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Disclaimers

e theory talk (it's about derandomization!)
e NO new result
e a “‘new” alg'm that isn’t totally original. ..

[out | hope it will be “educational”. ..
new alg'm fits in 1 slide... & no probabilities!]



The Problem

Def'n: Given set L of n lines in 2D,
a (1/r)-cutting K is a subdivision into cells
s.t. each cell A intersects < n/r lines
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The Problem

Def'n: Given set L of n lines in 2D,
a (1/r)-cutting K is a subdivision into cells
s.t. each cell A intersects < n/r lines

Remarks:

e cells could be arbitrary/convex/triangles/trapezoids. . .
e sizeof K =#cellsin K
e conflict list L A = {all lines in L intersecting A}

e generalizes medians & quantiles in 1D
(3 (1/r)-cutting of size r in 1D)



The Result

Theorem: In 2D, 3 (1/r)-cutting of size |O(r2)

It (& its conflict lists) can be computed in time | O(nr)

Remarks:

e size O(r?) is optimal

e time O(nr) is optimal if conflict lists are required
(output size is Q(r2 - n/r))

e In higher D: size O(r?%), time O(nr¢—1)



Why Fundamental

e prune&search in CG
e divide&conquer in CG
e basic tool in range searching

e many applications...



An Example Application:

Offline 2D Halfplane Range Counting (“Hopcroft’s Problem”)

e given n lines & m pts,
count # pairs (p, £) where pt p is below line ¢
Naive Sol'n:
T(n,m) < O(n?+ mlogn)

by constructing arrangement of n lines 4
m point location queries



An Example Application:

Offline 2D Halfplane Range Counting (“Hopcroft's Problem”)

Fastest Sol'n Known (Almost):
T(n,n) < O(r?) T(n/r, n/rz) + O(nr) by cutting
< O(r?) T(n/rQ, n/r) + O(nr) by duality

< 03 [(n/r?)? + (n/r) log n| + O(nr)
by naive sol'n

= O(n?/r? + nrlogn)

= 0(n*/310g92/3n) by setting r = (Iogn)1/3

[Matousek’92: log factor improvable to iterated log. . .]



Rest of Talk

|. History
Il. “New” Alg'm

lll. Coda



Megiddo, “Linear time algorithm for linear programming in
R3 and related problems”, FOCS’82

Dyer, “Linear time algorithm for two- and three-variable
linear programs”, ‘84

e (7/8)-cutting of size |4 in linear time




Megiddo/Dyer:

The “How-many-times-can-you-take-medians” Method

1. m = median slope

2. pair lines of slope < m w. lines of slope > m
iIntersect each pair

draw median vertical line ¢ thru intersection pts
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Megiddo/Dyer:

The “How-many-times-can-you-take-medians” Method
3. on left side of /:

draw median slope-m line at
those intersection pts to the right of £
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Megiddo/Dyer:

The “How-many-times-can-you-take-medians” Method

3. on left side of ¢:

draw median slope-m line at

those intersection pts to the right of £
4. on right side of Z: similar
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Megiddo/Dyer:

The “How-many-times-can-you-take-medians” Method

Remarks:

e extends to higher D, but w. horrible consts

e improvable to (3/4)-cutting of size 4 [Yamamoto et
al. 88]

e can get (1/r)-cutting for any r by
straightforward recursion:

size S(r) = 43(%7“) s O(r|098/7 4) — O(r10-4)

time T'(n,r) = 4T(%n, %’r) O(n) =|0(nr2%)

[alternative: instead of pairing, divide into groups of r. .. ]



Clarkson, “A probabilistic algorithm for the post office
problem”, STOC'85

Clarkson, “Further applications of random sampling to
computational geometry”, STOC'86

Haussler & Welzl, “Epsilon-nets and simplex range
queries”, SoCG'86

e (1/7)-cutting of size | O((r logr)?)




Clarkson/Haussler&Welzl:
“The Sampling Method”

1. take random sample of r lines
2. return its trapezoidal decomposition (VERY simple!)




Clarkson/Haussler&Welzl:
“The Sampling Method”

1. take random sample of r lines
2. return its trapezoidal decomposition (VERY simple!)

e size O(r?)

e each cell intersects O((n/r) log r) lines w. high
probability (analysis omitted)



Clarkson/Haussler&Welzl:
“The Sampling Method”

Remarks:

e Chazelle&Friedman’88 removed extra log = first
existence proof w. optimal size

e general, extends to higher D

e deterministic alg'ms?



Matousek, “Construction of epsilon nets”, SoCG’'89

e (1/r)-cutting of size |O(r?)




Matousek: “The Level Method”

Def'n: level of pt ¢ = # lines below ¢

Def'n: k-level = all pts at level k




Matousek: “The Level Method”

1. For a fixed j, take all levels = j (mod 0.5n/r)
2. Simplify each such level s.t. each edge crosses exactly
0.1n/r lines

0.1n/r 0.1n/r




Matousek: “The Level Method”

1. For a fixed j, take all levels = j (mod 0.5n/r)

2. Simplify each such level s.t. each edge crosses exactly
0.1n/r lines

3. return its trapezoidal decomposition
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Matousek: “The Level Method”

Analysis:

e each cell intersects < 0.8n/r lines

< 0.1n/r
< O.6n/7"§ :

N

< 0.1n/r



Matousek: “The Level Method”

Analysis:

e Size O (Oﬁiﬁr)

where X () = # vertices at levels = j (mod 0.5n/7)
but don’t know how big X ) is... pick min j!

5 1 x ()
- O.5n/r§0.1n/r

— O 1 n? — O(r2
- (O.Sn/r (O.ln/r)) = [0

(simple & deterministic!)




Matousek: “The Level Method”

Remarks:

e only works in 2D

e time? trivial

e Matousek s

y polynomial

nowed how to get time

(but complicated!)

O(nr?logr)




A Straightforward Recursion Method

CUt(L, n,r, Ao)i

1. compute (1/b)-cutting K inside Ag for large
const b <« by Matousek’s complicated method
2. for each cell A of K:
Cut(La,n/b,7/b, )

e size S(r) < O(bQ) S(r/b) = O(r2+5)

o time T'(n,r) < O(b2) T(n/b,r/b) + O(nb?log b)
= O(nr1+5)

[ factors improvable to polylog by nonconst b]



Agarwal, “A deterministic algorithm for partitioning
arrangements of lines and its applications”, SoCG’89

Agarwal, Intersection and Decomposition Algorithms for
Planar Arrangements”, PhD thesis, '91

e (1/r)-cutting of size O(r2) in
time |O(nr lognlog3-33r)

[based on the level method, also complicated.. . ]



Matousek, “Cutting hyperplane arrangements”, SoCG’90

Matousek, “Approximations and optimal geometric
divide-and-conquer”, STOC’91

e (1/r)-cutting of size O(r2) intime |O(nr)| (finally!)

[complicated
suboptimal in higher D for large r
requires notion of “c-approximations”. . .|



We say that a collection A of hyperplanes 1s an ¢-approximation for H provided
that, for every segment e, it is

4,1 |H.|
Al |H!

?

where A, (resp. H,) denotes the set of all hyperplanes of 4 (resp. of H) intersecting
the segment e.




Chazelle, “An optimal convex hull algorithm and new

results on cuttings”, FOCS’91
e (1/r)-cutting of size O(r?) in time

[also optimal in higher D

O(nr)

“hierarchical”, useful in some appl’'ns

(again)

requires “c-approximations”, “sparse e-nets’, ...]



The next definition is z;dapted from [28]. We sa} that a subset R of H is
(ry-approximation for H if, for any line segment e, the densities in R and H
the hyperptanes crossing e differ by less than 1/r, or, formally,

H.l IRy,
H| IR

i
<o
r

Ques of [15] and [29]. A subset R of H is called a (1/r)-net for H if, for any line
segment e, the inequality |H|, | > n/r implies that R | > 0. A (1/r)-net plays the




We need to strengthen the notion of a (1/r)-net a little by requiring that the
facial complexity of the portion of the arrangement that it forms within a given
d-dimensional simplex s is not too large. We say that a (1/r)-net R is sparse for s if

o _ IR
v(H;s) |H|

Lemma 2.1 (Vertex-Count Estimation). Let R be a (1/r}-approximation for a finite
set H of hyperpianes in E®. For any d-dimensional simplex s, we have

v(H;s) v(R;s)

pra——

|HI*  |R[

1

r




C. & Tsakalidis, not yet published, 14

e (1/7)-cutting of size O(r2) in time

O(nr)

[“re-interpretation” of Chazelle
easlier to understand (hopefully)...]

(yet again)



Rest of Talk

Il. “New” Alg'm



Prerequisite

Only Fact Needed: (1/b)-cutting of const size (don’t care!)
In linear time for const b

e known already by Megiddo/Dyer!

Cuttings will be trapezoidal decompositions of line
segments. ..



A New Recursion Method

CUt(L, n,r, Ao)i
1. compute (1/1000b)-cutting G of const size (don't care!)
for large const b < by Megiddo/Dyer

2. compute the best (1/b)-cutting K inside Ag that is

aligned to G, i.e., formed by line segments w. endpts
from G <+ by BRUTE FORCE!

3. for each cell A of K:
Cut(LA,n/b,r/b, A) (conceptually simple!)



Analysis of New Method

e consider the (1/b)-cutting K* produced by the level
method

e align it by “rounding” to vertices of GG

Oln/b & 0.1n/b
----- o Q,lom/b

0.001n /b
0.00ln/b

.......... <& Qxb[%n/b



Analysis of New Method

e consider the (1/b)-cutting K* produced by the level
method

e align it by “rounding” to vertices of GG

0.1n/b Q 0.1n/b
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Recall Analysis of the Level Method. ..

e size O (cfiizj;b | Y(j>>

where X (J) = # vertices at levels = j (mod 0.5n/b)
inside AO
and Y = # vertices at levels = j (mod 0.5n/b)

on boundary of Ag
pick min 4!

1 x () .
Ly ()
- O (O.Sn/b%: (O.ln/b ))

— 1 X | — X 12
B O(O.Sn/b (O.ln/b'n)) = [0G20 +0)

where X = total # intersections inside A




Back to Analysis of New Method

= size of K* (from the level method) = O(%b2 + b)

= size of K (from our brute force) = O (=562 + b)

= overall size

O((X/n?)b2+b)
S(n,r, X) = 3 S(n/b,r/b, X;)
i=1

where »=; X; = X



Solving the Recurrence

O((X/n?)b%+b)
S(n,r, X) = > S(n/b,r/b, X;)

1=1

o guess... S(n,r,X) < 5f(r) + g(r)

O((X/n?)b%+b) [ x.
= RHS < > ( !
(n/b

1=1
< S0PFG/B) + OS2+ b) g(r/b)

S I/0) + g(r/b>)

o set f(r) = b2 f(r/b) + O(b4g(r /b))
g(r) = O(b) g(r/b) = O(rite)



Solving the Recurrence

O((X/n?)b*+b)
S(n,T,X) — > S(n/bar/b7X’L)

1=1

o guess... S(n,r,X) < 5f(r) + g(r)

nHS < O((X/n?)b2+b) X;

—

B igl ((n/b)
X

< ?be(r/b) + O (52192 + b) g(r/b)

Fr/b) + g(r/b>)

o set £(r) = b2 f(r/b) + O(r1Te) = |O(2)




Analysis of New Method (Cont'd)

e overall time

O((X/n*)b*+b)
T(n,r,X) = > T(n/b,r/b,X;) 4+ O(n)

1=1

= |O(nr) similarly




Rest of Talk

|. History
Il. “New” Alg'm

lll. Coda



Remarks on “New” Method

e similar to Chazelle
[hierarchical, but no prerequisites on “s-approximations” or
“e-nets’]

e similar flavor as approx alg'ms/PTASes
[comparing with OPT, rounding OPT, using brute force for small
subproblems, ... ]

e HUGE consts!

[see Har-Peled’ 98 for more practical, rand. implementations]
e does not generalize to higher D

e |leads to new results on shallow cuttings. ..



Shallow Cuttings

Def'n: A k-shallow (1/r)-cutting is a subdivision covering
all pts of level < k s.t. each cell intersects < n/r lines

Theorem: In 2D, 3 2(n/r)-shallow (1/r)-cutting
of size O(r)

e existence proof by the sampling method
(Matousek’91) or the level method
e Ramos’99: O(n logr) randomized time

e C.&Tsakalidis’14: O(nlogr) deterministic time
[similar ideas, can compare with general optimal K*]



Shallow Cuttings

Def'n: A k-shallow (1/r)-cutting is a subdivision covering
all pts of level < k s.t. each cell intersects < n/r lines

Theorem: In 3D, 4 2(n/r)-shallow (1 /r)-cutting
of size O(r)

e existence proof by the sampling method
(Matousek’91)
e Ramos’99: O(n logr) randomized time

e C.&Tsakalidis’14: O(nlogr) deterministic time
[more complicated. . . ]



Open Problems

. Hopcroft's problem in O(n*/3) time w/o iterated log?
. PTAS for min-size (1/r)-cutting (in O(nr) time)?

. deterministic shallow cutting with O (r14/2]) size for
odd d > 5?

. faster deterministic cutting if don’t need conflict lists?
[known: O(nlogr) for r < n?]

. const factors
[Matousek'98: size ~ 4]

. best const for (1/2)-cutting? [Har-Peled’98]
(3/4)-cutting of size 4, (2/3)-cutting of size 6 [?7]
= (1/2)-cutting of size 24



