
TENSORFLOW:
LARGE-SCALE MACHINE LEARNING ON HETEROGENEOUS

DISTRIBUTED SYSTEMS
by Google Research

presented by Weichen Wang  
2016.11.28

OUTLINE

➤ Introduction

➤ The Programming Model

➤ The Implementation

➤ Single Device Execution

➤ Multi-Device & Distributed Execution

➤ Extensions & Optimizations

➤ Auxiliary Tools

➤ Status & Experience

WHAT IS TENSORFLOW?

TENSORFLOW

A multi-dimensional array A directed graph

A directed graph of operations that process multi-dimensional arrays.

TENSORFLOW

➤ An open source library for general machine learning

➤ Developed by Google

➤ First released Nov 2015

➤ Apache 2.0 licensed

➤ Particularly useful for Deep Learning

➤ Very popular!

THE MOTIVATION

➤ DistBelief, Google’s first scalable distributed training and
inference system, is not flexible enough

➤ Better understanding of problem space leads to some dramatic
simplifications

➤ Define a standard way of expressing machine learning ideas
and computations

➤ easy to use, efficient in execution

THE PROGRAMMING MODEL

➤ A directed graph representing a dataflow computation of
multiple operations.

➤ Each node represents the instantiation of an operation.

➤ Nodes can maintain persistent states and branching and
looping controls like Naiad.

➤ Edges represent tensor data flow between nodes (from outputs
to input).

➤ A tensor is a typed multidimensional array.

➤ Control dependencies: special edges with no data flows
along.

EXPRESSING HIGH-LEVEL MACHINE LEARNING COMPUTATIONS

First, build the graph.
c = tf.add(a, b)
Then run it.
with tf.Session() as s:

print(s.run(c, {a=1, b=2})) 

3

IMPLEMENTATION: OPERATIONS & KERNELS

➤ An operation is an abstract computation on tensors

➤ e.g., “matrix multiply”, or “add”.

➤ represented by a node in the graph.

➤ can have attributes.

➤ A kernel is a particular implementation of an operation that
can be run on a particular type of device (e.g., CPU or GPU).

➤ A TensorFlow binary defines the sets of operations and kernels
available via a registration mechanism, and this set can be
extended by linking in additional operation and/or kernel
definitions/registrations.

BUILT-IN OPERATIONS

IMPLEMENTATION: SESSIONS, PLACEHOLDERS, VARIABLES

➤ Sessions manage resources for graph execution.

➤ It encapsulates the environment in which operation are
executed and tensors are evaluated.

➤ Placeholders must be fed with data on execution.

➤ A variable is a modifiable tensor that lives in TensorFlow’s
graph of interactive operations.

➤ In-memory buffers containing tensors.

➤ Holds and updates parameters to be trained.

➤ Must be initialized before they have values!

IMPLEMENTATION: CLIENTS, WORKERS, DEVICES

➤ A client communicates with the master using session
interface.

➤ The master manages one or more worker processes.

➤ Each worker is responsible for arbitrating one or more
computational devices and for executing operations on those
devices.

➤ A device name is composed of pieces that identify the its type,
its index, and an identification of the task of the worker.

➤ Example: /job:localhost/device:cpu:0

SINGLE MACHINE VS. DISTRIBUTED SYSTEM

NODE PLACEMENT & CROSS-DEVICE COMMUNICATION

➤ Each node (i.e. operation) is placed onto one of the devices.

➤ Node placement is done in topological order with a greedy
heuristic based on cost estimation (execution + communication).

➤ Once node placement is done, the graph is partitioned into a set
of subgraphs, one per device.

➤ Cross device edges are removed and replaced by Send & Recv
edge.

DISTRIBUTED EXECUTION & FAULT TOLERANCE

➤ Similar to cross-device execution.

➤ Send/Recv communication uses gRPC, Google’s remote procedure
call framework.

➤ When a failure is detected, the entire graph execution is aborted and
restarted from scratch.

➤ Support of checkpoint and recovery.

➤ Variable are periodically saved and can be restored at restart.

EXTENSIONS: GRADIENT COMPUTATION

➤ TensorFlow has built-in support for automatic gradient computation.

➤ If a tensor C depends on some set of tensors {Xk}, then there is a built-in
function that will return the tensors {dC/dXk}.

➤ Gradient tensors are computed by backtracking from C to each Xk, and
adding a corresponding “gradient function” node to the TensorFlow graph for
each operation on the backward path.

EXTENSIONS: PARTIAL EXECUTION

➤ Allows execution of an arbitrary subgraph of the whole graph

➤ Allows injection of arbitrary data along any edge of the graph (Feed)

➤ Allows arbitrary data retrieval from any edge of the graph (Fetch)

EXTENSIONS: DEVICE CONSTRAINTS & CONTROL FLOWS

➤ Device constraint examples:

➤ “only place this node on a device of type GPU”

➤ “this node can only be placed in /job:worker/task:17”

➤ “Colocate this node with the node named variable13”

➤ Control Flow: support of cyclic dataflow graph.

➤ Switch, Merge: express if-conditions.

➤ Enter, Leave, NextIteration: express iterations.

➤ distributed coordination mechanism is needed.

EXTENSIONS: QUEUES & CONTAINERS

➤ TensorFlow has built-in support of normal FIFO queue and a
shuffling queue

➤ A Container is the mechanism within TensorFlow for
managing longer-lived mutable state.

➤ Useful for sharing states between disjoint companions from
different Sessions.

OPTIMIZATIONS

➤ Common subexpression elimination to remote redundant
calculation

➤ Controlling data communication and memory usage

➤ Topological ordering of nodes to identify critical path

➤ Prioritize computation/communication on critical path

➤ Asynchronous kernel to support non-blocking computation

➤ Reuse pre-existing highly-optimized numerical libraries

➤ lossy compression of data, similar to the DistBelief system

TENSORFLOW TOOLKIT HIERARCHY

TENSORBOARD

WRITING SUMMARY FOR TENSORBOARD

EEG: PERFORMANCE TRACING

PERFORMANCE

➤ Not much data for apples-to-apples comparison, but general
observations are TensorFlow is slower than other common deep-
learning framework such as Theano or Torch.

EXPERIENCES

➤ Build tools to gain insight into the exact number of parameters
in a given model.

➤ Start small and scale up.

➤ Always ensure that the objective (loss function) matches
between machine learning systems when learning is turned off

➤ Make a single machine implementation match before debugging
a distributed implementation.

➤ Guard against numerical errors.

➤ Analyze pieces of a network and understand the magnitude of
numerical error.

THANK YOU!
Questions?

