LARGE-SCALE MACHINE LEARNING ON HETEROGENEOUS
DISTRIBUTED SYSTEMS

by Google Research

presented by Weichen Wang
2016.11.28

(Na &) UNIVERSITY OF

%y WATERLOO

OUTLINE

» Introduction
» The Programming Model
» The Implementation
» Single Device Execution
» Multi-Device & Distributed Execution
» Extensions & Optimizations
» Auxiliary Tools

» Status & Experience

WHAT IS TENSORFLOW?

A multi-dimensional array A directed graph

B &

A directed graph of operations that process multi-dimensional arrays.

TENSORFLOW

» An open source library for general machine learning
» Developed by Google

» Hirst released Nov 2015

» Apache 2.0 licensed

» Particularly useful for Deep Learning

» Very popular!

orflow / tensorflow ® Watch~ 3,508 % Star 38,018 Y Fork 17,400

THE MOTIVATION

» DistBelief, Google’s first scalable distributed training and
inference system, 1s not flexible enough

» Better understanding of problem space leads to some dramatic
simplifications

» Define a standard way of expressing machine learning ideas
and computations

» easy to use, efficient in execution

THE PROGRAMMING MODEL

» A directed graph representing a datatflow computation of
multiple operations.

» KEach node represents the instantiation of an operation.

» Nodes can maintain persistent states and branching and
looping controls like Naiad.

» KEdges represent tensor data flow between nodes (from outputs
to 1nput).

» A tensor 1s a typed multidimensional array.

» Control dependencies: special edges with no data flows
along.

—_——— —

EXPRESSING HIGH-LEVEL MACHINE LEARNING CUMPUTATIONS

First, build the graph.
c = tf.add(a, b) \ /
Then run it. -

. | L add
with tf.Session() as s:

print(s.run(c, {a=1,b=2})) lc

S

Python front end

(oro) (_om) (mwoa) (s) (-

import tensorflow as tf

tf.Variable (tf.zeros([100]))
tf.vVariable (tf.random_uniform([784,100],-1,1))
tf.placeholder (name="x")

relu = tf.nn.relu(tf.matmul (W, x) + b)

= [...]

s = tf.Session()

for step in xrange (0, 10):
input = ...construct 100-D input array ...
result = s.run(C, feed_dict={x: input})
print step, result

100-d vector, init to zeroes
784x100 matrix w/rnd vals
Placeholder for input

Relu (Wx+b)

Cost computed as a function
of Relu

Create 100-d vector for input
Fetch cost, feeding x=input

Figure 1: Example TensorFlow code fragment

s

Figure 2: Corresponding computation graph for Figure 1

IMPLEMENTATION: OPERATIONS & KERNELS

» An operation 1s an abstract computation on tensors
> e.g., “matrix multiply”, or “add”.
» represented by a node 1n the graph.
» can have attributes.

» A kernel 1s a particular implementation of an operation that
can be run on a particular type of device (e.g., CPU or GPU).

» A TensorFlow binary defines the sets of operations and kernels
available via a registration mechanism, and this set can be
extended by linking 1n additional operation and/or kernel
definitions/registrations.

Operations

Add, Sub, Mul, Div, Exp, Log, Greater, Less...
m Concat, Slice, Split, Constant, Rank, Shape...

MatMul, MatrixInverse, MatrixDeterminant...

Variable, Assign, AssignAdd...

SoftMax, Sigmoid, ReLU, Convolution2D...
Enqueue, Dequeue, MutexAcquire...
Merge, Switch, Enter, Leave...

IMPLEMENTATION: SESSIONS, PLACEHOLDERS, VARIABLES

> Sessions manage resources for graph execution.

> It encapsulates the environment in which operation are
executed and tensors are evaluated.

» Placeholders must be fed with data on execution.

» A variable 1s a modifiable tensor that lives in TensorFlow’s
oraph of interactive operations.

» In-memory buffers containing tensors.
» Holds and updates parameters to be trained.

» Must be 1nitialized before they have values!

IMPLEMENTATION: CLIENTS, WORKERS, DEVICES

» A client communicates with the master using session
interface.

» The master manages one or more worker processes.

» KEach worker 1s responsible for arbitrating one or more
computational devices and for executing operations on those

devices.

» A device name 1s composed of pieces that identify the its type,
1ts index, and an 1dentification of the task of the worker.

» Example: /job:localhost/device:cpu:0

' client . ——— master
L ' session |
run

execute
subgraph

SINGLE MACHINE VS. DISTRIBUTED SYSTEM

client J
—
Process session
run

(worker
process 1

(GPur] [CPWo]

master
process

(worker
process 2

(GPur] [CPWo]

Figure 3: Single machine and distributed system structure

execute
subgraph

(worker
process 3

[GPur] (CPWo]

NODE PLACEMENT & CR0SS-DEVICE COMMUNICATION

» Each node (1.e. operation) is placed onto one of the devices.

» Node placement 1s done in topological order with a greedy
heuristic based on cost estimation (execution + communication).

» Once node placement 1s done, the graph 1s partitioned into a set

of subgraphs, one per device.

» (Cross device edges are removed and replaced by Send & Recv
edge.

biases
/‘.

learning rate

DISTRIBUTED EXECUTION & FAULT TOLERANCE

» Similar to cross-device execution.

» Send/Recv communication uses gRPC, Google’s remote procedure

call framework.

» When a failure is detected, the entire graph execution i1s aborted and

restarted from scratch.
» Support of checkpoint and recovery.

» Variable are periodically saved and can be restored at restart.

EXTENSIONS: GRADIENT COMPUTATION

> TensorFlow has built-in support for automatic gradient computation.

> If a tensor C depends on some set of tensors {Xy}, then there is a built-in

function that will return the tensors {dC/dXy}.

» Gradient tensors are computed by backtracking from C to each Xy and
adding a corresponding “gradient function” node to the TensorFlow graph for

each operation on the backward path.

? T

T S 2
< > 2 " <

i S
(_RelLU) |dR<;LUI
Y
K
i
h

Figure 5: Gradients computed for graph in Figure 2

EXTENSIONS: PARTIAL EXECUTION

» Allows execution of an arbitrary subgraph of the whole graph
» Allows injection of arbitrary data along any edge of the graph (Feed)

» Allows arbitrary data retrieval from any edge of the graph (Fetch)

fetch

feed

Figure 6: Before and after graph transformation for par-
tial execution

EXTENSIONS: DEVICE CONSTRAINTS & CONTROL FLOWS

» Device constraint examples:
> “only place this node on a device of type GPU”
> “this node can only be placed 1n /job:worker/task:17”

» “Colocate this node with the node named variablel3”

» Control Flow: support of cyclic dataflow graph.
» Switch, Merge: express 1f-conditions.
» Enter, Leave, Nextlteration: express 1terations.

» distributed coordination mechanism is needed.

EXTENSIONS: QUEUES & CONTAINERS

» TensorFlow has built-in support of normal FIFO queue and a
shuffling queue

. Filename Example
Filenames Queue Queue

enqueue_many dequeue enqueue

» A Container 1s the mechanism within TensorFlow for
managing longer-lived mutable state.

» Usetul for sharing states between disjoint companions from
different Sessions.

OPTIMIZATIONS

» Common subexpression elimination to remote redundant
calculation

» (Controlling data communication and memory usage

» Topological ordering of nodes to identify critical path

» Prioritize computation/communication on critical path
» Asynchronous kernel to support non-blocking computation
» Reuse pre-existing highly-optimized numerical libraries

» lossy compression of data, similar to the DistBelief system

TENSORFLOW TOOLKIT HIERARCHY

High-level “out-of-box” API
Inspired by scikit-learn

Components useful when buildin
custom NN models

g

Python API gives you full control

C++ APl is quite low-level

TF runs on different hardware

VNV VNN

tf.[contrib.]learn

tf.layers, tf.losses, tf.metrics

Tensorflow Python

Tensorflow C++

CPU

GPU

TPU

Android

google.cloud.ml

0.000 2000k 40.00x G000 B0.00k

Figure 11: TensorBoard graphical display of model summary statistics time series data

Create a summary writer.
print(“Writing Summaries to %s" % MODEL_DIR)
train_summary_writer = tf.train.SummaryWriter(MODEL_DIR)

..then, as part of defining the model graph..
loss_summary = tf.scalar_summary("loss", loss)
train_summary_op = tf.merge_summary([loss_summary])

A training step: run the training op, write the summary info
_, loss_value, tsummary = sess.run(
[train_op, loss, train_summary_op],
feed_dict={images_placeholder: images_feed,
labels_placeholder: labels_feed})
train_summary_writer.add_summary(tsummary, step)

0000 2000k 4000k 6000k 8000k 1000k 1200k 1400k 1600k 1800k 2000k 2200k 24.00k

EEG: PERFORMANCE TRACING

‘replica:Otask-0/cpu:0

ktrace/cpu00

ktrace/cpu15 | |
ktrace/cpu16 |
ktrace/cpu17
ktrace/cpu18
ktrace/cpu19

ktrace/cpu20
ktrace/cpu21

| 'ml .

-

|
ktrace/cpu22 ‘ ,‘ .'

ktrace/cpu23 ‘ | ' - \'l[r "’:_Ts‘:\‘“ NRE—————
e ' ' ' N ‘\‘.‘\‘\\\‘~\“
ktrace/cpu39

ktrace/cpu40 g f | ~ -~

kirace/cpu41

kirace/cpu42 ' '
kirace/cpu43
kirace/cpu44 ' /) |
1 | y \\\
| |l / %

kirace/cpu4S

kirace/cpu4b
ktrace/cpud7

1,801,000

Figure 12: EEG visualization of multi-threaded CPU operations (x-axis is time in us).

PERFORMANCE

» Not much data for apples-to-apples comparison, but general
observations are TensorFlow 1s slower than other common deep-
learning framework such as Theano or Torch.

OxfordNet [Model-A] - Input 64x3x224x224

Library Time (ms) forward (ms) backward (ms)
Nervana 590 180 410
CuDNN-R3 (Torch) 615 196 418
CuDNN-R2 (Torch) 1099 342 757
TensorFlow 1840 545 1295

GoogleNet V1 - Input 16x3x224x224

Library Time (ms) forward (ms) backward (ms)
CuDNN-R2 (Torch) 564 174 390

TensorFlow 590 54 536

EXPERIENCES

» Build tools to gain insight into the exact number of parameters

in a given model.
» Start small and scale up.

» Always ensure that the objective (loss function) matches
between machine learning systems when learning is turned off

» Make a single machine implementation match before debugging
a distributed 1mplementation.

» Guard against numerical errors.

» Analyze pieces of a network and understand the magnitude of

numerical error.

THANK You!

00

Questions?

