TENSORFLOW:

LARGE-SCALE MACHINE LEARNING ON HETEROGENEOUS DISTRIBUTED SYSTEMS

by Google Research

presented by Weichen Wang 2016.11.28

OUTLINE

- > Introduction
- ➤ The Programming Model
- ➤ The Implementation
 - ➤ Single Device Execution
 - ➤ Multi-Device & Distributed Execution
- ➤ Extensions & Optimizations
- ➤ Auxiliary Tools
- ➤ Status & Experience

WHAT IS TENSORFLOW?

A multi-dimensional array

A directed graph

TENSORFLOW

A directed graph of operations that process multi-dimensional arrays.

TENSORFLOW

- ➤ An open source library for general machine learning
- ➤ Developed by Google
- ➤ First released Nov 2015
- ➤ Apache 2.0 licensed
- ➤ Particularly useful for Deep Learning
- ➤ Very popular!

THE MOTIVATION

- ➤ DistBelief, Google's first scalable distributed training and inference system, is not flexible enough
- ➤ Better understanding of problem space leads to some dramatic simplifications
- ➤ Define a standard way of expressing machine learning ideas and computations
- > easy to use, efficient in execution

THE PROGRAMMING MODEL

- ➤ A directed graph representing a dataflow computation of multiple operations.
- ➤ Each node represents the instantiation of an operation.
- ➤ Nodes can maintain persistent states and branching and looping controls like Naiad.
- ➤ Edges represent *tensor* data flow between nodes (from outputs to input).
- ➤ A tensor is a typed multidimensional array.
- ➤ Control dependencies: special edges with no data flows along.

EXPRESSING HIGH-LEVEL MACHINE LEARNING COMPUTATIONS

First, build the graph.

c = tf.add(a, b)

```
# Then run it.
                                                                  add
with tf.Session() as s:
 print(s.run(c, {a=1, b=2}))
3
       C++ front end
                                Python front end
                     Core TensorFlow Execution System
        CPU
                      GPU
                                   Android
                                                   iOS
```

```
import tensorflow as tf
                               # 100-d vector, init to zeroes
b = tf.Variable(tf.zeros([100]))
W = tf.Variable(tf.random\_uniform([784,100],-1,1)) # 784x100 matrix w/rnd vals
x = tf.placeholder(name="x")
                                               # Placeholder for input
relu = tf.nn.relu(tf.matmul(W, x) + b)
                                               # Relu(Wx+b)
C = [\ldots]
                                                # Cost computed as a function
                                                # of Relu
s = tf.Session()
for step in xrange(0, 10):
 input = ...construct 100-D input array ... # Create 100-d vector for input
 result = s.run(C, feed_dict={x: input}) # Fetch cost, feeding x=input
 print step, result
```

Figure 1: Example TensorFlow code fragment

Figure 2: Corresponding computation graph for Figure 1

IMPLEMENTATION: OPERATIONS & KERNELS

- ➤ An *operation* is an abstract computation on tensors
 - ➤ e.g., "matrix multiply", or "add".
 - represented by a node in the graph.
 - > can have attributes.
- ➤ A *kernel* is a particular implementation of an operation that can be run on a particular type of device (e.g., CPU or GPU).
- ➤ A TensorFlow binary defines the sets of operations and kernels available via a registration mechanism, and this set can be extended by linking in additional operation and/or kernel definitions/registrations.

BUILT-IN OPERATIONS

Operations

Category	Examples
Element-wise math ops	Add, Sub, Mul, Div, Exp, Log, Greater, Less
Matrix ops	Concat, Slice, Split, Constant, Rank, Shape
Matrix ops	MatMul, MatrixInverse, MatrixDeterminant
Stateful ops	Variable, Assign, AssignAdd
NN building blocks	SoftMax, Sigmoid, ReLU, Convolution2D
Checkpointing ops	Save, Restore
Queue & synch ops	Enqueue, Dequeue, MutexAcquire
Control flow ops	Merge, Switch, Enter, Leave

IMPLEMENTATION: SESSIONS, PLACEHOLDERS, VARIABLES

- > Sessions manage resources for graph execution.
 - ➤ It encapsulates the environment in which operation are executed and tensors are evaluated.
- > *Placeholders* must be fed with data on execution.
- ➤ A *variable* is a modifiable tensor that lives in TensorFlow's graph of interactive operations.
 - ➤ In-memory buffers containing tensors.
 - ➤ Holds and updates parameters to be trained.
 - ➤ Must be initialized before they have values!

IMPLEMENTATION: CLIENTS, WORKERS, DEVICES

- ➤ A *client* communicates with the *master* using *session* interface.
- ➤ The master manages one or more *worker* processes.
- ➤ Each worker is responsible for arbitrating one or more computational *devices* and for executing operations on those devices.
- ➤ A device name is composed of pieces that identify the its type, its index, and an identification of the task of the worker.
 - Example: /job:localhost/device:cpu:0

SINGLE MACHINE VS. DISTRIBUTED SYSTEM

Figure 3: Single machine and distributed system structure

Node Placement & Cross-Device Communication

- ➤ Each node (i.e. operation) is placed onto one of the devices.
- ➤ Node placement is done in topological order with a greedy heuristic based on cost estimation (execution + communication).
- ➤ Once node placement is done, the graph is partitioned into a set of subgraphs, one per device.
- ➤ Cross device edges are removed and replaced by Send & Recv edge.

DISTRIBUTED EXECUTION & FAULT TOLERANCE

- ➤ Similar to cross-device execution.
- ➤ Send/Recv communication uses **gRPC**, Google's remote procedure call framework.
- ➤ When a failure is detected, the entire graph execution is aborted and restarted from scratch.
- > Support of checkpoint and recovery.
- ➤ Variable are periodically saved and can be restored at restart.

EXTENSIONS: GRADIENT COMPUTATION

- ➤ TensorFlow has built-in support for automatic gradient computation.
- ➤ If a tensor C depends on some set of tensors $\{X_k\}$, then there is a built-in function that will return the tensors $\{dC/dX_k\}$.
- \triangleright Gradient tensors are computed by backtracking from C to each $X_{k,}$ and adding a corresponding "gradient function" node to the TensorFlow graph for each operation on the backward path.

Figure 5: Gradients computed for graph in Figure 2

EXTENSIONS: PARTIAL EXECUTION

- ➤ Allows execution of an arbitrary subgraph of the whole graph
- ➤ Allows injection of arbitrary data along any edge of the graph (**Feed**)
- ➤ Allows arbitrary data retrieval from any edge of the graph (**Fetch**)

Figure 6: Before and after graph transformation for partial execution

EXTENSIONS: DEVICE CONSTRAINTS & CONTROL FLOWS

- ➤ Device constraint examples:
 - ➤ "only place this node on a device of type GPU"
 - ➤ "this node can only be placed in /job:worker/task:17"
 - ➤ "Colocate this node with the node named variable 13"

- ➤ Control Flow: support of cyclic dataflow graph.
 - > Switch, Merge: express if-conditions.
 - > Enter, Leave, NextIteration: express iterations.
 - ➤ distributed coordination mechanism is needed.

EXTENSIONS: QUEUES & CONTAINERS

➤ TensorFlow has built-in support of normal FIFO queue and a shuffling queue

- ➤ A Container is the mechanism within TensorFlow for managing longer-lived mutable state.
 - ➤ Useful for sharing states between disjoint companions from different Sessions.

OPTIMIZATIONS

- ➤ Common subexpression elimination to remote redundant calculation
- Controlling data communication and memory usage
 - ➤ Topological ordering of nodes to identify critical path
 - ➤ Prioritize computation/communication on critical path
- ➤ Asynchronous kernel to support non-blocking computation
- ➤ Reuse pre-existing highly-optimized numerical libraries
- ➤ lossy compression of data, similar to the DistBelief system

RUN TF

High-level "out-of-box" API Inspired by scikit-learn

Components useful when building custom NN models

Python API gives you full control

C++ API is quite low-level

TF runs on different hardware

tf.[contrib.]learn

tf.layers, tf.losses, tf.metrics

Tensorflow Python

Tensorflow C++

CPU

GPU

TPU

Android

http://scikit-learn.org/

google.cloud.ml

TENSORBOARD

Figure 10: TensorBoard graph visualization of a convolutional neural network model

Figure 11: TensorBoard graphical display of model summary statistics time series data

WRITING SUMMARY FOR TENSORBOARD

EEG: PERFORMANCE TRACING

Figure 12: EEG visualization of multi-threaded CPU operations (x-axis is time in μ s).

PERFORMANCE

➤ Not much data for apples-to-apples comparison, but general observations are TensorFlow is slower than other common deeplearning framework such as Theano or Torch.

OxfordNet [Model-A] - Input 64x3x224x224

Library	Time (ms)	forward (ms)	backward (ms)
Nervana	590	180	410
CuDNN-R3 (Torch)	615	196	418
CuDNN-R2 (Torch)	1099	342	757
TensorFlow	1840	545	1295

GoogleNet V1 - Input 16x3x224x224

Library	Time (ms)	forward (ms)	backward (ms)
CuDNN-R2 (Torch)	564	174	390
TensorFlow	590	54	536

EXPERIENCES

- ➤ Build tools to gain insight into the exact number of parameters in a given model.
- > Start small and scale up.
- ➤ Always ensure that the objective (loss function) matches between machine learning systems when learning is turned off
- ➤ Make a single machine implementation match before debugging a distributed implementation.
- ➤ Guard against numerical errors.
- ➤ Analyze pieces of a network and understand the magnitude of numerical error.

THANK YOU!

Questions?