Comparative Evaluation of the Performance of In-Memory Key-Value Stores: Redis vs Memcached

By Noshin Nawar Sadat and Ishank Jain

Department of Computer Science

04/02/2019

CONTENT

- Research Question
- Motivation
- Comparison
- Experiment
- Results
- Conclusion

RESEARCH QUESTION

- When you need to scale an application with a lot of data, how do you decide on a storage solution?
- How can you both safely store and efficiently interact with large data sets?
- Selecting the right Key-Value store is the question that comes up every time when we think to scale database driven application.

MOTIVATION

- Companies such as Facebook, Twitter, Reddit, and Pinterest have adopted Memcached, while Github, Airbnb, Snapchat, Flicker are among the companies that use Redis.
- Many articles mention how Redis is better than Memcached because of all the different features it provides, but did not compare their performances.

REDIS

- Primary database for data that requires rapid processing.
- Redis can persist its data to disk and can be made highly available through inmemory replication and autofailover.
- All the commands in a transaction are serialized and executed sequentially.
- Variety of expiration policy.

MEMCACHED

- Memcached organizes its memory in Slabs, this reduces the pain of memory fragmentation.
- Items are made up of a key, an expiration time, optional flags, and raw data.
- Servers are Disconnected From Each Other.
- Least Recently Used cache.

COMPARISON: SCALE UP

Redis

• Redis is **single threaded**.

Memcached

- Memcached server is multi-threaded
- Memcached being multithreaded, can easily scale up by giving it more computational resources.

COMPARISON: SCALE OUT

Redis

- Horizontally scale out available in Redis by clustering which is built-in.
- Cluster nodes have information about hash slots.

Memcached

- Horizontally scale out available by just adding new nodes.
- Cluster nodes have no information about hash slots

COMPARISON: CONSISTENCY

Redis

 Redis provides consistency using a operation, which provides optimistic locking.

Memcached

 Uses Check and Set operation to maintain strong consistency.

COMPARISON: SUPPORTED DATA TYPES

Redis

 Redis supports much richer data types, including String, Hash, List, Set and Sorted Set.

Memcached

 Memcached which only supports data records of the simple key-value structure

COMPARISON: OTHER FEATURES

Redis

• **Redis supports** replication and persistence.

Memcached

 Memcached does not support replication and persistence. (sort of)

BENCHMARKS: YCSB

- · Yahoo! Cloud Serving Benchmark (YCSB) framework.
- Types of operations in workloads:
 - Read
 - Insert
 - Update
 - Scan
- The workloads can be customized. There can be following customizations:
 - Number of operations
 - Database size
 - Operation ratios
 - Number of clients

EXPERIMENT

COMPARISON METRICS

- **Latency** (in μs)
 - Read
 - Update
 - Insert
- Throughput (operations/second)
- Memory usage (in MB)
- Scaling out
 - **Single** node vs **three** node cluster
- Number of **concurrent clients**: 1, 12, 24, 36, 48 (Threads)

MACHINES

Server

- 15GB RAM
- 12 cores CPUs
- 1 Gbps ethernet link

Client

- 7.76GB RAM
- 12 core CPUs
- 1 Gbps ethernet link

SYSTEM CONFIGURATION

Redis

- Default configuration
- Disabled replication and persistence

Memcached

Default configuration

DATABASE

- Record size = 16 (fields) x 255 (bytes) = 4,080 bytes
- Total number of records = 2,500,000
- Total database size = 10.2 GB

WORKLOADS

Workloads	Description	Initial Database Size	Number of operations
Workload A (Balanced RU)	50% Reads & 50% Updates	10.2 GB	2,500,000
Workload B (Read-Heavy RU)	95% Reads & 5% Updates	10.2 GB	2,500,000
Workload C (Update-Heavy RU)	5% Reads & 95% Updates	10.2 GB	2,500,000
Workload D (Read-Heavy RI)	90% Reads & 10% Inserts	5.1 GB	1,250,000
Workload E (Insert-Heavy RI)	10% Reads & 90% Inserts	5.1 GB	1,250,000

EXECUTING EXPERIMENT

WORKLOAD A 150% Reads & 50% Updates1

FACULTY OF MATHEMATICS

WORKLOAD B (95% Reads & 5% Updates)

FACULTY OF MATHEMATICS

WORKLOAD C 15% Reads & 95% Updates1

FACULTY OF MATHEMATICS

WORKLOAD D 190% Reads & 10% Inserts1

FACULTY OF MATHEMATICS

WORKLOAD E [10% Reads & 90% Inserts]

FACULTY OF MATHEMATICS

Memory Utilization

Cools	Memory Usage (in MB)			
Scale	Memcached	Redis		
Single Node	10,876	14,740		
3-Node Cluster	3,630	4958		

Memcached requires 6.6% extra memory. Redis requires 44.5% extra memory!

Takeaways

Workloads	Large Number of Concurrent Clients		Small Number of Concurrent Clients	
	Single Node	Cluster	Single Node	Cluster
Workload A (50%R-50%U)	Memcached	Memcached	Memcached	Memcached
Workload B (95%R-5%U)	Memcached	Memcached	Memcached	Memcached
Workload C (5%R-95%U)	Redis	Redis	Redis	Redis
Workload D (90%R-10%I)	Redis	Redis	Redis	Redis
Workload E (10%R-90%I)	Redis	Redis	Memcached	Memcached

If not much avaiable memory, use Memcached.

Further Exploration

- Comparison of their eviction policies.
- Performing multiple iterations of the test.
- Test cluster performances with increased database size.

THANKYOU

