
COFLOW CHAPTER 4
INTRA-COFLOW SCHEDULING

Author: Mosharaf Kabir Chowdhury
Presenter: Yuwei Jiao

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 1

Outline
• Background
• Coflow
•  Two Examples

•  Logistic Regression
•  Collaborative Filtering

• Broadcast Coflow
• Shuffle Coflow
• Experiment & Evaluation

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 2

Background
• Communication is crucial:

•  Facebook analytics jobs spend 25% of the running time in
communication

• Network is likely to become the primary bottleneck

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 3

Background
• High cost of clusters è Maximize the cluster utilization
• Previous solutions focus on:

•  scheduling and managing computation and storage resources
•  ignoring the network

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 4

Background
• Overlook application-level requirements
• Existing approaches improving communication

performance:
•  Increasing datacenter bandwidth
•  Decreasing flow completion time

•  Lack of job-level semantics
• Hurt application-level performance

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 5

Background
• Optimizing communication performance

•  System approach: let users figure it out
•  Networking approach: let systems figure it out

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 6

Coflow
•  Flow:

•  A sequence of packets between two endpoints
•  Independent unit of allocation, sharing, load balancing, prioritization

• Coflow:
•  A collection of flows that share a common performance goal
•  all-or-nothing property:

•  “ a communication stage cannot complete until all its flows have
completed”

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 7

Coflow
•  Two objectives:

•  Improve application-level performance by minimizing
CCTs(completion time of a coflow)

•  Guarantee predictable completions within coflow deadlines

• NP-hard
•  Scheduler decide when to start and at what rate

•  Focus on developing effective heuristics

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 8

Coflow
• Broadcast

•  One-to-many communication pattern
•  BitTorrent(Cornet)

• Shuffle
•  Many-to-many communication pattern
•  MADD(Minimum Allocation for Desired Duration)

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 9

Coflow
• Appropriate and attractive

•  Easy to implement into high-level frameworks
•  Faster deployment without modifying routers and switches

• Cornet:
•  4.5x faster than default Hadoop

• MADD:
•  29% speed up shuffles

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 10

Two Examples: Logistic Regression
•  Problem:

•  55 GB of data collected about 345,000 tweets
with links

•  1000 – 2000 features
•  Identify which feature correlate with links to

spam
•  Workload

•  100 iterations to converge
•  Broadcast(300MB) and shuffle(190MB per

reducer) for each iteration
•  Communication cost(30-machine)

•  42% of the iteration time
•  30% broadcast, 12% shuffle

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 11

Two Examples: Collaborative Filtering
• Problem:

•  Predict users’ ratings for movies
•  ALS(alternating least squares)

• Workload:
•  385 MB broadcast

• Communication cost(60-machine)
•  45% broadcast
•  Over 60 machines: stop scaling

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 12

Broadcast Coflow
• Solutions:

•  Shared file system
•  Centralized storage system quickly become a bottleneck as receivers

grows
•  d-ary distribution trees

•  Every vertex has no more than d children
•  Data is divided into blocks
•  Limitations:

•  Sending capacity at leaf machines not utilized
•  Slow machine will slow down its entire sub-tree

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 13

Broadcast Coflow
•  Nature of a cluster:

•  High speed and low latency connections
•  Absence of selfish peers
•  No malicious data corruption

•  BitTorrent protocol:
•  Communication protocol of peer-to-peer

sharing
•  Used to distribute data and files over the

Internet
•  Use BitTorrent client to send or receive files

•  Cornet is a BitTorrent-like protocol
optimized for datacenters

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 14

Broadcast Coflow

BitTorrent Coflow

Block Size Small(256 KB) Large(4 MB)
Peer Can leave anytime Full capacity over the full

duration

Data integrity SHA1 for each block Single check over whole
data

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 15

Broadcast Coflow
•  Two extensions:

•  Cornet Topology
•  Assume the network topology is known in advance
•  Prioritize machines on the same rack as the receiver

•  Cornet Clustering
•  Infer and exploit the underling network topology automatically

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 16

Shuffle Coflow
• Solutions:

•  Hadoop:
•  Receiver opens connections to multiple random senders
•  Rely on TCP fair sharing among these flows
•  Close to optimal when data sizes are balanced
•  1.5x worse than optimal with unbalanced data

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 17

Shuffle Coflow
• Bottlenecks:

•  Sender-side
•  Receiver-side
•  In-network

•  The minimum completion time:

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 18

Shuffle Coflow
•  Experiment:

•  30 senders and 1-30 receivers
•  1 GB of data for each receiver
•  Random connection

•  Two trends:
•  The power of 2:

•  single fetch connection leads to poor
performance, but improves quickly even
with 2 connections

•  With enough connections, transfer time
reaches the lower bound

•  Reason:
•  Reduce collisions
•  Reduce the effect of imbalances

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 19

Shuffle Coflow
• MADD

•  Minimize completion time
•  Finish before its bottleneck
•  Guarantee by ensure rates is at least

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 20

Experiment & Evaluation
•  In general

•  Cornet performs 4.5x better than default Hadoop and BitTorrent
•  Further 2x improvement with Cornet Topology Awareness
•  MADD can improve shuffle by 29%
•  Taken together

•  Reduce application communication times by up to 3.6x
•  Speed up jobs by up to 1.9x

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 21

Experiment & Evaluation
•  Broadcast
•  Cornet remains within

33% of the theoretical
lower bound

•  Structured mechanisms
works well only for
small scale

•  HDFS performs well
only for small amount
of data. Trade-off
between creating and
reading replicas

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 22

Experiment & Evaluation
•  Per-machine completion

times
•  All receivers finished

simultaneously in Cornet
•  BitTorrent is similar except

variation in individual
completion time

•  Chain and Tree is
horizontally segmented
because of stragglers

•  HDFS-10 starts later but
finishes faster than HDFS-3
because of more replicas

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 23

Experiment & Evaluation
• Chain and tree based

approaches are faster
than Cornet for small
number of machines and
small data set

• Block sizes and polling
intervals in Cornet
prevent from utilizing
bandwidth

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 24

Experiment & Evaluation

•  Impact of block size
•  Too large block size limits sharing between peers
•  Small size increases overheads

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 25

Experiment & Evaluation
• Hypothesis: there is a significant difference between block

transfer within a rack or between racks
• Cornet: any receiver randomly contact any other receiver
• CornetTopology: disallow communications across

partitions given the topology information
• CornetClustering: dynamically inferred partitioning

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 26

Experiment & Evaluation

•  Average completion time to transfer to 30 receivers over 10 runs
•  200 MB:

•  CornetTopology decreased by 50%
•  CornetClustering reduces 47%

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 27

Experiment & Evaluation
• Standard shuffle(each

reducer simultaneously
connects to at most 3
mappers) and MADD

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 28

Experiment & Evaluation
• Communication

overhead decreased
from 42% to 28%,
22% faster overall

•  2.3x speedup in
broadcast, 1.23x in
shuffle

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 29

16-11-23 CS 848: Models and Applications of Distributed Data Processing Systems 30

Thanks!

QA?

