in ID3, C4.5 and many other decision
tree induction algorithms,

gain(A) = I(p,n) — E(A). (3.3)

It is noted in the original paper that I(p,n) is redundant as it stays constant for all
attributes. The same results can be obtained by minimizing E(A).

A problem with the gain criterion is that it favours attributes with more values. Imagine
an attribute called “label” that had a unique value for each example in the data set. This
attribute would be chosen at the root using the gain criterion because the information
gain would be maximized as all of the branches would contain exactly one example (one
classification). This is obviously not helpful as the labelling of the data was arbitrary and
provides no information. A solution to the problem proposed in Quinlan’s paper is to
include the intrinsic value(IV) of an attribute, A, in the selection criteria,

- pri‘nz’lo p; +1n;

IV(A) = —
( ) P p+n g2p+n

(3.4)

This allows the number of values that an attribute has to be used in the new ‘gain ratio
criterion’. This ratio takes the attributes with above average gain and finds the attribute
that maximizes the following,

gainratio(A) = gain(A)/IV(A). (3.5)
Although ID3 is simple, the spirit of the algorithm lives on in most decision tree in-

duction algorithms to this date. The D4 algorithm introduced in this thesis is a direct
descendant of ID3 with the inclusion of backtracking and costs for attributes.
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3.2 C4.5

C4.5 is Quinlan’s extension of his original ID3 algorithm|[36]. It has the same basic structure
as ID3:

1. Run through examples and check for stopping criteria.
2. For each attribute available, calculate information gain/gain ratio.

3. Chose the attribute with highest gain and split examples across groups based on their
values. Each value will correspond to a branch that leads to another node with either
an attribute to split the new subset of examples or a leaf node with a classification
of the examples.

4. Recursively build the sub-trees from the child nodes’ examples.

Although the structure is the same, C4.5 is able to handle missing values and continuous
attributes, and has pruning and stopping criteria built in.

Missing values in an example are handled by ignoring those examples in gain calcula-
tions for the attribute whose value is missing. For the classification of an example with
missing values, the example is split at any nodes with attributes for which the example is
missing values, into probabilities based on the fraction of examples int the node. For ex-
ample, if there is no value for culture on an unseen example, the example will be classified
as 0.25 viral, 0.75 none as there is one example in the viral leaf and three examples in the
none leaf.

Continuous or numeric attributes are handled by creating an attribute associated with
a binary split of the values for each attribute in the data set. This groups all of the
examples into two parts for the gain calculation, all examples with values less than a
particular example are considered to have the same value in the new binary attribute and
all examples with values greater than or equal to that example are the other value. The
split in the examples with the highest gain is chosen and the examples are passed down
two branches.

C4.5 allows the user to specify how many examples are needed to create a leaf node.
This prevents classification of unseen data without any data to support that classification.
(C4.5 also uses all of the training examples to create confidence intervals for post pruning
where depending on these error estimates, sub-trees are replaced by leaves or their own
sub-trees. This is known as sub-tree replacement and sub-tree raising.
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In the results section of this thesis, C4.5 is extended to use the heuristic from Cost-
Sensitive ID3 seen in Chapter 2 in place of the information gain heuristic and to acts as a
baseline of performance when finding decision trees of low cost.

3.3 ID3+

Xu, Wang, and Chen’s[16], Improved Decision Tree Algorithm: ID3™ (see algorithm 2),
hopes to improve on the ID3 algorithm by including backtracking. They claim that ID3’s
information gain heuristic favours decision trees with short path lengths from root to leaf
as opposed to correct decision trees that have at least one supporting example in each leaf.
Instead of stopping the growth of the tree when the branch runs out of available examples
or features, ID3" will backtrack up the tree and choose the next best feature given some
heuristic. This allows their algorithm to search the solution space for a tree that classifies
the data perfectly and with enough data in each leaf to support the classification.

Through their experimental results, Xu et al. show that they can find decision trees that
more accurately fit the training data on two of the four data sets that were not classified
with 100% accuracy by ID3. Although the idea of backtracking is useful, their algorithm
can result in no tree being found if there isn’t a decision tree consistent with the data.

3.4 Best-first Decision Tree

Friedman et al.[l1] introduce the idea of a best-first expansion of decision tree nodes in
their work on boosting as seen in algorithm 3. The strategy of stopping growth early to
save computation works best when you expand the nodes that have the best information
gain first, leaving nodes with less potential to reduce entropy unexpanded. Growth can be
stopped after a certain size, amount of time, or entropy has been reached.

Shi[10] proposed a best-first expansion of decision tree nodes, which has certain ad-
vantages despite generating the same tree that a depth-first expansion will generate. By
expanding nodes in best-first order, pruning can be approached differently. In contrast,
depth-first expansion is the simplest expansion with the least overhead and breadth-first
expansion is useful for backtracking and making decisions at each layer of the decision tree.

As with most decision tree induction on real world data, after a certain number of
expansions and as the tree grows, it will become less accurate. To deal with over-fitting,
Shi uses both pre-pruning and post-pruning to contain the size of the decision tree.
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Algorithm 2 ID3*

Let E contain the examples and A contain the attributes
function ID3"(E, A)
if all e € F are classified the same then
return a leaf node with this classification
end if
if A is empty or F is empty then
return NIL
end if
while A # () do
a <— next best attribute from A
for all value v; in a do
Let E; be the subset of examples with v;
if ID3*(E;, A\ {a}) = NIL then
destroy sub-tree
goto while
end if
end for
return an internal node with children from ID3™
end while
return NIL
end function
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Algorithm 3 Best-First Decision Tree

Let A be a set of attributes,
Let E be the training instances,
Let N be the number of expansions,
Let M be the minimal number of instances at a terminal node
function BFTREE(A, E, N, M)
if £ =0 then
return failure
end if
Calculate the reduction of impurity for each attribute in A on E at the root node RN
Find the best attribute 4, € A
Initialise an empty list N L to store nodes
Add RN (with E and Ap) into NL
EXPANDTREE(NL, N, M)
return a tree with the root RN;
end function
function EXPANDTREE(NL, N, M)
if NL =0 then
return ;
end if
Get the first node FN from NL;
Retrieve training instances E and the best splitting attribute Ab of FN;
if £ =0 then
return failure
end if
if the reduction of impurity of FN = 0 or N is reached then
Make all nodes in NL into terminal nodes
return
end if
if the split of F'N on Ay would result in a successor node with less than M instances then
Make F'N into the terminal node
Remove F'N from NL
EXPANDTREE(NL, N, M)
end if
Let SN1 and SN> be the successor nodes generated by splitting F'N on A, on E
Increment the number of expansions by one;
Let F4 and Es be the subsets of instances corresponding to SN7 and SNo;
Find the corresponding best attributes Ap; for SNy;
Find the corresponding best attributes Ay for SNo;
Put SN; (with E; and Apy) and SNy (with Es and Apg) into N L according to the reduction
of impurity;
Remove F'N from NL;
EXPANDTREE(NL, N, M)
end function
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Best-first pre-pruning stops the expansion of the trees when the error estimates increase
with further splitting. The size of these trees is used as a stopping criteria for the final
decision tree. Like all pre-pruning, Shi’s method has the potential to stop too soon. Best-
first post-pruning solves this problem at the cost of additional computation time.

3.5 Constraint Programming Approach

Constraint programming|[3%] is a programming paradigm used to solve combinatorial prob-
lems where a user declares a problem and specifies constraints for a constraint solver. These
constraints limit the values a variable can take on within its domain based on relationships
between the variables. A constraint solver assigns values to the variables as it searches
for a solution, shrinking the available values for a variable by constraint propagation and
backtracking to variable assignments that agree with the constraints.

Bessiere, Hebrard, and O’Sullivan[5] use constraint programming to attempt to solve
the smallest decision tree problem. Most approaches to decision tree learning use greedy
algorithms and heuristics to grow a single tree from the data, while Bessiere et al. take
the principle of Ockham’s razor to the extreme and look to systematically search the space
of consistent decision trees for the smallest. An example presented for the motivation of
finding the smallest decision tree is to reduce the number of tests in a diagnosis.

They formulate the problem of finding the smallest decision tree that is consistent with
a set of training examples as follows in Table 3.1.

A decision tree classifies a set of examples £ if and only if V(e; € E1,e; € £7), l(e;) #
l(e;) (no two examples in a leaf have different classifications). So, given a set of examples
&, the goal is to find a decision tree that classifies £ with a minimum number of nodes.

To solve the smallest decision tree problem, Bessiere et al. propose using a constraint
programming model. They set an upper bound (initially found using the information gain
heuristic) on the size of the decision tree and search for a binary tree with nodes less than
or equal to the bound. Most of the variables in the constraint program pertain to the
relationship between the nodes and defines the structure of the tree. This is unnecessary
overhead as the structure of the decision tree is implied in it’s top-down induction and
can be reduced to just the variables concerning the feature and examples associated with
a node. As well, the majority of the constraints are associated with the structure of
the tree. This is unnecessary as they find that this model does not scale well enough to
explore any significant portion of the search space. To solve this problem, they subvert
any gains their approach may have by employing the information gain heuristic seen in
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Table 3.1: Formulation of the problem of finding the smallest decision tree. The left column contains
variables related the structure of the decision tree and the data it is built from. The right column contains
more information about the variables and how they are related to the decision tree.

Variable Description

E =ey,...,e, be a set of examples and | £ contains positively classified and £~

ET,E be a partition of £ contains negatively classified examples
of £

F = fi,..., fr be a set of features e[f] is the binary valuation of feature

f € F in example e € &

T = (X,U,r) be a binary tree rooted | L C X is the set of leaves of T" and a
by re X decision tree based on T" where internal
node z € X'\ L is labelled by f(z) € F
(x,y) € U is an edge labelled with | g(x,y) = 0 if y is the left child of x and
boolean g(z,y) g(x,y) = 1if y is the right child of x
p(l) be a path in T for I € L, denotes the path in 7" from
the root r to leaf [

Ve € £, we can associate the unique | every edge (z,y) in p(l(e)) has

leaf I(e) € L elf(x)] = g(z,y)

C4.5 to construct the tree top down. Essentially running the C4.5 algorithm multiple times
through backtracking, the authors found that this itself is even too slow and must constrain
the available features to just the features with top three information gain values at each
node. It should be noted that limiting the available features to the top three features when
constructing the decision tree is NP-complete.

DECISION-TREE. Given a set S of n points in R, divided into two concept
classes ‘red” and ‘blue’, is there a decision tree 17" with at most £ nodes that
separates the red points from the blue points?

Theorem: DECISION-TREE is NP-complete[15]

This search method, coupled with a restart strategy, makes it appear as though signif-
icantly smaller decision trees are found. In Chapter 5, this thesis claims that the size of
the decision tree approaches that of the decision tree found using C4.5 and only after that
are some gains made. Their experimental results show that the first decision trees they
find are significantly smaller than unpruned decision trees found by C4.5. How can this
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be when their algorithm does not look to maximize the same heuristic employed by C4.57
This can be explained by the conversion of the data to have binary attributes to allow it to
be used in their model. They do not convert the data when passing it to C4.5 and thus it
generates larger decision trees containing empty leaves. It then comes as no surprise that
the pruned decision trees created by C4.5 are almost always smaller than the best decision
trees found by the constraint program. There are no empty leaves and C4.5 always chooses
the feature that maximizes information gain, instead of mucking around with lesser feature
choices. Chapter 5, containing the results of this thesis, goes into greater detail on the
effect that converting the data to contain binary attributes has on the problem, as well as

showing some of the results of Bessiere et al. can be obtained merely by passing the binary
data to C4.5.

3.6 ICET

Turney [12] looks at dealing with two types of costs when building decision trees, both costs
associated with attributes and the cost of classification errors. The task of minimizing the
cost of the decision tree is accomplished by employing genetic programming, an algorithm
that evolves a population of biases for the decision trees generated by a modified C4.5.
Turney is motivated in the same way as Bessiere et al., in that medical diagnosis requires
tests, although Turney also deals with the fact that these tests have varying costs and costs
associated with classification errors.

Turney’s algorithm for cost-sensitive classification, called ICET (Inexpensive Classi-
fication with Expensive Tests) uses a modified version of C4.5 which includes costs. It
evaluates the fitness of a bias by the classification cost of the decision tree it grows com-
bined with the cost of classification errors. The biases undergoing evolution contain the
costs used in the generation of the decision tree, a parameter for controlling the sensitivity
to cost, and a parameter to control the level of pruning used in C4.5.

Turney’s experiments show that ICET outperforms basic heuristic single growth algo-
rithms when minimizing cost. It is unclear though if their results are due to a superior
algorithm or if the difference in decision tree cost between C4.5 using EG2 and ICET
(which uses EG2 as its heuristic) is caused by C4.5 with EG2 not optimizing at all for mis-
classification cost and thus missing out on half of the available information. Unfortunately,
they do not test the performance of ICET when only considering attribute costs and thus
it is not known whether or not they can reduce the average cost of a decision tree where
D4 cannot. It would be interesting to see if an algorithm that took both kinds of costs
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into consideration as well as performing a more straight-forward search of the decision tree
space would be competitive with ICET in both speed and performance.

3.7 Summary

In this section I discussed several methods for constructing decision trees: traditional
heuristic based methods such as ID3 and C4.5 as well as more modern approaches that
use backtracking and different forms of search to optimize a decision tree in size or cost.
Overall I looked at different methods of decision tree induction to give a sense of where
the D4 algorithm I introduce fits in.

In the next chapter, I will introduce and explain my proposed method for solving the
problem of minimizing the expected cost of decision trees.
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Chapter 4

Proposed Method

In this chapter I introduce the D4 algorithm, a supervised machine learning algorithm.
The input it takes is a set of labelled examples, such as the data in Table 2.1. Following
the running example, the input to the algorithm would be a set of patients who have
already been diagnosed as having a viral, bacterial or no infection based on some tests that
were run on the patients. What D4 outputs is a decision tree, a grouping of patients with
the same diagnosis and similar test results. The decision tree is used to diagnose future
patients, using their tests results to find similar patients and assign a classification. Figure
4.1 gives a pictorial of the process.

The decision tree is computed layer by layer until the cost of the decision tree becomes
too high and new combinations are tried at previous layers. The process begins at a root
node containing all of the examples and the attributes available with which to split the
examples with. Similar examples are sent down each branch to repeat the process until all
of the examples have the same classification. If at any point the size, cost or other measure
of the decision tree surpasses the running upper-bound(starting off with the decision tree
found using a heuristic), the examples are regrouped up to a point and subsequently split
down new branches using different attributes. This can be done randomly or exhaustively
until all decision trees are considered. After the search is complete, a decision tree optimized
according to some criteria will be returned.

4.1 D4 Algorithm

The D4 algorithm, in its simplest form, is a breadth-first decision tree induction treatment
of the ID3 algorithm with added backtracking. The decision tree is grown layer by layer,
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Antibiotic Response

Figure 4.1: Pictorial of the D4 algorithm. The left-most group of people represent patients
or examples used as input into the algorithm. After being passed through the algorithm
the patients are grouped by their diagnosis and organized in the decision tree by the values
of their tests.

choosing a combination of attributes to split the nodes at that layer and trying a new
combination when some upper-bound is passed. The upper-bound can be the size, depth,
expected cost, or any other measure of the decision tree. After the upper-bound is hit
a given number of times, D4 backtracks to the parent layer of the tree where it tries
a new combination. Choosing the combination of attributes can either be random or
methodical. For the random attribute selection method, a attribute is chosen from the
list of available attributes for each node in the layer given some probability distribution.
For example, the three attributes with highest information gain can have an equally likely
chance of being chosen while the remaining attributes are never chosen. Another way of
choosing the attributes, introduced by Esmeir and Markovitch[l 1], is assigning probabilities
to the attributes based on the information gain of that attribute, giving preference to
attributes with higher information gain. The other approach to choosing the combination
of attributes to use at a given layer is to step through the combinations of the top n
attributes based on information gain. This allows an upper-bound to be set that maximizes
the heuristic by choosing the single combination from the best attribute in every node.
After that, the top n+ 1 attributes as determined by the heuristic can be iterated through,
although this does not scale well and even the top two attributes cannot be completely
iterated through. There are too many possible decision trees to search through given the
combination of attributes. Recall, Goodrich[l5] showed that constructing a decision tree
with only two attributes to choose from per node is NP-complete.
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The inspiration for this algorithm comes from Bessiere et al’s[5] work optimizing the
size of a decision tree using constraint programming. As their solution did not scale well
on larger data sets, they had to use a search heuristic that turned their approach into a top
down induction of decision trees with backtracking. The D4 algorithm improves upon their
model by eliminating the overhead of the constraint library by inferring the structure of the
decision tree while keeping the power of backtracking and by generalizing to include data
that is not in binary form and weights associated with attributes. Thus, D4 can handle
any number of values for each attribute and any number of classes for each example.

4.2 Input/Output

The D4 program currently takes in training data in ARFF (Attribute-Relation File Format)
files. ARFF files were developed by the Machine Learning Project at the Department of
Computer Science of The University of Waikato for use with the WEKA[17]. Although
this file format allows data to have missing values and attributes with continuous values,
the D4 program does not currently handle them and assumes all data sets are complete
and contain only categorical attributes. The format of the file is as follows: It begins with
the name of the relation at the top, followed by a line for each attribute and a line for the
class. The attribute name is followed by the values it can take on. After the attributes
and below the data tag is a list of examples with values separated by commas and ending
with a classification. The costs associated with each attribute are stored in a separate file
in the same order that the attributes appear in the ARFF.

@relation infection

@attribute stool {normal,abnormal}

@attribute culture {none,viral}

Q@attribute temperature {normal,high}

@attribute blood_work {unclear,bacterial,viral}
@attribute antibiotic_response {none,unclear,full}
@attribute class {none,bacterial,viral}

@data

normal ,none,normal ,unclear,unclear,none

normal ,none,high,unclear,none,none

normal ,none,normal,bacterial,unclear,bacterial

33



normal ,none,normal ,unclear,full,bacterial
normal,viral,normal,unclear,none,viral
abnormal,viral,high,viral,unclear,viral

Once a final decision tree is decided on, the D4 program stores that tree as a compilable
C++ program. The C++ program takes in a CSV file and returns the accuracy of the
decision tree on all testing examples in that file.

4.3 Algorithm

The D4 algorithm is split up into three sections (algorithm 4, algorithm 5, and algorithm
6): the main D4 algorithm that builds new trees after failed searches, the GenerateLayer
algorithm that builds a single decision tree using a breadth-first backtracking search and
the CostHeuristic algorithm that gives weights to each attribute.

The main body and starting point of the D4 algorithm is shown in algorithm 4. It
begins with a set of training examples, a set of attributes, and a set of costs associated
with each attribute. It first checks to see if all of the examples are already classified the
same, in which case it returns a leaf node with that classification. If this is not the case, D4
calculates the cost heuristic value for every attribute given all of the available examples.
Once those are sorted, it jumps into a loop that will continue searching until a set amount
of time has passed or some other stopping criteria has been met.

The main while loops starts with a root node containing all of the examples and at-
tributes available to D4 and places it in the open list. The open list contains all of the
internal nodes at a given layer (non-leaf nodes). It then calls GenerateLayer, a recursive
function for building a decision tree. If a decision tree is returned, the cost and size of
the tree is saved as upper-bounds. These upper-bounds are used in successive calls to
GeneratelLayer to backtrack to a parent layer when the decision tree becomes to expensive
or too large.
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Algorithm 4 D4

Let E be a set of training examples
Let A be a set of attributes
Let C' be a set of costs associated with each a € A
Let N be the open list of internal nodes
Let UB be an upper bound on the size of the tree
Let UBC be an upper bound on the cost of the tree
function D4(E, A, C)
if Ve € FE, e is classified with Y then
return single node tree with classification Y
end if
for all attribute a; € A do
hi <~ COSTHEURISTIC(a;, ¢;, F)
end for
Sort attributes in A by heuristic value h;
while current X < maximum Z do
Create new node, n, containing £ and A
Add n to open list N
if T' <~ GENERATELAYER(T, N,UB,UBC) # NIL then
UB < size of tree T
UBC + expected cost of tree T’
end if
end while
return 7'
end function

The GenerateLayer (algorithm 5) portion of the D4 algorithm is more complicated. It
works on all of the nodes in an open list that represents the internal nodes of the decision
tree at that layer. New combinations of attributes for nodes are tried the until no combi-
nations of attributes is left or some maximum number of combinations is reached. As there
are time constraints for running most algorithms, the maximum number of combinations
tried in a layer should be set to allow enough time spent at a given layer while still allowing
time to spent in other layers. For my experiments I started with trying one combination
and then linearly increasing this every time a tree is not found. The algorithm can be
stopped at any time and the current best solution will be returned.

Inside the while loop, a attribute is assigned to each node in the open list (in this case,
randomly based on the heuristic). Once a attribute is chosen, the node is expanded and
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a leaf or internal node is created for each branch. The internal nodes are fitted with the
examples that have the corresponding values for their parent nodes’ attribute, the inherited
list of attributes (not including its parent’s attribute) and the heuristic values for all of
those attributes. These internal nodes are added to a new open list that will be the basis
for the next layer.

After the next layer is constructed, the decision tree may surpass the cost or size upper-
bound. If so, the new layer is scrapped and a new combination is tried at the current layer.
Otherwise, if there are still internal nodes in the open list, GenerateLayer is called again
until all of the examples are grouped together with the same classification. This section
of the algorithm is stopped when the predetermined amount of time has passed or enough
combinations have been tried. If the upper-bound is surpassed too many times at a given
layer, it will give up and return to its parent layer where a new combination will be tried
there. It is possible that the root node will run out of attributes to try and the D4 algorithm
will give up at that point.
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Algorithm 5 GenerateLayer

Let N be the open list of internal nodes
Let UB be an upper bound on the size of the tree
Let UBC' be an upper bound on the cost of the tree
function GENERATELAYER(T, N,UB,UBC)
while current X’ < maximum Z’ do
for all n € N do
Assign attribute a € A in n randomly
for all v; € V; do
if £,, =0 or A,, =0 or all e € E,, all have the same classification then
Add leaf node to N" and set as child of n in T'
else
A+~ A\a
for all attribute a; in A’ do
h; < COSTHEURISTIC(q;, ¢;, E,)
end for
Sort a; by heuristic value h;
Create new node, n, containing F,, and A’
Add n to open list N and set as child of n in T’
end if
end for
end for
if Cost of T'> UBC or Cost of T'= UBC and size of T"> UB then
Update X', X
else if N’ = () then
return T'
else if T+~ GENERATELAYER(T, N,UB,UBC) # NIL then
return 7'
end if
end while
return N/ L
end function

Although any heuristic can be used with D4, the heuristic chosen (algorithm 6) is the
heuristic used in Cost-Sensitive ID3[11] seen in equation 2.5. It finds the information gain
for each attribute on a subset of examples, squares it and then divides it by the cost of
the attribute. Although the costs are unweighted in the selection of the attributes, the
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expected cost is used when calculating the cost of the tree and subsequent upper-bounds.

Algorithm 6 CostHeuristic

Let E be a subset of training examples
Let A be a attribute
Let ¢ be a cost associated with a € A
function COSTHEURISTIC(a, ¢, E)

I + INFORMATIONGAIN(E, a)

return (%)

end function

4.4 Summary

In this chapter I introduced the D4 algorithm. On the surface it is a straightforward
extension of the ID3 algorithm to include backtracking. It allows the use of any heuristic,
attribute selection method, stopping criteria, and upper-bounds for backtracking. It is
useful in finding decision trees beyond those created using simple heuristics and allows for
attributes to have costs associated with them.

In the next chapter I evaluate effectiveness of the D4 algorithm and I explain the effect
of transforming data into binary form.
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Chapter 5

Experimental Evaluation

This chapter looks to examine the effectiveness of the D4 algorithm. Before going into the
experiments, I address the effect that converting attributes into binary form has on decision
tree size. It appears that smaller decision trees can be generated solely by converting the
training data into binary form, reducing the number of leaves in the tree. Binary decision
trees can contain no empty leaves and thus have an advantage. All of the data used in the
experiments are either randomly generated or from the UCI Machine Learning Database’.

The first experiment compares the decision trees generated by the D4 algorithm and
a modified version of C4.5. It is shown that decision trees of lower expected cost gener-
ally cannot be found by backtracking in the decision tree with the D4 algorithm. The
experimental results show that the heuristic used in both C4.5 and D4 is powerful and the
number of decision trees in the solution space is intractably large.

The second experiment revisits the results of Bessiere et al.[5]. They used constraint
programming to search through decision trees constructed from the top three attributes
maximizing information gain to find decision trees of smaller size. They found that by doing
this search, they could find substantially smaller decision trees. This thesis attributes some
of those results to the conversion of non-binary attributes to many binary attributes.

The last experiment looks at trends across data of varying size measures. Increasing
the number of examples, attributes and values per attribute changes how large the effect
the conversion of attributes to binary has on the size of the decision tree generated.

1UCI Machine Learning Repository at http://archive.ics.uci.edu/ml/index.html
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5.1 Data

The data used in this thesis come from the UCI Machine Learning Repository. Thirteen
datasets were chosen with varying numbers of examples, attributes and classes. Table 5.1
shows the size of the dataset as well as how many features can be considered when doing
a complete search of the decision tree space in less than a day.

Table 5.1: Datasets from the UCI Machine Learning Repository used to test D4 algorithm. The datasets
are sorted by second column (the number of examples in the dataset). The third and fourth columns are
the number of attributes in the dataset and the average number of values for those attributes. The second
to last column contains the number of classes, while the last column is the number of top attributes that
can be searched completely in under an hour. The ‘Lenses’ and ‘Hayes Roth’ datasets can look at every
possible decision tree with all combinations of all the attributes at all depths considered.

Name Examples | Attributes | Avg Values | Classes | Complete
Lenses 24 4 2.3 3 *4
Promoters 106 57 4.0 2 3
Hayes Roth 132 4 3.8 3 *4
Lymphography 148 18 3.3 4 3
SPECT 187 22 2.0 2 1
Balance Scale 625 4 5.0 3 1
TicTacToe 958 9 3.0 2 1
Car 1728 6 3.9 4 1
Splice 3190 60 8.0 3 1
Mushroom 8124 22 5.7 2 8
Nursery 12960 8 4.0 D 1
Chess 28056 6 7.3 18 1
Connect 4 67557 42 3.0 3 1

The healthcare data with associated costs in Table 5.2 also comes from the UCI Machine
Learning Repository but is not publicly listed. There are eight data sets related to various
health issues with four of the sets sharing attributes and costs as they are all involving the
detection the presence of heart disease in a patient.
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Table 5.2: Cost datasets from the UCI Machine Learning Repository used to test D4 algorithm. The
columns in the table represent the number of examples, attributes, average number of values, and classes
for each dataset.

Name Examples | Attributes | Avg Values | Classes
Cleveland Heart 303 13 3.3 )
Diabetes 768 8 4.0 2
Hepatitis 155 19 3.2 2
Hungarian Heart 294 13 3.3 2
Liver 345 6 4.0 2
Switzerland Heart 123 12 3.3 5
Thyroid 7200 21 2.6 3
VA Heart 200 13 3.3 5

5.2 Decision Trees with Cost

This section contains the results of an experiment conducted to find whether a backtrack-
ing search of the decision tree solution space can result in decision trees of lower expected
cost than those generated with the same heuristic built into C4.5. The original code for
Quinlan’s C4.5 was used with the minor change to the heuristic to maximize information
gain squared over cost as opposed to merely maximizing information alone to separate
the benefits of the D4 algorithm from the underlying heuristic employed. All pruning and
requirements to continue splitting as opposed to creating a leaf have also been removed.
Table 5.3 shows the average size, cost and classification accuracy over the ten trees gen-
erated using ten-fold cross-validation. The experiment compared C4.5 (with no pruning:
45 -m 1 -u -g -f < filename >) written in C, to D4 (randomized selection from the
top three attributes minimizing the heuristic) written in C++ with a running time of 30
minutes. After that time, the best tree found by D4 so far is returned and used in the
average.

These results, though expected, are disappointing. Only one dataset resulted in finding
a tree of lower cost than C4.5 (about 75% of the cost). Trees with lower expected cost
may exist, but finding a decision tree cheaper than the one found using the heuristic by
searching the space of decision trees generated using the top three attributes as decided
by the heuristic is both too slow and there is no guarantee of better solutions.
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Table 5.3: Expected costs of decision trees grown on the datasets from the UCI Machine Learning Repos-
itory. The left three columns contain information about the decision tree generated by C4.5 and the three
columns on the right generated by D4. The three columns for each algorithm contain the average expected
costs, sizes and generalization accuracies of the decision trees generated. The dark gray highlighted cell
represents the only dataset where the D4 algorithm was able to find a decision tree of lower expected cost
than C4.5. The light gray highlighted cells represent an insignficant cost reduction by D4.

C4.5 D4
Data Set Cost Size | Accuracy || Cost Size | Accuracy
Cleveland Heart 76.2 | 390.3 48.5% || 76.2 | 390.3 48.5%
Diabetes 8.4 | 805.0 65.0% 8.4 805 65.0%
Hepatitis 4.7 65.4 74.2% 3.5 66.2 77.5%
Hungarian Heart 93.4 | 333.6 72.5% 93.3 | 344.2 71.8%
Liver 24.5 | 342.2 60.0% || 24.4 | 345.0 60.6%
Switzerland Heart | 157.4 | 252.6 25.4% || 157.4 | 252.6 25.4%
Thyroid 31.3 | 3667.0 91.9% || 31.2 | 3712.2 92.0%
VA Heart 115.7 | 458.2 30.5% || 115.7 | 458.2 30.5%

5.3 The Benefit of Binary

The D4 algorithm is an extension to the constraint program by Bessiere et al.[5] that allows
it to handle non-binary attributes with costs associated with them. Why is it then that
they can find significantly smaller decision trees whereas most of the time D4 cannot find
decision trees with lower expected cost? Even the first decision tree they find is always
smaller than the decision tree found by C4.5. This is puzzling as they use the same heuristic
as C4.5 and elect to choose from the top three attributes that maximize information gain
instead of the single best attribute that maximizes information gain. Table 5.4 shows a
comparison between WEKA’s J48, the constraint program (CP), and my algorithm (D4).
In this experiment, costs were not considered and the D4 algorithm was able to reduce
the size of the decision tree on all datasets. Although when binary data was used with
J48, the decision trees were even smaller in size (converting data to binary before passing
it to J48 can be emulated by using an option that causes J48 to treat categorical data
as numerical). The constraint program was able to further reduce the decision tree size,
although not by half like Bessiere et al. found. When the binary decision trees created by
J48 were pruned, they were often much smaller than the constraint program. Table 5.5
shows that the accuracy of the decision trees remained similar, except in the case where
the accuracy of the constraint program on unseen data was significantly lower. It should
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be noted that the accuracy on training data would out perform that of the pruned decision
trees as it aims to be consistent with the training data.

The J48 columns all represent WEKA’s implementation of C4.5 running with different
settings. The normal J48 represents the algorithm with pruning turned off, no minimum
number of examples per leaf, and normal splits (Options: J48 -v -O -J -U -M 0). The
‘B’ label represents the algorithm with pruning turned off, no minimum number examples
per leaf, and binary splits (Options: J48 -v -O -J -U -M 0 -B). The ‘P’ label represents
the algorithm with its default settings of pruning turned on, a minimum of two examples
per leaf, and a pruning confidence of 0.25 (Options: J48 -v -C 0.25 -M 2). The ‘BP’ label
represents the algorithm with its default settings of pruning turned on, a minimum of two
examples per leaf, a pruning confidence of 0.25, and binary splits (Options: J48 -v -C 0.25
-M 2).

Table 5.4: Comparison between WEKA’s J48, the D4 algorithm and Bessiere et al.’s constraint program-
ming (CP) method on categorical data. Both D4 and CP were allowed to run for five minutes after finding
it’s last solution, while J48 had no timelimit. Each cell represents the average decision tree size from each
of the 10-fold cross-validation runs.

Dataset J48 D4 | J48(B) CP | J48(P) | J48(BP)
Lenses 14.0 12.7 124 8.8 6.4 6.6
Promoters 414 33.0 244 18.6 23.0 14.4
Lymphography 88.2 64.5 51.2 | 328 27.5 26.4
Splice 1144.2 | 1093.0 | 282.4 | 195.0 | 358.6 133.2
Mushroom 30.0 27.0 25.0 | 15.0 30.0 16.8

Table 5.5: Comparison between WEKA’s J48, the D4 algorithm and Bessiere et al.’s constraint pro-
gramming (CP) method on categorical data. Each cell represents the average decision tree classification
accuaracy from each of the 10-fold cross-validation runs.

Dataset J48 D4 [ J48(B) | CP | J48(P) | J43(BP)
Lenses 80.00 | 70.37 | 75.00 | 30.00 | 83.33| 78.33
Promoters 75.55 | 83.64 | 76.36 | 51.82 | 76.55|  80.09
Lymphography || 75.62 | 78.90 | 80.19 | 67.05| 77.00| 79.67
Splice 01.10 | 90.82 | 92.10 | 7053 | 93.89 | 93.98
Mushroom 100.00 | 100.00 | 100.00 | 69.89 | 100.00 |  99.08
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Figure 5.1 and figure 5.2 show table 5.4 and table 5.5’s data in graphs. It is much clearer
to see the reduction in decision tree size by searching the decision tree space, converting
the data to binary, and by pruning decision trees. The effect of each difference correlates
with the number of training examples, number of attributes for each example, and number
of values for each attribute, but the effect cannot be predicted as seen by the mushroom
dataset having relatively similar decision tree sizes.

Figure 5.1: Bar graph showing the average size of the decision trees generated by each
algorithm on each dataset. The Y-axis marks the average size of the ten decision trees
generated by each algorithm, while the X-axis contains the datasets. Each dataset contains
six bars representing the six algorithms. J48 with all pruning turned off generated the
largest decision trees while J48 using binary data with pruning turned on generated the
smallest decision trees. The D4 algorithm searches through many possible trees to find a
smaller decision tree using multi-variate data, while the CP algorithm does the same thing
but using binary data.
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Table 5.6 shows why Bessiere et al.[5] were able to reduce the size of decision trees by
half in their paper and I was not able to find such an improvement running their algorithm
on different data. I chose to directly use their data as they used a modified version of
WEKA'’s J48 and also did not specify the settings used in their constraint program. The
columns “WEKA’, ‘CP First’, and ‘CP Best’ are taken directly from Bessiere et al.’s paper
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Figure 5.2: Bar graph showing the average accuracy of the decision trees on test data
generated by each algorithm on each dataset. The Y-axis marks the average accuracy of
the ten decision trees generated by each algorithm, while the X-axis contains the datasets.
Each dataset contains six bars representing the six algorithms. The CP algorithm generated
decision trees with considerably lower accuracies.
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and the last two columns (Non-Binary and Binary) are WEKA’s J48, the open source
implementation of C4.5, on both non-binary and binary data. Table 5.6 has the datasets
from their paper with at least some categorical attributes.

Both of the columns ‘WEKA” and ‘Non-Binary’ in Table 5.6 should have similar values
as they are the unpruned decision trees built from the non-binary data. The first decision
tree found by the constraint program should be the same size or larger than the decision
tree found by WEKA as the constraint program does not optimize the information gain
heuristic. The best tree found by the constraint program can be anywhere from slightly
larger to slightly smaller depending on whether the heuristic was ever maximized or whether
a smaller tree is found. The additional two columns ‘Non-binary’ and ‘Binary’ show that
they also did not reduce the decision tree size as much as they thought as a lot of the
reduction comes from the effect transforming the data to binary has.
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Table 5.6: Comparison between WEKA’s J48 and constraint programming (CP) method on categorical
data. Average decision tree size (number of nodes) is reported for each algorithm. The ‘% of Data’ column
represents the percentage of data used in the training set. The ‘WEKA’ column contains the results of
J48 run on non-binary data from [5]. The ‘CP First’ and ‘CP Best’ columns contain the results of the
CP method from the same paper (both the first and best decision trees found). The last two columns are
original and contain WEKA'’s J48 algorithm’s result when run on both binary and non-binary data.

Dataset || % of Data || WEKA | CP First | CP Best || Non-binary | Binary
Car 5) 30.1 24.8 18.5 29.3 23.0
10 46.7 40.2 30.1 46.7 33.8

20 71.0 59.8 47.7 72.8 55.2

30 87.7 74.2 60.1 91.1 64.2

50 114.5 93.3 75.6 117.0 81.5

70 139.2 105.5 86.3 136.1 88.6

90 161.7 115.2 92.0 156.6 92.6

Income 1 185.9 85.1 76.2 150.5 97.9
1.5 265.2 123.6 112.9 208.8 150.3

5 791.0 390.7 364.8 639.1 | 379.3

Chess 1 126.8 81.5 66.6 127.6 93.2
1.5 172.4 119.6 98.9 176.6 139.2

5 434.5 317.2 274.7 449.8 | 294.8

10 735.3 525.5 458.8 7177 | 6018

Average 240.1 154.0 133.1 222.8 156.8

So in summary, after analysis of the experiments in [5], the general method of iterating
through a subset of the decision tree solution space (or only considering the three attributes
with the best information gain) is not as effective of an approach to optimizing decision
trees in size as once thought. It is also strange that the D4 algorithm was able to see a
reduction in decision tree size but not in expected costs of decision trees.

5.4 Effect of Binary Attributes on a Variety of Data

Although Bessiere et al.’s[5] method for minimizing decision tree size is effective, the reason
it appears significantly more effective than other methods lies in the conversion of their
data to include only binary attributes. The act of doing so combines nominal and numeric
attributes, removes resolution from numeric attributes and greatly increases the number
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of attributes to choose from. The resulting trees from the converted data end up much
smaller than the trees created using the original data as seen in Figure 5.3.

Figure 5.3: Effect of converting attributes to binary. The left decision tree has multi-valued
attributes while the right decision tree has binary attributes. Notice the number of tests
stays constant despite the decrease in size.

There are two reasons that binary trees end up smaller: () if only one leaf is classified
positive while the rest are negative, a binary tree will require only one test and (ii) the
binary trees contain no empty branches. Every split worth doing will have examples in
a ‘true’ branch and a ‘false’ branch. In contrast, the original data has attributes with
multiple values and a split can result in no examples of a certain value. In both of these
cases though, the cost of the tests used are fully realized in both forms of decision trees;
they only differ in the number of leaf nodes. Finding smaller decision trees with binary data
is in agreement with past research as seen by what’s stated in the Binary Tree Hypothesis:

Binary Tree Hypothesis: For a top-down, non-backtracking, decision tree
generation algorithm, if the algorithm applies a proper attribute selection mea-
sure, then selecting a single attribute-value pair at each node and thus con-
structing a binary tree, rather than selecting an attribute and branching on all
its values simultaneously, is likely to lead to a decision tree with fewer leaves. |13,
p.107]

The hypothesis is restricted to decision trees with fewer leaves, as the data still require
a similar amount of tests to split. Another approach is combining the set of values into
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two sets, as opposed to creating a new attribute, that represents an example having that
value or not, for every value in the old attribute. Quinlan[35] mentions Kononenko[2()]
and Shepherd[39] both found that taking this approach leads to smaller decision trees with
improved classification performance while reducing human comprehension of the decision
tree.

It is known that converting attributes to a binary representation has an effect on the
structure of decision trees. Although Bessiere et al.’s [5] work benefited from the use of
binary data, they merely did the conversion with no mention of analysis of the benefits
seen from using binary data. Table 5.7 and 5.8 shows the relative effect that converting
attributes to binary has on decision tree size when the number of attributes, varying number
of values per attribute, average attribute value, and number of examples. The experiment
is run using all of the training data to create a single decision tree. The D4 algorithm
was used to create the decision trees on both the binary and non-binary data with no
pruning and a minimum number of leaves per node (this was done in a single pass with no
backtracking). The binary columns for D4 have the same decision tree size and accuracy
as requiring a minimum number of examples in a leaf makes no difference. For non-binary
data, requiring at least one example to make a classification, removes the empty leaves
from the decision tree. WEKA’s implementation of C4.5 is used on it’s default setting in
the last two columns to show the effects of pruning on decision tree size and accuracy on
training data.
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Table 5.7: Comparison of decision tree size between binary and non-binary features on an assortment of
data. The first column on the left gives a description of the data being used. The code 4f 4v 10e means
the data has four features, four values per features and ten examples, while 2-5v specifies a range of values.
The table is broken up into three sections: D4 run with no minimum number of examples required for a
leaf and no pruning, D4 run with a minimum of one example required for a leaf and no pruning, and the
default pruning settings of WEKA’s J48. In each of those three sections there are two columns representing
the normal data as well as the data converted to have binary attributes using the method used by Bessiere
et al.[5]. The three highlighted columns are to show that binary decision trees are normally smaller than
their non-binary counterparts. When there is a minimum number of examples required in a leaf, binary
decision trees are no longer smaller, as there are no longer empty leaves in the non-binary tree. This
removes empty leaves and shrinks the size of the decision trees on data with non-binary attributes. In
this experiment only the best attribute was examined as determined by the heursitc, D4 preformed no
searching or backtracking.

D4 unpruned D4 minimum WEKA pruned

Non-binary | Binary || Non-binary | Binary || Non-binary | Binary
4f4v10 13 9 ) 9 1 7
4f4v100 117 95 23 95 13 17
4f4v1000 341 457 337 457 33 73
4f4v10000 341 509 341 509 105 117
412-5v10 10 9 10 9 1 5
4f2-5v100 83 95 73 95 10 13
412-5v1000 184 221 184 221 35 29
4f2-5v10000 194 237 194 237 61 91
4f8v10 25 11 1 11 1 1
4f8v100 217 93 33 93 1 33
4f8v1000 1793 931 305 931 25 163
4f8v10000 4681 6205 2737 6205 209 1049
412-10v10 19 7 9 7 1 5
412-10v100 181 105 131 105 1 11
4f2-10v1000 681 767 629 767 65 119
4f2-10v10000 1019 1237 1019 1237 225 325
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Table 5.8: Comparison of decision tree size between binary and non-binary features on an assortment of
data. Continuation of Table 5.7 with ten features as opposed to four.

D4 unpruned D4 minimum WEKA pruned

Non-binary | Binary || Non-binary | Binary || Non-binary | Binary
10f4v10 9 ) 5 ) D 3
10£4v100 101 63 69 63 21 41
10£4v1000 1041 663 629 663 141 303
10£f4v10000 11137 7927 6277 7927 1761 2939
10f2-6v10 9 7 9 7 1 3
10£2-6v100 94 61 88 61 23 41
10£2-6v1000 944 717 897 717 226 321
10£2-6v10000 10484 8263 9472 8263 1361 2771
10£8v10 9 ) 9 ) 1 5
10£8v100 153 95 49 25 1 39
10£8v1000 1433 239 205 539 113 351
10£8v10000 15713 6029 4353 6029 1265 3295
10f2-11v10 9 7 9 7 D 3
102-11v100 105 47 89 47 22 33
102-11v1000 1139 629 1038 629 153 347
10£2-11v10000 11053 6483 9652 6483 1253 3187

Table 5.9 is from the same experiment but shows the accuracies of the decision trees.
The accuracies of the decision trees are tested on the original training data. Interestingly,
the accuracies of the unpruned decision trees grown on binary data and non-binary date
are the same. Although, the accuracy of decision trees requiring a minimum number of
examples per leaf drops as leaves no longer contain examples of the same classification.
This minimum does not effect decision trees grown on binary data because an empty leaf
would imply all of the examples going down a single branch resulting in no information
gain.

Table 5.10 summarizes some trends. The first column states which types of datasets are
averaged, for example 10e represents all datasets with 10 examples. The second column
is the ratio between non-binary attributes and binary attributes. The third column is the
ratio between non-binary attributes with an enforced minimum of one example in each
leaf and binary attributes. The advantage of binary attributes on the size of decision trees
disappears when a minimum number of examples per leaf node is required. The size of the
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decision tree for non-binary attributes even becomes smaller than the binary trees as the
number of examples increases (this is expected as the direct conversion of a decision tree
to binary increases its size when attributes have four or more values). As the number of
examples increases, the ratio between unpruned non-binary trees and binary trees decreases
as there are more available data to fill every leaf node. As the number of features increases,
the ratio between the two decision trees increases. Increasing the values per attribute also
increases the ratio as the potential for empty leaves increases. Attributes with two values
would have a ratio of one to one, as the attribute is a binary attribute.

Table 5.10: Trends found when comparing decision tree sizes of datasets with similar dimensions. The first
column is the group that is being averaged, whether it be datasets with a hundred examples (100e), four
features (4f), or eight values per feature (8v). The second column is the ratio between the size of decision
trees found using the original data and the decision trees found using the data converted to have binary
attributes. The third column is the ratio between the size of decision trees found using the original data
with a requirement that every leaf have at least one example and the decision trees found using the data
converted to have binary attributes.

Non-binary /Binary | Minimum/Binary
10e 1.71 1.05
100e 1.79 1.03
1000e 1.47 0.94
10000e 1.26 0.86
4f 1.32 0.72
10f 1.79 1.23
small range 1.13 1.08
4v 1.31 0.79
large range 1.65 1.31
8v 2.14 0.70

In conclusion, there is clearly an effect on the size of decision trees caused by the
conversion of the data to have binary attributes. This effect is not equal across all data
though and varies according to different measures of the data. The larger the data set,
the size of both decisions trees on the same data becomes closer. Having more features
or values per feature though, increases the size differential between decision trees created
with non-binary attributes and decision trees created with binary attributes.
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5.5 Summary

In this Chapter I evaluated the D4 algorithm as well as re-evaluated the results found by
Bessiere et al[5]. T found that in most cases the expected cost of decision trees could not
be reduced beyond the cost of decision trees found by a simple heuristic. I also found that
converting attributes into binary form reduces the size of decision trees greatly, although
not necessarily the number of tests. The effects of binary attributes was also evaluated
across different measures of data size.
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Table 5.9: Comparison of decision tree accuracy between binary and non-binary features on an assortment
of data. This table contains the training accuracies of the decision trees in Tables 5.7 and 5.8.

D4 unpruned

D4 minimum

WEKA pruned

Non-binary | Binary || Non-binary | Binary || Non-binary | Binary
4f4v10 100% | 100% 80% | 100% 60% 90%
4f4v100 89% 89% 76% 89% 1% 74%
4f4v1000 69% 69% 69% 69% 58% 64%
4f4v10000 56% 56% 56% 56% 54% 55%
412-5v10 100% | 100% 100% | 100% 60% 90%
412-5v100 84% 84% 83% 84% 64% 68%
4£2-5v1000 63% 63% 63% 63% 57% 60%
4£2-5v10000 54% 54% 54% 54% 54% 54%
4f8v10 100% | 100% 40% | 100% 60% 60%
4f8v100 100% | 100% 69% | 100% 56% 81%
4f8v1000 94% 93% 2% 93% 59% 73%
4f8v10000 74% 74% 68% 74% 56% 66%
412-10v10 100% | 100% 90% | 100% 60% 90%
412-10v100 97% 97% 92% 97% 56% 69%
4f2-10v1000 8% 78% 78% 78% 60% 67%
412-10v10000 60% 60% 60% 60% 57% 58%
10f4v10 100% | 100% 90% | 100% 90% 90%
10f4v100 100% | 100% 91% | 100% 75% 92%
10£f4v1000 100% | 100% 90% | 100% 72% 87%
10£4v10000 100% | 100% 88% | 100% 73% 83%
102-6v10 100% | 100% 100% | 100% 70% 90%
102-6v100 100% | 100% 98% | 100% 78% 93%
10£2-6v1000 100% | 100% 99% | 100% 7% 86%
10£2-6v10000 99% 99% 97% 99% 70% 82%
10£8v10 100% | 100% 100% | 100% 60% | 100%
10£8v100 100% | 100% 83% | 100% 58% 95%
10£8v1000 100% | 100% 85% | 100% 66% 92%
10£8v10000 100% | 100% 82% | 100% 67% 89%
10f2-11v10 100% | 100% 100% | 100% 90% 80%
10£2-11v100 100% | 100% 95% | 100% 82% 94%
10£2-11v1000 100% | 100% 97% | 100% 70% 88%
10f2-11v10000 100% | 100% 96% | 100% 67% 87%
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Chapter 6

Conclusion

This chapter summarizes the thesis and provides direction for future work. The main
contribution I have made is the D4 algorithm, which I have used to show that past research
on optimization of decision trees is not as effective as claimed. It is a generalization of past
work and opens up the door for many extensions for other research on improving decision
tree induction. I will also discuss my analysis of converting training data to binary and
how it effects the size of decision trees grown.

6.1 Conclusions

To summarize the work of this thesis succinctly, the number of decision trees that provide a
classification of the training data is too large and the heuristic for finding cost-efficient de-
cision trees is too efficient to improve the expected-cost of the decision tree. A randomized
search of the decision tree space using the heuristic as a guide cannot always find a decision
tree that outperforms the original tree found by the heuristic alone. Although I was not
able to subvert the worst case scenario by using intelligent search methods on real world
data, I have shown that past research in the area is not as promising as it may seem. The
results of Bessiere et al.[5] in finding smaller decision trees through biased random search
of the decision tree space, is skewed by the transformation of training data to binary form
(i.e. changing each attribute into a set of multiple binary attributes corresponding to each
value of the original attribute). Past research along with my findings agree that decision
trees made using data with binary attributes are both smaller and more accurate than their
the decision trees made with the same data in its original non-binary form. Although, the
difference between binary and non-binary decision trees varies depending on the number
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of examples, attributes and values per attribute of the original data set when making a
direct comparison. Future research in decision tree construction should consider closely
the effects of data representation and look closely at the details of experiments to explain
results more precisely.

6.2 Future Work

The D4 algorithm only handles one aspect of costs associated with decision tree learn-
ing. Along with costs associated with using an attribute to split the data, there are costs
incurred when a new example is misclassified. For example, what are the costs of misdiag-
nosing a bacterial infection as viral, the costs of misdiagnosing a viral infection as bacterial?
These costs are difficult to assign and would require extensive research and data, but play
an important role in the balance between decision tree cost and its accuracy.

The main downfall of the D4 algorithm, is the random search through the decision tree
space. Currently, the top three attributes, as decided by the heuristic, are chosen between
with equal weighting. Another approach is to systematically search through a majority
of the attributes at the top of the tree, but after a certain depth, only consider the best
attribute. This would greatly reduce the search space, while not relying too heavily on the
heuristic until deeper in the decision tree, where the heuristic preforms better.

It would also be interesting to find out if searching the decision tree space through
backtracking can allow for additional information that a heuristic cannot capture, to be
used in the selection of attributes to split the examples with. An example of information
that cannot be captured by a heuristic could the relationship between attributes that
appear in the same branch. As well, once this method is extended to perform more reliably,
it would be beneficial to handle missing values and include the option to prune the decision
tree found.
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Appendix A

Constraint Program

Described in this appendix is a reworking of the constraint model for creating decision
trees by Bessiere et al[5]. Although not as efficient, it is a good starting point for creating
a model for a standard constraint programming tool such as Choco. The constraints used
in this model to enforce a tree structure are a brute force approach to the problem and can
be greatly improved using the work in [37], [33], and [1]. This model does not consider the
search aspect of the problem and is only a brute force base for a more complex model.

A.1 Variables

Let n be the number of internal nodes in the decision tree, m be the number of examples
being used to build the tree, and k£ be the number of features available to test on. Examples
are contained in the array e. The following variables are used in the constraint model:

Integer Variable P; € [0,n — 1]: index of the parent of node ¢,

Integer Variable L; € [0,n — 1]: index of the left child of node 7,

Integer Variable R; € [0,n — 1]: index of the right child of node ¢,

Integer Variable N; € [0, 2]: number of children of node i,

Integer Variable F; € [0,k — 1]: feature assigned to node 1,

Integer Variable D;; € [0, 1]: boolean representing if node i is a descendant of node j,

Set Variable E; = {0, ...,m — 1}: set of examples associated with each internal node,
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Integer Variable T8, € [0, 1]: for flagging if an example goes left when tested at node i,
Integer Variable 79, € [0, 1]: for flagging if an example goes right when tested at node 1,

Integer Variable 7'10;;, € [0,1]: for flagging if two examples go down the same branch
when tested at node <.

A.2 Constraint Program

The first constraint states that the root must be its own parent and the parent of its first

node:

Unlike the root node, no other node has itself as a parent,
Vie[l,n—1],P, #1i. (A.2)
All non-root nodes have less than three children,
Vie[l,n—1],N; # 3. (A.3)
If a node has two children then the left and right child must exist,
Vie[l,n—1,N; =2 — (L; #1 AN R; #1). (A.4)
If a node has one child then the left xor the right child must exist,
Vie[l,n—1,N;=1— (L;=1® R; =1). (A.5)
If a node has zero children than the left and right child must not exist,
Vie[l,n—1,N;=0— (L;=1AR; =1). (A.6)

The first of the tree constraints defines the descendant variables. If j is ¢’s parent then i
is a descendant of node j. Otherwise, j and ¢ share the same descendants,

Vi#je0n—1], (P =j) = (Dy=1). (A7)

The following constraint prevents cycles in the tree,

Vi#je0,n—1,(Dy=1) — (D; = 0); (A.9)
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The tree must be binary, meaning that if 7 is j's parent then j is either the left or the right
child of ¢ (but not both),

Vi jel0,n—1],(F=1i) ¢ (Li=j) @ (R = j)). (A.10)
The number of children of 7 is equal the number of times ¢ appears in the ‘parents of” array,
Vi € [0,n — 1], occurrence(N;, P, ). (A.11)

No two features Fj, F; are tested twice along a branch, meaning they are not descendants
of one another,

Viz#jel0,n—1],(Dy=1) = (F, # F})). (A.12)
Create the set of examples to be passed to the left child. For each feature 1, the variable
T8, holds the F;'™ element of the example (the value node 7 has for feature [),
Vi # 5 €l0,n—1],¥l € [0,m — 1],
nth(constant(l), F;, e, T8;j)
Create the set of examples to be passed to the right child. For each feature 1, the variable
T9;; holds the F;"™ element of the example (the value node ¢ has for feature 1),
Vi # 5 €l0,n—1],¥l € [0,m — 1],
nth(constant(l), F;, e, T9;;)
If two examples have different classification but have the same value for the feature on
node %, then node ¢ must have children,
Vi e [O,Tl - 1],V3§' € [07m - 1}7vy € [Q? + 1,771 - 1],6[1’][]{3] # e[y][k]a
nth(constant(zx), F;, e, T10z,,,),
nth(constant(y), F;, e, T10y;4y ),
(x € E; Ny € E; NT10x4, = T10y;5,) — N; > 0. (A.15)
Extension of A.15 where two examples have different classifications and both go down the
left branch making it an internal node (L; # i),
Vi e [O,TL - 1]>vx € [O7m - 1]>vy € [$ + 17m - 1],€[$][l€] 7& e[y][k]a
nth(constant(z), F;, e, T10x,,,),
nth(constant(y), F;, e, T10y;4, ),
(x € EsNy € E; NT10z,, = 0 A T10y;py = 0) — L; # 1). (A.16)
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Extension of A.15 where two examples have different classifications and both go down the
right branch making it an internal node (R; # 1),

Vie[0,n—1),Vx € [0,m — 1],Vy € [v + 1,m — 1], e[x][k] # ely][k],
nth(constant(x), F;, e, T10z,,,),
nth(constant(y), F;, e, T10x;4,),
(xe E;Ny € B; NT10xyy = 1 AT10yiy = 1) — R; # 1). (A.17)

A.3 Symmetry Breaking

Although these constraints are not necessary, they reduce the number of decision trees that
can be modelled by the constraint by ordering the nodes from top to bottom and left to
right. The following constraint is to force an ordering of the nodes from top to bottom,

Vi€ [0,n— 1], P, < min(i, Piy). (A.18)

The next two constraints ensure that the nodes are ordered from left to right in the decision

tree,
Vie[0,n—1],(i < R)AN(R; <2i+2). (A.19)

Vie0,n—1,(<L)A(Li<2i+1)ARi#i— L <R;). (A.20)
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