Cuttings in 2D Revisited

Timothy Chan

U of Waterloo

Disclaimers

- theory talk (it's about derandomization!)
- no new result
- a "new" alg'm that isn't totally original...

```
[but I hope it will be "educational"...
new alg'm fits in 1 slide... & no probabilities!]
```

The Problem

Def'n: Given set L of n lines in 2D, a (1/r)-cutting K is a subdivision into cells s.t. each cell Δ intersects $\leq n/r$ lines

The Problem

Def'n: Given set L of n lines in 2D, a (1/r)-cutting K is a subdivision into cells s.t. each cell Δ intersects $\leq n/r$ lines

Remarks:

- cells could be arbitrary/convex/triangles/trapezoids...
- \bullet size of K = # cells in K
- conflict list $L_{\Delta} = \{ \text{all lines in } L \text{ intersecting } \Delta \}$
- generalizes medians & quantiles in 1D $(\exists (1/r)$ -cutting of size r in 1D)

The Result

Theorem: In 2D, \exists (1/r)-cutting of size $O(r^2)$ It (& its conflict lists) can be computed in time O(nr)

Remarks:

- size $O(r^2)$ is optimal
- time O(nr) is optimal if conflict lists are required (output size is $\Omega(r^2 \cdot n/r)$)
- In higher D: size $O(r^d)$, time $O(nr^{d-1})$

Why Fundamental

- prune&search in CG
- divide&conquer in CG
- basic tool in range searching
- many applications...

An Example Application:

Offline 2D Halfplane Range Counting ("Hopcroft's Problem")

ullet given n lines & m pts, count # pairs (p,ℓ) where pt p is below line ℓ

Naive Sol'n:

$$T(n,m) \le O(n^2 + m \log n)$$

by constructing arrangement of n lines + m point location queries

An Example Application:

Offline 2D Halfplane Range Counting ("Hopcroft's Problem")

Fastest Sol'n Known (Almost):

$$T(n,n) \leq O(r^2) T(n/r,n/r^2) + O(nr) \text{ by cutting}$$

$$\leq O(r^2) T(n/r^2,n/r) + O(nr) \text{ by duality}$$

$$\leq O(r^2) \left[(n/r^2)^2 + (n/r) \log n \right] + O(nr)$$
 by naive sol'n
$$= O(n^2/r^2 + nr \log n)$$

$$= O(n^{4/3} \log^{2/3} n) \text{ by setting } r = (\frac{n}{\log n})^{1/3}$$

[Matoušek'92: log factor improvable to iterated log...]

Rest of Talk

I. History

II. "New" Alg'm

III. Coda

Megiddo, "Linear time algorithm for linear programming in \mathbb{R}^3 and related problems", FOCS'82

Dyer, "Linear time algorithm for two- and three-variable linear programs", '84

• (7/8) -cutting of size 4 in linear time

The "How-many-times-can-you-take-medians" Method

- 1. m = median slope
- 2. pair lines of slope < m w. lines of slope > m intersect each pair draw median vertical line ℓ thru intersection pts

The "How-many-times-can-you-take-medians" Method

3. on left side of ℓ : draw median slope-m line at those intersection pts to the right of ℓ

The "How-many-times-can-you-take-medians" Method

- 3. on left side of ℓ : draw median slope-m line at those intersection pts to the right of ℓ
- 4. on right side of ℓ: similar

The "How-many-times-can-you-take-medians" Method

Remarks:

- extends to higher D, but w. horrible consts
- improvable to (3/4)-cutting of size 4 [Yamamoto et al.'88]
- can get (1/r)-cutting for any r by straightforward recursion:

size
$$S(r) = 4S(\frac{7}{8}r) \Rightarrow O(r^{\log_{8/7}4}) = O(r^{10.4})$$

time $T(n,r) = 4T(\frac{7}{8}n, \frac{7}{8}r) + O(n) \Rightarrow O(nr^{9.4})$

[alternative: instead of pairing, divide into groups of r...]

Clarkson, "A probabilistic algorithm for the post office problem", STOC'85

Clarkson, "Further applications of random sampling to computational geometry", STOC'86

Haussler & Welzl, "Epsilon-nets and simplex range queries", SoCG'86

• (1/r)-cutting of size $O((r \log r)^2)$

Clarkson/Haussler&Welzl: "The Sampling Method"

- 1. take random sample of r lines
- 2. return its trapezoidal decomposition (VERY simple!)

Clarkson/Haussler&Welzl: "The Sampling Method"

- 1. take random sample of r lines
- 2. return its trapezoidal decomposition (VERY simple!)

- size $O(r^2)$
- each cell intersects $O((n/r) \log r)$ lines w. high probability (analysis omitted)

Clarkson/Haussler&Welzl: "The Sampling Method"

Remarks:

- Chazelle&Friedman'88 removed extra log ⇒ first existence proof w. optimal size
- general, extends to higher D
- deterministic alg'ms?

Matoušek, "Construction of epsilon nets", SoCG'89

• (1/r)-cutting of size $O(r^2)$

Def'n: level of pt q = # lines below q

Def'n: k-level = all pts at level k

- 1. For a fixed j, take all levels $\equiv j \pmod{0.5n/r}$
- 2. Simplify each such level s.t. each edge crosses exactly 0.1n/r lines

- 1. For a fixed j, take all levels $\equiv j \pmod{0.5n/r}$
- 2. Simplify each such level s.t. each edge crosses exactly 0.1n/r lines
- 3. return its trapezoidal decomposition

Analysis:

• each cell intersects $\leq 0.8n/r$ lines

Analysis:

• size $O\left(\frac{X^{(j)}}{0.1n/r}\right)$ where $X^{(j)} = \#$ vertices at levels $\equiv j \pmod{0.5n/r}$ but don't know how big $X^{(j)}$ is... pick min j!

$$\Rightarrow O\left(\frac{1}{0.5n/r} \sum_{j} \frac{X^{(j)}}{0.1n/r}\right)$$

$$= O\left(\frac{1}{0.5n/r} \left(\frac{n^2}{0.1n/r}\right)\right) = O(r^2)$$

(simple & deterministic!)

Remarks:

- only works in 2D
- time? trivially polynomial
- Matoušek showed how to get time $O(nr^2 \log r)$ (but complicated!)

A Straightforward Recursion Method

$\operatorname{Cut}(L, n, r, \Delta_0)$:

- 1. compute (1/b)-cutting K inside Δ_0 for large const $b \leftarrow$ by Matoušek's complicated method
- 2. for each cell Δ of K: Cut $(L_{\Delta}, n/b, r/b, \Delta)$

- size $S(r) \le O(b^2) S(r/b) \Rightarrow O(r^{2+\varepsilon})$
- time $T(n,r) \le O(b^2) T(n/b,r/b) + O(nb^2 \log b)$ $\Rightarrow O(nr^{1+\varepsilon})$

[r^{ε} factors improvable to polylog by nonconst b]

Agarwal, "A deterministic algorithm for partitioning arrangements of lines and its applications", SoCG'89

Agarwal, Intersection and Decomposition Algorithms for Planar Arrangements", PhD thesis, '91

• (1/r)-cutting of size $O(r^2)$ in time $O(nr \log n \log^{3.33} r)$

[based on the level method, also complicated...]

Matoušek, "Cutting hyperplane arrangements", SoCG'90 Matoušek, "Approximations and optimal geometric divide-and-conquer", STOC'91

• (1/r)-cutting of size $O(r^2)$ in time O(nr) (finally!)

[complicated suboptimal in higher D for large r requires notion of " ε -approximations"...]

We say that a collection A of hyperplanes is an ε -approximation for H provided that, for every segment e, it is

$$\left|\frac{|A_e|}{|A|} - \frac{|H_e|}{|H|}\right| < \varepsilon,$$

where A_e (resp. H_e) denotes the set of all hyperplanes of A (resp. of H) intersecting the segment e.

Chazelle, "An optimal convex hull algorithm and new results on cuttings", FOCS'91

• (1/r)-cutting of size $O(r^2)$ in time O(nr) (again)

[also optimal in higher D "hierarchical", useful in some appl'ns requires " ε -approximations", "sparse ε -nets", ...]

The next definition is adapted from [28]. We say that a subset R of H is (1/r)-approximation for H if, for any line segment e, the densities in R and H the hyperplanes crossing e differ by less than 1/r, or, formally,

$$\left|\frac{|H_{|e}|}{|H|}-\frac{|R_{|e}|}{|R|}\right|<\frac{1}{r}.$$

ques of [15] and [29]. A subset R of H is called a (1/r)-net for H if, for any line segment e, the inequality $|H_{|e}| > n/r$ implies that $|R_{|e}| > 0$. A (1/r)-net plays the

We need to strengthen the notion of a (1/r)-net a little by requiring that the facial complexity of the portion of the arrangement that it forms within a given d-dimensional simplex s is not too large. We say that a (1/r)-net R is sparse for s if

$$\frac{v(R;s)}{v(H;s)} \le 4 \left(\frac{|R|}{|H|}\right)^d.$$

Lemma 2.1 (Vertex-Count Estimation). Let R be a (1/r)-approximation for a finite set H of hyperplanes in E^d . For any d-dimensional simplex s, we have

$$\left|\frac{v(H;s)}{|H|^d} - \frac{v(R;s)}{|R|^d}\right| < \frac{1}{r}.$$

C. & Tsakalidis, not yet published, '14

• (1/r)-cutting of size $O(r^2)$ in time O(nr) (yet again)

["re-interpretation" of Chazelle easier to understand (hopefully)...]

Rest of Talk

I. History

II. "New" Alg'm

III. Coda

Prerequisite

Only Fact Needed: (1/b)-cutting of const size (don't care!) in linear time for const b

known already by Megiddo/Dyer!

Cuttings will be trapezoidal decompositions of line segments...

A New Recursion Method

$\operatorname{Cut}(L, n, r, \Delta_0)$:

- 1. compute (1/1000b)-cutting G of const size (don't care!) for large const $b \leftarrow by Megiddo/Dyer$
- 2. compute the best (1/b)-cutting K inside Δ_0 that is aligned to G, i.e., formed by line segments w. endpts from $G \leftarrow$ by BRUTE FORCE!
- 3. for each cell Δ of K: Cut $(L_{\Delta}, n/b, r/b, \Delta)$ (conceptually simple!)

Analysis of New Method

- ullet consider the (1/b)-cutting K^* produced by the level method
- align it by "rounding" to vertices of G

Analysis of New Method

- ullet consider the (1/b)-cutting K^* produced by the level method
- align it by "rounding" to vertices of G

Recall Analysis of the Level Method...

$$\begin{split} \bullet & \text{ size } O\left(\frac{X^{(j)}}{0.1n/b} + Y^{(j)}\right) \\ & \text{ where } X^{(j)} = \text{ \# vertices at levels} \equiv j \; (\text{mod } 0.5n/b) \\ & \text{ inside } \Delta_0 \\ & \text{and } \quad Y^{(j)} = \text{ \# vertices at levels} \equiv j \; (\text{mod } 0.5n/b) \\ & \text{ on boundary of } \Delta_0 \end{split}$$

pick min j!

$$\Rightarrow O\left(\frac{1}{0.5n/b} \sum_{j} \left(\frac{X^{(j)}}{0.1n/b} + Y^{(j)}\right)\right)$$

$$= O\left(\frac{1}{0.5n/b} \left(\frac{X}{0.1n/b} + n\right)\right) = O\left(\frac{X}{n^2}b^2 + b\right)$$

where $X = \text{total } \# \text{ intersections inside } \Delta_0$

Back to Analysis of New Method

- \Rightarrow size of K^* (from the level method) = $O(\frac{X}{n^2}b^2 + b)$
- \Rightarrow size of K (from our brute force) = $O(\frac{X}{n^2}b^2 + b)$
- ⇒ overall size

$$S(n, r, X) = \sum_{i=1}^{O((X/n^2)b^2+b)} S(n/b, r/b, X_i)$$

where $\Sigma_i X_i = X$

Solving the Recurrence

$$S(n,r,X) = \sum_{i=1}^{O((X/n^2)b^2+b)} S(n/b,r/b,X_i)$$

• guess... $S(n,r,X) \leq \frac{X}{n^2}f(r) + g(r)$

$$\Rightarrow RHS \leq \sum_{i=1}^{O((X/n^2)b^2+b)} \left(\frac{X_i}{(n/b)^2} f(r/b) + g(r/b) \right) \\ \leq \frac{X}{n^2} b^2 f(r/b) + O\left(\frac{X}{n^2} b^2 + b\right) g(r/b)$$

• set
$$f(r) = b^2 f(r/b) + O(b^2 g(r/b))$$

 $g(r) = O(b) g(r/b)$ $\Rightarrow O(r^{1+\varepsilon})$

Solving the Recurrence

$$S(n,r,X) = \sum_{i=1}^{O((X/n^2)b^2+b)} S(n/b,r/b,X_i)$$

• guess... $S(n,r,X) \leq \frac{X}{n^2}f(r) + g(r)$

$$\Rightarrow RHS \leq \sum_{i=1}^{O((X/n^2)b^2+b)} \left(\frac{X_i}{(n/b)^2} f(r/b) + g(r/b) \right) \\ \leq \frac{X}{n^2} b^2 f(r/b) + O\left(\frac{X}{n^2} b^2 + b\right) g(r/b)$$

• set $f(r) = b^2 f(r/b) + O(r^{1+\varepsilon})$ \Rightarrow $O(r^2)$

Analysis of New Method (Cont'd)

overall time

$$T(n,r,X) = \sum_{i=1}^{O((X/n^2)b^2+b)} T(n/b,r/b,X_i) + O(n)$$

 $\Rightarrow |O(nr)|$ similarly

Rest of Talk

I. History

II. "New" Alg'm

III. Coda

Remarks on "New" Method

- \bullet similar to Chazelle [hierarchical, but no prerequisites on " $\varepsilon\text{-approximations}$ " or
- similar flavor as approx alg'ms/PTASes [comparing with OPT, rounding OPT, using brute force for small subproblems, ...]
- HUGE consts!
 [see Har-Peled'98 for more practical, rand. implementations]
- does not generalize to higher D

" ε -nets"]

leads to new results on shallow cuttings...

Shallow Cuttings

Def'n: A k-shallow (1/r)-cutting is a subdivision covering all pts of level $\leq k$ s.t. each cell intersects $\leq n/r$ lines

Theorem: In 2D, $\exists \Omega(n/r)$ -shallow (1/r)-cutting of size O(r)

- existence proof by the sampling method (Matoušek'91) or the level method
- Ramos'99: $O(n \log r)$ randomized time
- C.&Tsakalidis'14: $O(n \log r)$ deterministic time [similar ideas, can compare with general optimal K^*]

Shallow Cuttings

Def'n: A k-shallow (1/r)-cutting is a subdivision covering all pts of level $\leq k$ s.t. each cell intersects $\leq n/r$ lines

```
Theorem: In 3D, \exists \Omega(n/r)-shallow (1/r)-cutting of size O(r)
```

- existence proof by the sampling method (Matoušek'91)
- Ramos'99: $O(n \log r)$ randomized time
- C.&Tsakalidis'14: $O(n \log r)$ deterministic time [more complicated...]

Open Problems

- 1. Hopcroft's problem in $O(n^{4/3})$ time w/o iterated log?
- 2. PTAS for min-size (1/r)-cutting (in O(nr) time)?
- 3. deterministic shallow cutting with $O(r^{\lfloor d/2 \rfloor})$ size for odd $d \geq 5$?
- 4. faster deterministic cutting if don't need conflict lists? [known: $O(n \log r)$ for $r \le n^{\alpha}$]
- 5. const factors [Matoušek'98: size $\approx 4r^2$]
- 6. best const for (1/2)-cutting? [Har-Peled'98] (3/4)-cutting of size 4, (2/3)-cutting of size 6 [??] $\Rightarrow (1/2)$ -cutting of size 24