
Cuttings in 2D Revisited

Timothy Chan
U of Waterloo



Disclaimers

• theory talk (it’s about derandomization!)

• no new result

• a “new” alg’m that isn’t totally original. . .

[but I hope it will be “educational”. . .
new alg’m fits in 1 slide. . . & no probabilities!]



The Problem

Def’n: Given set L of n lines in 2D,
a (1/r)-cutting K is a subdivision into cells
s.t. each cell ∆ intersects ≤ n/r lines



The Problem

Def’n: Given set L of n lines in 2D,
a (1/r)-cutting K is a subdivision into cells
s.t. each cell ∆ intersects ≤ n/r lines

Remarks:

• cells could be arbitrary/convex/triangles/trapezoids. . .
• size of K = # cells in K
• conflict list L∆ = {all lines in L intersecting ∆}
• generalizes medians & quantiles in 1D

(∃ (1/r)-cutting of size r in 1D)



The Result

Theorem: In 2D, ∃ (1/r)-cutting of size O(r2)

It (& its conflict lists) can be computed in time O(nr)

Remarks:

• size O(r2) is optimal
• time O(nr) is optimal if conflict lists are required

(output size is Ω(r2 · n/r))

• In higher D: size O(rd), time O(nrd−1)



Why Fundamental

• prune&search in CG

• divide&conquer in CG

• basic tool in range searching

• many applications. . .



An Example Application:
Offline 2D Halfplane Range Counting (“Hopcroft’s Problem”)

• given n lines & m pts,
count # pairs (p, `) where pt p is below line `

Naive Sol’n:

T (n,m) ≤ O(n2 +m logn)

by constructing arrangement of n lines +
m point location queries



An Example Application:
Offline 2D Halfplane Range Counting (“Hopcroft’s Problem”)

Fastest Sol’n Known (Almost):

T (n, n)≤ O(r2)T (n/r, n/r2) +O(nr) by cutting

≤ O(r2)T (n/r2, n/r) +O(nr) by duality

≤ O(r2)
[
(n/r2)2 + (n/r) logn

]
+O(nr)

by naive sol’n

= O(n2/r2 + nr logn)

= O(n4/3 log2/3 n) by setting r = ( n
logn)1/3

[Matoušek’92: log factor improvable to iterated log. . . ]



Rest of Talk

I. History

II. “New” Alg’m

III. Coda



Megiddo, “Linear time algorithm for linear programming in
R3 and related problems”, FOCS’82

Dyer, “Linear time algorithm for two- and three-variable
linear programs”, ’84

• (7/8) -cutting of size 4 in linear time



Megiddo/Dyer:
The “How-many-times-can-you-take-medians” Method

1. m = median slope
2. pair lines of slope < m w. lines of slope > m

intersect each pair
draw median vertical line ` thru intersection pts

`n/4 pairs n/4 pairs



Megiddo/Dyer:
The “How-many-times-can-you-take-medians” Method

3. on left side of `:
draw median slope-m line at
those intersection pts to the right of `

g

`n/4 pairs n/4 pairs

n/8 pairs

n/8 pairs



Megiddo/Dyer:
The “How-many-times-can-you-take-medians” Method

3. on left side of `:
draw median slope-m line at
those intersection pts to the right of `

4. on right side of `: similar

`



Megiddo/Dyer:
The “How-many-times-can-you-take-medians” Method

Remarks:

• extends to higher D, but w. horrible consts
• improvable to (3/4)-cutting of size 4 [Yamamoto et

al.’88]
• can get (1/r)-cutting for any r by

straightforward recursion:

size S(r) = 4S(7
8r)

2⇒ O(rlog8/7 4) = O(r10.4)

time T (n, r) = 4T (7
8n,

7
8r) +O(n) 2⇒ O(nr9.4)

[alternative: instead of pairing, divide into groups of r. . . ]



Clarkson, “A probabilistic algorithm for the post office
problem”, STOC’85

Clarkson, “Further applications of random sampling to
computational geometry”, STOC’86

Haussler & Welzl, “Epsilon-nets and simplex range
queries”, SoCG’86

• (1/r)-cutting of size O((r log r)2)



Clarkson/Haussler&Welzl:
“The Sampling Method”

1. take random sample of r lines
2. return its trapezoidal decomposition (VERY simple!)



Clarkson/Haussler&Welzl:
“The Sampling Method”

1. take random sample of r lines
2. return its trapezoidal decomposition (VERY simple!)

• size O(r2)

• each cell intersects O((n/r) log r) lines w. high
probability (analysis omitted)



Clarkson/Haussler&Welzl:
“The Sampling Method”

Remarks:

• Chazelle&Friedman’88 removed extra log⇒ first
existence proof w. optimal size

• general, extends to higher D

• deterministic alg’ms?



Matoušek, “Construction of epsilon nets”, SoCG’89

• (1/r)-cutting of size O(r2)



Matoušek: “The Level Method”

Def’n: level of pt q = # lines below q

Def’n: k-level = all pts at level k



Matoušek: “The Level Method”

1. For a fixed j, take all levels ≡ j (mod 0.5n/r)
2. Simplify each such level s.t. each edge crosses exactly

0.1n/r lines
p

0.5n/r

0.5n/r

0.1n/r 0.1n/r



Matoušek: “The Level Method”

1. For a fixed j, take all levels ≡ j (mod 0.5n/r)
2. Simplify each such level s.t. each edge crosses exactly

0.1n/r lines
3. return its trapezoidal decomposition

0.5n/r

0.5n/r

0.1n/r 0.1n/r



Matoušek: “The Level Method”

Analysis:

• each cell intersects ≤ 0.8n/r lines

≤ 0.1n/r

≤ 0.1n/r

≤ 0.6n/r



Matoušek: “The Level Method”

Analysis:

• size O
(
X(j)

0.1n/r

)

where X(j) = # vertices at levels ≡ j (mod 0.5n/r)
but don’t know how big X(j) is. . . pick min j!

⇒ O

 1

0.5n/r

∑
j

X(j)

0.1n/r



= O

 1

0.5n/r

 n2

0.1n/r


 = O(r2)

(simple & deterministic!)



Matoušek: “The Level Method”

Remarks:

• only works in 2D

• time? trivially polynomial

• Matoušek showed how to get time O(nr2 log r)
(but complicated!)



A Straightforward Recursion Method

Cut(L, n, r,∆0):

1. compute (1/b)-cutting K inside ∆0 for large
const b ← by Matoušek’s complicated method

2. for each cell ∆ of K:
Cut(L∆, n/b, r/b,∆)

• size S(r) ≤ O(b2)S(r/b) ⇒ O(r2+ε) O(r2+ε)

• time T (n, r) ≤ O(b2)T (n/b, r/b) +O(nb2 log b)

⇒ O(nr1+ε)

[rε factors improvable to polylog by nonconst b]



Agarwal, “A deterministic algorithm for partitioning
arrangements of lines and its applications”, SoCG’89

Agarwal, Intersection and Decomposition Algorithms for
Planar Arrangements”, PhD thesis, ’91

• (1/r)-cutting of size O(r2) in
time O(nr logn log3.33 r)

[based on the level method, also complicated. . . ]



Matoušek, “Cutting hyperplane arrangements”, SoCG’90

Matoušek, “Approximations and optimal geometric
divide-and-conquer”, STOC’91

• (1/r)-cutting of size O(r2) in time O(nr) (finally!)

[complicated
suboptimal in higher D for large r
requires notion of “ε-approximations”. . . ]





Chazelle, “An optimal convex hull algorithm and new
results on cuttings”, FOCS’91

• (1/r)-cutting of size O(r2) in time O(nr) (again)

[also optimal in higher D
“hierarchical”, useful in some appl’ns
requires “ε-approximations”, “sparse ε-nets”, . . . ]







C. & Tsakalidis, not yet published, ’14

• (1/r)-cutting of size O(r2) in time O(nr) (yet again)

[“re-interpretation” of Chazelle
easier to understand (hopefully). . . ]



Rest of Talk

I. History

II. “New” Alg’m

III. Coda



Prerequisite

Only Fact Needed: (1/b)-cutting of const size (don’t care!)
in linear time for const b

• known already by Megiddo/Dyer!

Cuttings will be trapezoidal decompositions of line
segments. . .



A New Recursion Method

Cut(L, n, r,∆0):

1. compute (1/1000b)-cutting G of const size (don’t care!)
for large const b ← by Megiddo/Dyer

2. compute the best (1/b)-cutting K inside ∆0 that is
aligned to G, i.e., formed by line segments w. endpts
from G ← by BRUTE FORCE!

3. for each cell ∆ of K:
Cut(L∆, n/b, r/b,∆) (conceptually simple!)



Analysis of New Method

• consider the (1/b)-cutting K∗ produced by the level
method

• align it by “rounding” to vertices of G

0.001n/b
0.001n/b

0.001n/b

0.1n/b 0.1n/b

0.5n/b

0.5n/b



Analysis of New Method

• consider the (1/b)-cutting K∗ produced by the level
method

• align it by “rounding” to vertices of G

0.001n/b
0.001n/b

0.001n/b

0.1n/b 0.1n/b

0.5n/b

0.5n/b



Recall Analysis of the Level Method. . .

• size O
(
X(j)

0.1n/b+Y (j)
)

where X(j) = # vertices at levels ≡ j (mod 0.5n/b)
inside ∆0

and Y (j) = # vertices at levels ≡ j (mod 0.5n/b)
on boundary of ∆0

pick min j!

⇒ O

 1

0.5n/b

∑
j

 X(j)

0.1n/b
+Y (j)




= O

 1

0.5n/b

 X

0.1n/b
+n


 = O(X

n2b
2 + b)

where X = total # intersections inside ∆0



Back to Analysis of New Method

⇒ size of K∗ (from the level method) = O(X
n2b

2 + b)

⇒ size of K (from our brute force) = O(X
n2b

2 + b)

⇒ overall size

S(n, r,X) =
O((X/n2)b2+b)∑

i=1
S(n/b, r/b,Xi)

where ∑
iXi = X



Solving the Recurrence

S(n, r,X) =
O((X/n2)b2+b)∑

i=1
S(n/b, r/b,Xi)

• guess. . . S(n, r,X) ≤ X
n2f(r) + g(r)

⇒ RHS ≤
O((X/n2)b2+b)∑

i=1

 Xi
(n/b)2

f(r/b) + g(r/b)


≤

X

n2
b2f(r/b) + O

X
n2
b2 + b

 g(r/b)

• set f(r) = b2 f(r/b) +O(b2g(r/b)) 2

g(r) = O(b) g(r/b) ⇒ O(r1+ε)



Solving the Recurrence

S(n, r,X) =
O((X/n2)b2+b)∑

i=1
S(n/b, r/b,Xi)

• guess. . . S(n, r,X) ≤ X
n2f(r) + g(r)

⇒ RHS ≤
O((X/n2)b2+b)∑

i=1

 Xi
(n/b)2

f(r/b) + g(r/b)


≤

X

n2
b2f(r/b) + O

X
n2
b2 + b

 g(r/b)

• set f(r) = b2 f(r/b) +O(r1+ε) 2 ⇒ O(r2)



Analysis of New Method (Cont’d)

• overall time

T (n, r,X) =
O((X/n2)b2+b)∑

i=1
T (n/b, r/b,Xi) +O(n)

⇒ O(nr) similarly



Rest of Talk

I. History

II. “New” Alg’m

III. Coda



Remarks on “New” Method

• similar to Chazelle
[hierarchical, but no prerequisites on “ε-approximations” or
“ε-nets”]

• similar flavor as approx alg’ms/PTASes
[comparing with OPT, rounding OPT, using brute force for small
subproblems, . . . ]

• HUGE consts!
[see Har-Peled’98 for more practical, rand. implementations]

• does not generalize to higher D

• leads to new results on shallow cuttings. . .



Shallow Cuttings

Def’n: A k-shallow (1/r)-cutting is a subdivision covering
all pts of level ≤ k s.t. each cell intersects ≤ n/r lines

Theorem: In 2D, ∃ Ω(n/r)-shallow (1/r)-cutting
of size O(r)

• existence proof by the sampling method
(Matoušek’91) or the level method

• Ramos’99: O(n log r) randomized time

• C.&Tsakalidis’14: O(n log r) deterministic time
[similar ideas, can compare with general optimal K∗]



Shallow Cuttings

Def’n: A k-shallow (1/r)-cutting is a subdivision covering
all pts of level ≤ k s.t. each cell intersects ≤ n/r lines

Theorem: In 3D, ∃ Ω(n/r)-shallow (1/r)-cutting
of size O(r)

• existence proof by the sampling method
(Matoušek’91)

• Ramos’99: O(n log r) randomized time

• C.&Tsakalidis’14: O(n log r) deterministic time
[more complicated. . . ]



Open Problems

1. Hopcroft’s problem in O(n4/3) time w/o iterated log?

2. PTAS for min-size (1/r)-cutting (in O(nr) time)?

3. deterministic shallow cutting with O(rbd/2c) size for
odd d ≥ 5?

4. faster deterministic cutting if don’t need conflict lists?
[known: O(n log r) for r ≤ nα]

5. const factors
[Matoušek’98: size ≈ 4r2]

6. best const for (1/2)-cutting? [Har-Peled’98]
(3/4)-cutting of size 4, (2/3)-cutting of size 6 [??]
⇒ (1/2)-cutting of size 24


