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WHAT IS TENSORFLOW?

TENSORFLOW

A multi-dimensional array A directed graph

A directed graph of operations that process multi-dimensional arrays.



TENSORFLOW

➤ An open source library for general machine learning 

➤ Developed by Google 

➤ First released Nov 2015 

➤ Apache 2.0 licensed 

➤ Particularly useful for Deep Learning 

➤ Very popular!



THE MOTIVATION

➤ DistBelief, Google’s first scalable distributed training and 
inference system, is not flexible enough 

➤ Better understanding of problem space leads to some dramatic 
simplifications 

➤ Define a standard way of expressing machine learning ideas 
and computations 

➤ easy to use, efficient in execution



THE PROGRAMMING MODEL

➤ A directed graph representing a dataflow computation of 
multiple operations. 

➤ Each node represents the instantiation of an operation.  

➤ Nodes can maintain persistent states and branching and 
looping controls like Naiad. 

➤ Edges represent tensor data flow between nodes (from outputs 
to input).  

➤ A tensor is a typed multidimensional array. 

➤ Control dependencies: special edges with no data flows 
along. 



EXPRESSING HIGH-LEVEL MACHINE LEARNING COMPUTATIONS

# First, build the graph. 
c = tf.add(a, b) 
# Then run it. 
with tf.Session() as s: 

print(s.run(c, {a=1, b=2})) 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IMPLEMENTATION: OPERATIONS & KERNELS

➤ An operation is an abstract computation on tensors 

➤ e.g., “matrix multiply”, or “add”.  

➤ represented by a node in the graph. 

➤ can have attributes. 

➤ A kernel is a particular implementation of an operation that 
can be run on a particular type of device (e.g., CPU or GPU).  

➤ A TensorFlow binary defines the sets of operations and kernels 
available via a registration mechanism, and this set can be 
extended by linking in additional operation and/or kernel 
definitions/registrations.



BUILT-IN OPERATIONS



IMPLEMENTATION: SESSIONS, PLACEHOLDERS, VARIABLES

➤ Sessions manage resources for graph execution. 

➤ It encapsulates the environment in which operation are 
executed and tensors are evaluated. 

➤ Placeholders must be fed with data on execution. 

➤ A variable is a modifiable tensor that lives in TensorFlow’s 
graph of interactive operations. 

➤ In-memory buffers containing tensors. 

➤ Holds and updates parameters to be trained. 

➤ Must be initialized before they have values!



IMPLEMENTATION: CLIENTS, WORKERS, DEVICES

➤ A client communicates with the master using session 
interface. 

➤ The master manages one or more worker processes. 

➤ Each worker is responsible for arbitrating one or more 
computational devices and for executing operations on those 
devices. 

➤ A device name is composed of pieces that identify the its type, 
its index, and an identification of the task of the worker. 

➤ Example: /job:localhost/device:cpu:0



SINGLE MACHINE VS. DISTRIBUTED SYSTEM



NODE PLACEMENT &  CROSS-DEVICE COMMUNICATION

➤ Each node (i.e. operation) is placed onto one of the devices. 

➤ Node placement is done in topological order with a greedy 
heuristic based on cost estimation (execution + communication). 

➤ Once node placement is done, the graph is partitioned into a set 
of subgraphs, one per device. 

➤ Cross device edges are removed and replaced by Send & Recv 
edge.



DISTRIBUTED EXECUTION & FAULT TOLERANCE

➤ Similar to cross-device execution. 

➤ Send/Recv communication uses gRPC, Google’s remote procedure 
call framework. 

➤ When a failure is detected, the entire graph execution is aborted and 
restarted from scratch. 

➤ Support of checkpoint and recovery. 

➤ Variable are periodically saved and can be restored at restart. 



EXTENSIONS: GRADIENT COMPUTATION

➤ TensorFlow has built-in support for automatic gradient computation. 

➤ If a tensor C depends on some set of tensors {Xk}, then there is a built-in 
function that will return the tensors {dC/dXk}. 

➤ Gradient tensors are computed by backtracking from C to each Xk, and 
adding a corresponding “gradient function” node to the TensorFlow graph for 
each operation on the backward path. 



EXTENSIONS: PARTIAL EXECUTION

➤ Allows execution of an arbitrary subgraph of the whole graph 

➤ Allows injection of arbitrary data along any edge of the graph (Feed) 

➤ Allows arbitrary data retrieval from any edge of the graph (Fetch) 



EXTENSIONS: DEVICE CONSTRAINTS & CONTROL FLOWS

➤ Device constraint examples: 

➤ “only place this node on a device of type GPU” 

➤ “this node can only be placed in /job:worker/task:17” 

➤  “Colocate this node with the node named variable13” 

➤ Control Flow: support of cyclic dataflow graph. 

➤ Switch, Merge: express if-conditions. 

➤ Enter, Leave, NextIteration: express iterations. 

➤ distributed coordination mechanism is needed.



EXTENSIONS: QUEUES & CONTAINERS

➤ TensorFlow has built-in support of normal FIFO queue and a 
shuffling queue 

➤ A Container is the mechanism within TensorFlow for 
managing longer-lived mutable state. 

➤ Useful for sharing states between disjoint companions from 
different Sessions.



OPTIMIZATIONS

➤ Common subexpression elimination to remote redundant 
calculation 

➤ Controlling data communication and memory usage 

➤ Topological ordering of nodes to identify critical path 

➤ Prioritize computation/communication on critical path 

➤ Asynchronous kernel to support non-blocking computation 

➤ Reuse pre-existing highly-optimized numerical libraries 

➤ lossy compression of data, similar to the DistBelief system



TENSORFLOW TOOLKIT HIERARCHY



TENSORBOARD



WRITING SUMMARY FOR TENSORBOARD



EEG: PERFORMANCE TRACING



PERFORMANCE

➤ Not much data for apples-to-apples comparison, but general 
observations are TensorFlow is slower than other common deep-
learning framework such as Theano or Torch.



EXPERIENCES

➤ Build tools to gain insight into the exact number of parameters 
in a given model.  

➤ Start small and scale up. 

➤ Always ensure that the objective (loss function) matches 
between machine learning systems when learning is turned off 

➤ Make a single machine implementation match before debugging 
a distributed implementation.  

➤ Guard against numerical errors. 

➤ Analyze pieces of a network and understand the magnitude of 
numerical error.



THANK YOU!
Questions? 


