
Metaheuristics for Score-and-Search Bayesian
Network Structure Learning

Colin Lee and Peter van Beek

Cheriton School of Computer Science, University of Waterloo

Abstract. Structure optimization is one of the two key components
of score-and-search based Bayesian network learning. Extending previ-
ous work on ordering-based search (OBS), we present new local search
methods for structure optimization which scale to upwards of a thou-
sand variables. We analyze different aspects of local search with respect
to OBS that guided us in the construction of our methods. Our improve-
ments include an efficient traversal method for a larger neighbourhood
and the usage of more complex metaheuristics (iterated local search and
memetic algorithm). We compared our methods against others using test
instances generated from real data, and they consistently outperformed
the state of the art by a significant margin.

1 Introduction

A Bayesian network is a probabilistic graphical model which encodes a set of
random variables and their probabilistic relationships through a directed acyclic
graph. Bayesian networks have been successfully applied to perform tasks such as
classification, knowledge discovery, and prediction in fields including medicine,
engineering, and business [15]. Bayesian network structure learning involves find-
ing the acyclic graph that best fits a discrete data set over the random variables.

Bayesian networks can be learned through the method of score-and-search. In
score-and-search a scoring function indicates how well a network fits the discrete
data and search is used to find a network which achieves the best possible score by
choosing a set of parents for each variable. Unfortunately, finding such a network
is NP-hard, even if each node in the network has at most two parents [11]. Exact
solvers for this problem have been developed using a variety of techniques (e.g.,
[2,3,7,20]). These methods achieve good performance on smaller instances of the
problem but fail to scale in terms of memory usage and runtime on instances
with more than 100 variables unless the indegree is severely restricted.

Local search has been shown to be successful in finding high quality solutions
to hard combinatorial problems with relatively simple algorithms [9]. It has
already been applied to learning Bayesian networks using techniques such as
greedy search [5], tabu search [19], and ant colony optimization [8], over search
spaces such as the space of network structures [5], the space of equivalent network
structures [4], and the space of variable orderings [12,19]. We improve upon the
approach of ordering-based search (OBS) by Teyssier and Koller [19], which

makes use of the topological orderings of variables as a search space. Teyssier
and Koller [19] show that OBS performs significantly better than local search
over network structures on this problem.

In this paper, we make the following contributions. We identify the Bayesian
network structure learning problem as being similar to the Linear Ordering
Problem (LOP) and adapt the local search techniques applied to LOP in [17]
to improve OBS. First, as previously done in [1], we experiment with using a
neighbourhood which is larger than the one originally used in OBS to find high
quality local optima. We then include optimizations to make the use of this
neighborhood more feasible for instances with a high number of variables. We
combine our local search method with iterated local search (ILS) and memetic
algorithm (MA) to produce two new methods. Experimental results show that
the new methods are able to find networks that score significantly better than
other state of the art anytime solvers on instances with hundreds of variables.

2 Background

A Bayesian network is composed of a directed acyclic graph (DAG) G with
random variables {X1, . . . , Xn} as vertices. The score-and-search method of
Bayesian network learning makes use of a scoring function sc(G | I) which takes
a set I = {I1, . . . , In} of complete instantiations Ii of the variables (the data)
and assigns a real valued score to the network G. For the purposes of this paper,
a lower score will indicate a higher quality network. Also, the data parameter I
will be made implicit, so that we write sc(G) instead of sc(G | I).

The score-and-search method consists of two stages. The first stage, called
parent set identification, consists of computing the scores of sets of parents for
each variable. A scoring function is decomposable if the score sc(G) of the network
can be written as the sum of its local scores

∑n
i=1 sci(Pa(Xi)), where Pa(Xi) is

the set of parents of Xi in G. Commonly used scoring functions, including BIC
and BDeu which we use in our experiments, are decomposable [2]. In practice, the
indegree for each variable is often bounded by some small integer k to increase the
speed of inference [11]. As is usual in score-and-search approaches, we assume
precomputed caches are available using techniques for efficiently scoring and
pruning parent sets [16,19], resulting in a cache Ci of ci candidate parent sets
for each variable Xi along with their associated scores. More formally, for each
i, we have Ci ⊆ {U : U ⊆ {X1, . . . , Xn} \ {Xi}, |U | ≤ k}, from which sci(U) for
U ∈ Ci can be queried in constant time.

Our work focuses on the second component of score-and-search, called struc-
ture optimization. This involves searching for a network structure which achieves
the minimum possible score by selecting a parent set for each variable Xi from
Ci such that the graph is acyclic. Following previous work, we apply local search
over the space of orderings of variables [19], as the space of variable orderings
is significantly smaller than the space of all possible DAGs. We call a Bayesian
network G consistent with an ordering O of its variables if O is a topological
ordering of G. For a given ordering, using a bitset representation we can find the

Algorithm 1: Hill climbing for ordering-based structure optimization.

Result: A local minimum in the neighbourhood defined by neighbours
1 O ← randomOrdering();
2 curScore← sc(O);
3 while neighbours(O) contains an ordering which improves curScore do
4 O ← selectImprovingNeighbour(O);
5 curScore← sc(O);

6 return O

optimal parent sets for all of the variables in O(Cn) operations, where C is the
total number of candidate parent sets. Thus, the problem of finding the optimal
network can be transformed into finding the ordering with the lowest score.

3 Search Neighbourhood

We start by building upon the hill climbing method that is used in OBS (see
Alg. 1). This method consists of first randomly generating an ordering O and
computing its score. Then, until no ordering in the neighbourhood of O has a
higher score than O, O is set to one of its neighbours with an improving score.
O will then be a local minimum in the neighbourhood. We call each iteration to
an improving neighbour a hill climbing step.

The choice of neighbourhood significantly impacts the performance of hill
climbing, as it essentially defines the search landscape. In OBS, the swap-adjacent
neighbourhood is used. Formally, for an ordering O = (X1, . . . , Xn), O′ is a
neighbour of O if and only if O′ = (X1, . . . , Xi+1, Xi, . . . , Xn) for some 1 ≤
i ≤ n − 1. The size of the neighbourhood is therefore n − 1. In hill climbing,
other than in the first step, the optimal parents sets of O are already computed
from the previous step. Subsequently, the optimal parent sets only need to be
updated for Xi and Xi+1 as the swap in the ordering does not affect the potential
parents of other variables. Therefore, the cost of checking the score of a neighbour
defined by the swap-adjacent neighbourhood is O((ci+ci+1)n). The total cost of
computing the score of all neighbours of O (a traversal of the neighbourhood) is
then O(Cn). From [16], a further optimization can be made by checking for an
updated parent set for Xi+1 only if Xi was one of its parents before the swap.
Additionally, when updating Xi’s parent set after the swap, only the candidate
parent sets that contain Xi+1 needs to be considered for an improvement.

A pitfall of the swap-adjacent neighbourhood is a high density of weak local
minima. Swapping adjacent variables Xi and Xi+1 does not have a large impact
on their parent sets, as Xi+1 only loses the ability to have Xi as a parent and Xi

only gains the ability to have Xi+1 as a parent. Given that the parent set size is
restricted to k, which is significantly smaller than n in practice, it is unlikely that
an adjacent swap will lead to an improvement in the score. In the terminology of
local search, using this neighbourhood results in a search landscape with large

O =(X1, X2, X3, X4, X5, X6) →swap

(X1, X3, X2, X4, X5, X6) = (Insert X2 in O to index 3)→swap

(X1, X3, X4, X2, X5, X6) = (Insert X2 in O to index 4)→swap

(X1, X3, X4, X5, X2, X6) = (Insert X2 in O to index 5)→swap

(X1, X3, X4, X5, X6, X2) = (Insert X2 in O to index 6)→swap

Fig. 1: Example of performing the four forward inserts of X2 for O using four
swap-adjacent moves. The final insert left for X2 (to index 1) can be achieved
with a similar swap-adjacent move in O with X1. Adapted from [17].

plateaus. OBS attempts to alleviate this problem by using a tabu list which
allows the traversal of the search over non-improving solutions.

Keeping this in mind, we consider the insert neighbourhood, which contains
orderings that can be obtained from one another by selecting a variable and
inserting it at another index. Formally, O = (X1, . . . , Xi−1, Xi, Xi+1, . . . , Xj−1,
Xj , Xj+1, . . . , Xn) is neighbouring O′ in the insert neighbourhood if and only
if O′ = (X1, . . . , Xi−1, Xi+1, . . . , Xj−1, Xj , Xi, Xj+1, . . . , Xn), for some i and j.
We say O′ is O with the variable Xi inserted into position j. The use of the
insertion neighbourhood as an improvement to OBS is explored in [1], but there
it is used with limited success.

After inserting variable Xi to index j, the possible parents for all variables
from Xi to Xj (inclusive) in the original ordering have been updated, and the
optimal parent set for each one of these must be checked. In the case that for
i < j, this takes O((

∑j
i=1 ci)n) operations. The case for j < i is the same but

with the indices swapped. Näıvely computing the scores of all (n−1)2 neighbours
independently therefore has cost O(Cn3), which is significantly greater than the
O(Cn) cost required for traversing the swap-adjacent neighbourhood.

Fortunately, as shown in [6] and applied to OBS in [1], the insert neighbour-
hood can be traversed with a series of O(n2) swap-adjacent moves. Specifically,
given a variable Xi, the n− 1 neighbours of O formed by inserting Xi into one
of the n−1 other indices can be constructed with a series of n−1 swap-adjacent
moves (see Fig. 1). Since a score update for a swap-adjacent move can be done in
O((ci+ ci+1)n) operations, the cost to compute the scores of the ordering for all
n− 1 indices that Xi can be inserted into is O(Cn). There are n choices for Xi,
so the cost of traversing the entire neighbourhood is O(Cn2). Along with being
an order of magnitude faster than the näıve traversal, the previously mentioned
optimizations for scoring swap-adjacent moves can be applied in this method.

Even in small cases, local minima in the swap-adjacent neighbourhood can be
overcome by using an insert move (see Fig. 2). The swap-adjacent neighbourhood
of an ordering is a subset of the insert neighbourhood of that ordering. Thus,
the lowest scoring neighbour in the insert neighbourhood is guaranteed to score
at least as low as any neighbour from the swap-adjacent neighbourhood.

Fig. 2: Example local minimum for the swap-adjacent neighbourhood. A local
minimum occurs at the ordering O = (X1, X2, X3). The two swap-adjacent
neighbours of O are indicated with solid arrows; both have worsening scores.
An insert move neighbour, indicated with a dashed arrow, gives an improved
score. Hence O is not a local minimum in the insert neighbourhood.

Three different possibilities for neighbour selection were tested for the insert
neighbourhood: best improvement, first improvement, and hybrid.

– Best improvement : The neighbour with the highest score is chosen. Finding
the score of every neighbour takes O(Cn2) operations.

– First improvement : The insert moves are evaluated in random order and the
first neighbour with an improving score is selected. Finding the score of each
random neighbour costs O(Cn) operations each, so that in the worst case,
where every neighbour must be scored, O(Cn3) operations are used.

– Hybrid : This selection scheme falls between best and first improvement and
is adapted from [17]. A variable X is randomly chosen from the ordering. The
index j to insert X which gives the highest score is then found using n− 1
adjacent swaps to score each index. If this insertion gives an improvement in
score, then it is chosen. If no insertions for X give an improvement, another
variable is randomly chosen and the process repeats. In the worst case of a
local minimum, all n variables are tested for improving insert moves, using
a total of O(Cn2) operations.

The three selection methods are experimentally compared in Section 6. Our
results show hybrid selection to be the most appropriate. We call the hill climbing
method obtained from Algorithm 1 by using the insert neighbourhood and hybrid
neighbour selection method Insert Neighbourhood OBS (INOBS). INOBS is a
key component of our metaheuristic methods in the following sections.

4 Iterated Local Search

Iterated local search (ILS) has historically been a simple and intuitive extension
of basic hill climbing which performs competitively with other metaheuristic

Algorithm 2: An outline of an ILS algorithm.

1 O ← initialState();
2 O ← localSearch(O);
3 while terminationCondition(O, history) is not met do
4 O′ ← perturb(O);
5 O′ ← localSearch(O′);
6 O ← acceptenceCriterion(O,O′);

methods [9]. The improvement ILS brings over hill climbing with random restarts
is the ability to continue searching for improvements nearby a good solution
(local minima) instead of erasing progress by simply restarting. First, a random
ordering is chosen as an initial candidate solution and a subsidiary local minimum
is found through local search. Then, three basic steps are iterated over until a
restart condition is met: first, the current solution is perturbed through some
perturbation operator. Then, local search is applied to the perturbed solution to
obtain a new local minimum. Whether or not the new local minimum will replace
the old one before the next iteration is decided upon according to an improvement
criterion. The iterations stop when a specified termination condition is met. This
generic ILS algorithm is outlined in Algorithm 2.

Using INOBS as the local search component for the ILS procedure, we con-
struct Iterated INOBS (IINOBS). For the perturbation operator of IINOBS,
ps ·n pairs of variables were swapped by their index in the ordering, where ps is
called the perturbation factor. Swaps are chosen because they are not easily un-
done by insertions, so it is unlikely that the proceeding local search will reverse
the perturbation [17]. As for the improvement criterion, the solution is accepted
when the new local minima achieves a score s′ such that s′(1− ε) < s, where s
is the score of the original local minima and ε ≥ 0. The parameter ε allows some
leeway for the new local minima to have a worse score than the current one. To
avoid stagnation, IINOBS is restarted from a new initial ordering according to
both a soft and hard restart schedule. A soft restart occurs if the objective value
has not been improved in over rs moves to new local optima. A hard restart
occurs when rh moves to new local optima have occurred, regardless of how the
search has been improving.

5 Memetic Algorithm

Memetic INOBS (MINOBS) is a memetic search method for the problem which
uses INOBS as a local search procedure. Memetic search allows a local search
algorithm to be combined with the intensification and diversification traits of
population based search techniques. The method can be compared to a standard
genetic algorithm except using the space of local minima rather than the space of
all possible orderings [13]. An outline of the memetic algorithm we fit MINOBS
into is in Algorithm 3.

Algorithm 3: An outline of the memetic algorithm that INOBS is fit into
to construct MINOBS. Adopted from [17].

1 population ← {};
2 for i← 1, . . . , N (N is the population size) do
3 O ← localSearch(randomInitialState());
4 population ← population ∪ {O};
5 while termination condition is not met do
6 offspring ← {};
7 for i← 1, . . . , cn do
8 choose O1, O2 from population;
9 offspring ← offspring ∪ localSearch(crossover(O1, O2))};

10 for i← 1, . . . ,mn do
11 choose O1, O2 from population;
12 offspring ← offspring ∪ localSearch(mutate(O1, O2,mp))};
13 population ← prune(population ∪ offspring , N);
14 if the average score in the population does not change by d∆ in the last dt

generations then
15 population ← selectBest(population, dn);
16 for i← 1, . . . , N − dn do
17 O ← localSearch(randomInitialState());
18 population ← population ∪ {O};

Memetic search roughly resembles maintaining multiple runs of ILS in paral-
lel. Performing crossover and mutation is analogous to perturbation. Pruning the
population is analogous to automatically stopping the less promising of the par-
allel runs. Therefore, we expect MINOBS to perform at least as well as IINOBS
given a sufficient amount of time.

The algorithm begins with an initial population of random local optima are
generated through INOBS. Until the termination condition is met, the popula-
tion undergoes a number of generations. Each generation consists of a crossover
and a mutation stage. During the crossover stage, members of the population
are randomly drawn in pairs and combined according to some crossover oper-
ator to produce a new ordering. INOBS is then applied to the new orderings.
In the mutation stage, random members of the population are chosen from the
population and perturbed according to the swap-based perturbation operation
presented in the IINOBS. The new permutations are then subjected to local
search using INOBS. Afterwards, both the orderings produced in the crossover
and mutations stages are added to the population. Finally, members of the pop-
ulation are pruned to maintain the original size of the population according to
some pruning scheme. In our case, pruning involved filtering out orderings with
duplicate scores and then afterwards removing orderings with the lowest scores
until the population was back to its original size.

MINOBS also has the possibility of performing a diversification step if the av-
erage score of the population does not change by over d∆ for dt generations. The
diversification step consists of removing all but the top dn members of the popu-
lation and refilling the rest of the population with new random local minima. The
diversification step’s purpose is to stop the population from stagnating and acts
similarly to a random restart. We experimented with three different crossover
operators. Let O1 = (Xπ1(1), . . . , Xπ1(n)) and O2 = (Xπ2(1), . . . , Xπ2(n)) be the
two orderings to cross to produce the offspring O = (Xπ(1), . . . , Xπ(n)), where
π1, π2, and π are permutations of indices from 1 to n.

– Cycle crossover (CX): A random index i is selected along with a random
parent O1, without loss of generality. For the resulting ordering O, we set π(i)
as π1(i). Then for the other parent O2, the index j such that π1(j) = π2(i) is
found, and we set π(i) to π1(j). Index i is then set to j and the process repeats
until i cycles back to the original index. The process then restarts with i as
an index unused by π until π is completed. The resulting permutation π has
the property that π(i) = π1(i) or π(i) = π2(i) for every index i [14].

– Rank crossover (RX): The offspring is based on sorting the mean index of
each variable over both parent orderings. When a ties occur (two or more
elements share the same mean index over both parents), the order of the
elements is determined according to a random distribution [17].

– Order-based crossover (OB): From O1, n/2 variables are randomly chosen
and copied in the same position into offspring O. The variables not copied
from O1 fill the unused positions in O according to their order in O2 [18].

6 Experimental Results

We report on experiments to (i) evaluate the three neighbourhood selection
schemes, (ii) select the parameters for our two proposed metaheuristic methods,
IINOBS and MINOBS, and (iii) compare our INOBS, IINOBS and MINOBS
methods against the state of the art for Bayesian network structure learning.

Most of the instances used in our experiments were provided by the Bayesian
Network Learning and Inference Package (BLIP)1. These instances used the BIC
scoring method and have a maximum indegree of k = 6. Other instances were
produced from datasets from J. Cussens and B. Malone and scored using code
provided by B. Malone. The method of scoring for an instance in this set (BIC
or BDeu) is indicated in the instance name.

Experiment 1. In the first set of experiments, we compared the three neigh-
bourhood selection schemes—best improvement, first improvement, and hybrid—
incorporated into the basic hill climbing algorithm (Alg. 1), which terminates
once a local minima is reached (see Table 1). Overall, best and first improve-
ment generated higher quality local minima than hybrid selection. Note that it
is possible for first improvement to be better than best improvement as they
follow a different trajectory through the search space from the first move. Best

1 http://blip.idsia.ch/

http://blip.idsia.ch/

Table 1: Average runtime (sec.) and score for each neighbourhood selection
method for various benchmarks (100 runs), where n is the number of variables
in the instance and C is the total number of candidate parent sets.

Best First Hybrid
instance n C time score time score time score

segment BIC 20 1053 0.01 15176.3 0.01 15175.9 0.00 15176.8

autos BIC 26 2391 0.02 1585.5 0.03 1586.4 0.01 1587.1

soybean BIC 36 5926 0.08 3155.9 0.08 3156.5 0.02 3158.4

wdbc BIC 31 14613 0.19 6623.0 0.16 6624.6 0.04 6627.0

steel BDeu 28 113118 2.09 18690.0 1.76 18674.8 0.59 18685.9

baudio.ts 100 371117 23.76 194711.9 12.63 193795.5 3.03 194922.0

jester.ts 100 531961 36.56 88098.9 19.86 87271.6 4.48 87871.1

tretail.ts 134 435976 36.54 106864.0 16.59 106294.6 3.03 106879.2

munin-5000 1041 1648338 847.08 1041284.5 961.39 1041219.6 17.97 1040638.6

improvement for insertion-based OBS is the best method tested in [1] where it
is called HCbO. The authors note that the performance of their algorithm is
hindered by the need to evaluate the scores of all (n− 1)2 neighbours, even with
the optimizations mentioned in Section 3. They attempted to lower the neigh-
bourhood size by restricting the insert radius and using variable neighbourhood
search, but the modifications were not effective in improving performance.

While overall hybrid selection performed marginally worse in terms of score, it
took significantly less time to reach a local minima on the larger instances, scaling
to about fifty times faster on the largest instance. One further optimization for
best improvement with insert moves is explored in [1] but was not implemented in
our experiments. However, this optimization only improves the speed by at most
a factor of two, which is still not enough to make best improvement comparable to
hybrid. Following the note that best improvement selection is too time consuming
in [1] and our own focus on scaling to larger instances, we designated hybrid as
our neighbourhood selection method of choice for our metaheuristic methods to
make a direct improvement over HCbO.

Experiment 2. In the second set of experiments, we tuned the parameters
for our two proposed metaheuristic methods, IINOBS and MINOBS. Parame-
ter tuning was performed with ParamILS, a local search based tuning method
for metaheuristics [10]. Tuning was performed using three instances from the
BLIP benchmarks (baudio.ts, jester.ts, tretail.ts). Unfortunately, larger instances
could not be used effectively for tuning due to time constraints. The objective
minimized by ParamILS was the mean percent difference from the best scores
generated by INOBS with random restarts. The parameters tuned and their op-
timal value found by ParamILS are listed in Table 2 and Table 3. (Near-optimal
parameters were also experimented with and similar results were obtained.)

Experiment 3. In the final set of experiments, we compared our two proposed
metaheuristic methods, IINOBS and MINOBS, as well as INOBS with random
restarts, to the state of the art (see Table 4). For the state of the art, we compare

Table 2: Parameters tuned for IINOBS.
parameter description value

ps Perturbation factor: ps · n random swaps will be used to perturb
the ordering.

0.03

ε Leeway allowed when choosing a local minima to move to. 0.00005

rs Number of non-improving steps until a restart. 22

rh Number of perturbations until a restart. 100

Table 3: Parameters tuned for MINOBS.
parameter description value

N Number of members in the population. 20

crossover Type of crossover to perform. OB

cn Number of crossovers to perform. 20

mp Mutation power factor: mp · n random swaps will be used to
perturb the ordering.

0.01

mn The number of mutations to perform. 6

dt Number of scores to look back for triggering a diversification step. 32

d∆ Max. change in ave. score needed to trigger a diversification step. 0.001

dn Number of members to keep after a diversification step. 4

against (i) our implementation of OBS [19]; (ii) GOBNILP (v1.6.2) [7], an exact
solver used here as an anytime solver that was run with its default parameters;
and (iii) acyclic selection OBS (ASOBS [16], a recently proposed local search
solver that has been shown to out-perform all competitors on larger instances.
OBS, INOBS, INOBS with restarts, IINOBS, and MINOBS were implemented in
C++ using the same code and optimizations for swap-adjacent moves2. ASOBS
is written in Java and is therefore expected to run more slowly compared to
our methods. However, our experiment runtime is long enough for ASOBS to
stagnate enough so that even if the implementation of the method was several
times faster, it is unlikely that the results would change significantly.

Experiments for all methods other than ASOBS were run on a single core
of an AMD Opteron 275 @ 2.2 GHz. Each test was allotted a maximum 30 GB
of memory and run for 12 hours. The generation of the instances from data can
take days, so this time limit is reasonable. Due to limited software availability,
tests for ASOBS were run courtesy of M. Scanagatta with the same time and
memory limits and on a single core of an AMD Operton 2350 @ 2 GHz. These two
processors have similar single core performance. We used test instances from the
BLIP benchmarks. Of the 20 data sets used to generate the BLIP instances, three
were excluded because they were used in tuning, leaving 17 for testing. Three
additional large instances were chosen that were generated with data from real
networks (diabetes-5000, link-5000, pigs-5000). Excluding ASOBS, three tests
with different random seeds were tested for each instance-method pair, and the
median was recorded. ASOBS was only run once due to time constraints.

2 The software is available at: https://github.com/kkourin/mobs

https://github.com/kkourin/mobs

Table 4: Median score of best networks found, for various benchmarks, where n is
the number of variables and C is the total number of candidate parent sets. The
column labelled INOBS represents the scores of INOBS with random restarts.
OM indicates the solver runs out of memory before any solution is output. Bold
indicates the score was the best found amongst all tested methods. An asterisk
indicates that the score is known to be optimal.
instance n C GOBNILP OBS ASOBS INOBS IINOBS MINOBS

nltcs.test 16 48303 5836.6* 5903.4 5836.6* 5836.6* 5836.6* 5836.6*
msnbc.test 17 16594 151624.7* 153291.6 151624.7* 151624.7* 151624.7* 151624.7*
kdd.test 64 152873 57271.3 57556.2 57522.6 57218.0 57209.6* 57209.6*
plants.test 69 520148 19337.8 16485.0 16681.4 14649.6 14539.7 14539.7
bnetflix.test 100 1103968 OM 13033.3 12545.1 12282.4 12279.8 12279.8
accidents.test 111 1425966 OM 3454.4 2119.9 855.9 828.3 828.3
pumsb star.test 163 1034955 11552.5 5626.9 3641.7 3068.5 3062.8 3062.8
dna.test 180 2019003 OM 21783.0 19335.1 18455.1 18297.0 18287.8
kosarek.test 190 1192386 OM 29283.4 26718.5 24816.5 24731.8 24745.9
msweb.test 294 1597487 OM 28496.3 26061.6 25781.7 25743.5 25741.6
book.test 500 2794588 OM 36133.0 33104.4 30614.2 30355.2 30345.0
tmovie.test 500 2778556 OM 8547.6 6312.4 5008.5 4765.5 4763.8
cwebkb.test 839 3409747 OM 34837.9 21948.7 17984.7 17564.7 17556.4
cr52.test 889 3357042 OM 28187.2 16060.2 13374.3 13063.0 13013.9
c20ng.test 910 3046445 OM 109950.7 79093.8 69832.9 69139.5 69024.0
bbc.test 1058 3915071 OM 44663.6 30261.3 25263.5 24498.2 24403.9
ad.test 1556 6791926 OM 10845.0 8745.2 7814.5 7610.4 7646.0

diabetes-5000 413 754563 OM 2043150.9 1925441.6 1913319.6 1912286.3 1912670.9
pigs-5000 441 1984359 OM 1010120.7 905538.2 802293.5 782105.9 775953.3
link-5000 724 3203086 OM 85516.2 43072.1 37067.2 36758.9 36715.3

GOBNILP, OBS, and ASOBS performed significantly worse than our pro-
posed metaheuristic methods, IINOBS and MINOBS. A closer look at the exper-
imental data revealed that the best solutions found by OBS and ASOBS on all
but three of the smaller instances over an entire 12 hour run scored worse than
the solutions found by INOBS with random restarts in a single hill climb. MI-
NOBS found equivalent or better structures than IINOBS for 17/20 instances,
though seven were tied. The time and score data showed that MINOBS tended
to start slow but overtime managed to outperform IINOBS on most instances.
This behaviour is expected if memetic search is seen as running ILS in parallel,
as speculated earlier. One of the cases where MINOBS found worse solutions
than IINOBS was ad.test, one of the biggest instances we tested with. On this
instance, neither method seemed close to stagnating at the 12 hour timeout, so
we reran the experiment with a time limit of 72 hours. MINOBS eventually over-
took IINOBS after about 24 hours In general, IINOBS seems to be the better
method if time is limited, but it begins stagnating earlier than MINOBS.

7 Conclusions

We present INOBS, IINOBS, and MINOBS: three new ordering-based local
search methods for Bayesian network structure optimization which scale to hun-

dreds of variables and have no restrictions on indegree. We compare these meth-
ods to the state of the art on a wide range of instances generated from real
datasets. The results indicated that these new methods are able to outperform
the few score-and-search learning methods that can operate on instances with
hundreds of variables. MINOBS appeared to find the best scoring network struc-
tures, with IINOBS closely following.

References

1. Alonso-Barba, J.I., de la Ossa, L., Puerta, J.M.: Structural learning of Bayesian
networks using local algorithms based on the space of orderings. Soft Computing
15, 1881–1895 (2011)

2. van Beek, P., Hoffmann, H.F.: Machine learning of Bayesian networks using con-
straint programming. In: Proc. of CP. pp. 428–444 (2015)

3. de Campos, C.P., Ji, Q.: Efficient structure learning of Bayesian networks using
constraints. J. of Machine Learning Research 12, 663–689 (2011)

4. Chickering, D.M.: Learning equivalence classes of Bayesian network structures.
J. of Machine Learning Research 2, 445–498 (2002)

5. Chickering, D.M., Heckerman, D., Meek, C.: A Bayesian approach to learning
Bayesian networks with local structure. In: Proc. of UAI. pp. 80–89 (1997)

6. Congram, R.K.: Polynomially searchable exponential neighbourhoods for sequenc-
ing problems in combinatorial optimisation. Phd thesis, U. of Southampton (2000)

7. Cussens, J.: Bayesian network learning with cutting planes. In: Proc. of UAI.
pp. 153–160 (2011)

8. De Campos, L.M., Fernandez-Luna, J.M., Gámez, J.A., Puerta, J.M.: Ant colony
optimization for learning Bayesian networks. J Approx Reason 31, 291–311 (2002)

9. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations & Applications.
Elsevier (2004)

10. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: An automatic
algorithm configuration framework. JAIR 36, 267–306 (2009)

11. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. The MIT Press (2009)

12. Larranaga, P., Kuijpers, C., Murga, R., Yurramendi, Y.: Learning Bayesian net-
work structures by searching for the best ordering with genetic algorithms. IEEE
Transactions on System, Man and Cybernetics 26, 487–493 (1996)

13. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial
arts: Towards memetic algorithms. Tech. rep., Caltech (1989)

14. Oliver, I., Smith, D., Holland, J.R.: Study of permutation crossover operators on
the TSP. In: Proc. of Int’l Conf. on Genetic Algorithms (1987)

15. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann (1988)
16. Scanagatta, M., de Campos, C.P., Corani, G., Zaffalon, M.: Learning Bayesian

networks with thousands of variables. In: Proc. of NIPS. pp. 1864–1872 (2015)
17. Schiavinotto, T., Stützle, T.: The linear ordering problem: Instances, search space

analysis and algorithms. J. of Math. Model. and Algorithms 3, pp. 367–402 (2004)
18. Syswerda, G.: Schedule optimization using genetic algorithms. Handbook of Ge-

netic Algorithms, pp. 332–349 (1991)
19. Teyssier, M., Koller, D.: Ordering-based search: A simple and effective algorithm

for learning Bayesian networks. In: Proc. of UAI. pp. 548–549 (2005)
20. Yuan, C., Malone, B., Wu, X.: Learning optimal Bayesian networks using A*

search. In: Proc. of IJCAI. pp. 2186–2191 (2011)

	 Metaheuristics for Score-and-Search Bayesian Network Structure Learning

