
THE CQL CONTINUOUS QUERY LANGUAGE: 
SEMANTIC FOUNDATIONS AND QUERY EXECUTION

Arvind Arasu and Shivnath Babu and Jennifer Widom  
University of Stanford

presented by Weichen Wang  
2016.10.26

OUTLINE

➤ Data Streams Overview

➤ The Linear Road: A Benchmark

➤ The Formal Model

➤ Design Goals

➤ Streams, Relations and Operators

➤ Semantics for Continuous Query

➤ Continuous Query Language (CQL)

➤ Specification

➤ Implementation: STREAM

➤ Future Works

DATA STREAMS

➤ Continuous streams of data elements (may be unbounded)

➤ Telecommunications

➤ Sensor networks (road network, weather stations)

➤ Transaction logs

➤ Financial applications

➤ Router traffic

➤ Tweets 

➤ DSMS = Data Stream Management System

DATA STREAM MANAGEMENT SYSTEM (DSMS)

DBMS DSMS

DATA STREAM MANAGEMENT SYSTEM (DSMS)

DBMS

➤ Persistent relations  

➤ One-time query  

➤ Random access 

➤ Only current state matters

DSMS

➤ Transient streams  
(and persistent relations)

➤ Continuous queries  

➤ Sequential access 

➤ Historical data matters

THE LINEAR ROAD

THE LINEAR ROAD: A BENCHMARK

➤ a hypothetical road traffic management application for DSMS

➤ adaptive, real-time computation of vehicle tolls based on traffic
conditions.

➤ toll = basetoll × (numVehicles − 150)2, if there is congestion.

➤ The simplified Linear Road application in this paper has:

➤ A single input stream: the stream of positions and speeds
of vehicles

➤ A single continuous query computing the tolls

➤ A single output stream of the tolls

THE FORMAL MODEL: STREAMS

Definition: A stream S is a (possibly infinite) bag (multiset) of elements <s, τ>, where

s is a tuple belonging to the schema of S and τ ∈ T is the timestamp of the element.

➤ Base stream: a source data stream that arrives at the DSMS

➤ Derived stream: an intermediate stream produced by query operators

➤ Tuple of a stream: the data (non-timestamp) portion of a stream

➤ S up to τ: the bag of elements in stream S with timestamps ≤ τ

➤ i.e., {<s, τ’> ∈ S : τ’≤τ}.

➤ S at τ: the bag of elements in stream S with timestamps = τ

➤ i.e., {<s, τ’> ∈ S : τ’=τ}.

Example: In the Linear Road application, there is just one base stream containing vehicle
speed-position measurements, with schema:

- PosSpeedStr(vehicleId, speed, xPos, dir, hwy)

THE FORMAL MODEL: RELATIONS

Definition: A relation R is a mapping from T to a finite but unbounded
bag of tuples belonging to the schema of R.

➤ Relation : a time-varying bag of tuples

➤ Instantaneous relation: a relation in the traditional bag-of-tuples sense

➤ R is a relation ⇒ R(τ) is an instantaneous relation.

➤ Base relation: an input relation from source data

➤ Derived relation: a relation produced by query operators

Example: In the Linear Road application, the toll for a congested segment
depends on the current number of vehicles in the segment, which can be
represented in a derived relation:

- SegVolRel(segNo, dir, hwy, numVehicles)

THE FORMAL MODEL: OPERATORS

➤ Stream-to-relation operator: produce a relation from a stream

➤ Relation-to-relation operator: produce a relation from one or
more other relations

➤ Relation-to-stream operator: produce a stream from a relation 
 
 
 
 
 
 
 

➤ Stream-to-stream operators are absent

THE FORMAL MODEL: CONTINUOUS SEMANTICS

➤ Q : a query of type-consistent composition of operators.

➤ S1…Sn: input streams to the innermost operators of Q. (n ≥ 0)

➤ R1…Rm: input relations to the innermost operators of Q. (m ≥ 0)

Definition: The result of continuous query Q at time τ is the result of Q once
all inputs up to τ are “available”. There are two cases:

Case 1: The outermost operator in Q is relation-to-stream, producing a
stream S. The result of Q at time τ is S up to τ, produced by recursively
applying the operators comprising Q to streams S1…Sn up to τ and relations
R1…Rm up to τ.

Case 2: The outermost operator in Q is stream-to-relation or relation-to-
relation, producing a relation R. The result of Q at time τ is R(τ), produced
by recursively applying the operators comprising Q to streams S1…Sn up to τ
and relations R1…Rm up to τ.

Example: Q(S1, R1, R2) = O1(O2(S1), O3(R1, R2))

THE FORMAL MODEL: TIME ADVANCES

Time “advances” to τ from τ − 1 when all inputs up to τ − 1 have been
processed. Assumptions:

streams arrive in timestamp order

relations are updated in timestamp order

no timestamp “skew” across streams or relations

Example: In the Linear Road application, the sequence of operators
producing derived relation SegVolRel conceptually produces, at every
time instant τ , the instantaneous relation SegVolRel(τ) containing the
current number of vehicles in each segment.

SegVolRel(τ) cannot be produced until all elements on input stream
SegVolRel(segNo, dir, hwy, numVehicles) with timestamp ≤ τ have
been received.

CQL: DESIGN GOALS AND STRATEGIES

Design Goals

➤ To exploit well-understood relational semantics.

➤ To keep queries simple to write and easy to understand.

General Design Strategy

➤ Support a large number of relation-to-relation operators, with a
small set of stream-to-relation and relation-to-stream operators

➤ Reuse the formal foundations and huge body of implementation
techniques for relation-to-relation languages such as relational
algebra and SQL

CQL: STREAM-TO-RELATION OPERATORS

All stream-to-relation operators in CQL are based on a sliding
window.

➤ A sliding window of a stream is a window that at any point of time
contains a historical snapshot of a finite portion of a stream.

➤ Time-based sliding window:  
RT(τ) = {s|<s, τ’> ∈ S∧(max{τ−T, 0} ≤ τ’ ≤ τ)}  
Example:“PosSpeedStr [Range 10 Seconds]” is a time-based
sliding window of 10 seconds over input stream PosSpeedStr.

➤ Tuple-based sliding window:  
RN(τ)={s|<s, τ’> ∈ S∧(τ’ is the largest N timestamps≤τ)}

➤ Partitioned sliding window:  
RN,A(τ)={s|<s, τ’> ∈ S∧(τ’ is the largest N timestamps≤τ for all
<s’’,τ’’>∈ S s.t. A(s’’)=A(s))}. A is a partition function.

CQL: RELATION-TO-RELATION OPERATORS

All relation-to-relation operators in CQL are derived from traditional
relational queries expressed in SQL.

➤ Anywhere a traditional relation is referenced in a SQL query, a
relation can be referenced in CQL.

Example: for the Linear Road application, consider this CQL query:

Select Distinct vehicleId 
From PosSpeedStr [Range 10 Seconds]

➤ This is a query composed from a stream-to-relation sliding window
operator (PosSpeedStr), followed by a relation-to-relation operator
(Select Distinct vehicleId).

➤ The output relation of this query is the set of “active vehicles”—
those vehicles having transmitted a position-speed measurement
within the last 30 seconds.

CQL: RELATION-TO-STREAM OPERATORS

CQL has three relation-to-stream operators:

➤ Istream (for “insert stream”): 
 

➤ Dstream (for “delete stream”): 
 

➤ Rstream (for “relation stream”):

CQL: SYNTACTIC SHORTCUTS AND DEFAULTS

➤ Default Windows (Unbounded)

➤ Default Relation-to-Stream Operators (Istream)  

Example:

Select Istream(*)

From PosSpeedStr [Range Unbounded]

Where speed > 65

Select *

From PosSpeedStr

Where speed > 65

LINEAR ROAD IN CQL

The only input stream:

- PosSpeedStr(vehicleId, speed, xPos, dir, hwy)

The expected output stream:

- TollStr(vehicleId, toll)

LINEAR ROAD IN CQL

SegSpeedStr(vehicleId, speed, segNo, dir, hwy): 
Select vehicleId, speed, xPos/1760 as segNo, dir, why  
From PosSpeedStr

ActiveVehicleSegRel(vehicleId, segNo, dir, hwy):  
Select Distinct L.vehicleId, L.segNo, L.dir, L.hwy  
From SegSpeedStr [Range 30 Seconds] as A, 
SegSpeedStr [Partition by vehicleId Rows 1] as L  
Where A.vehicleId = L.vehicleId

VehicleSegEntryStr(vehicleId, segNo, dir, hwy):  
Select Istream(*) From ActiveVehicleSegRel
CongestedSegRel(segNo, dir, hwy):  
Select segNo, dir, hwy 
From SegSpeedStr [Range 5 Minutes] 
Group By segNo, dir, hwy  
Having Avg(speed) < 40

LINEAR ROAD IN CQL

SegVolRel(segNo,dir,hwy,numVehicles):  
Select segNo, dir, hwy, count(vehicleId) as numVehicles 
From ActiveVehicleSegRel  
Group By segNo, dir, why

TollStr(vehicleId, toll): 
Select Rstream(E.vehicleId,
basetoll*(V.numVehicles-150)*(V.numVehicles-150) as toll) 
From VehicleSegEntryStr [Now] as E, CongestedSegRel as C,
SegVolRel as V 
Where E.segNo = C.segNo and C.segNo = V.segNo and 
E.dir = C.dir and C.dir = V.dir and 
E.hwy = C.hwy and C.hwy = V.hwy

STREAM: A CQL IMPLEMENTATION

Goals for query execution plans

➤ Modularity and extensibility with general interface for operators
and synopsis structures

➤ Efficient execution model that captures the combination of streams
and relations

➤ Easy experimentation with different strategies for crucial system
components, including operator scheduling, overflowing state to
disk, sharing state and computation among multiple continuous
queries, etc.

STREAM: INTERNAL REPRESENTATION

➤ Both streams and relations are represented as sequences of
tagged tuples.

➤ Sequences are append-only.

➤ Sequences are always in nondecreasing order by timestamp.

➤ Operators are connected with queues.

➤ A queue connects its input operator to its output operator

➤ Synopses are used to store intermediate states of an operator

➤ All tuple data are stored in synopses and is not duplicated

➤ Some synopses simply point to data in other synopses.

STREAM: QUERY PLANS

Example:

Q1: Select B, max(A)

From S1 [Rows 50,000]

Group By B

Q2: Select Istream(*)

From S1 [Rows 40,000], 
S2 [Range 600 Seconds]

Where S1.A = S2.A

STREAM: QUERY OPERATORS

STREAM: QUERY PLANS

QUERY OPTIMIZATION AND FUTURE WORKS

Hard-coded heuristics:

➤ Push selections below joins.

➤ Use indexes for synopses on join and aggregate operators.

➤ Share synopses within query plans whenever possible.

techniques  
Future Works:

➤ one-time and dynamic cost-based optimization of CQL queries

➤ leverage techniques on tradition relational systems

➤ coarser-grained adaptive query optimization techniques

➤ Monitor streams and system behavior

➤ reconfigure query plans and reconfigure query plans over time

THANK YOU!
Questions?

Reference 
1. http://www.edshare.soton.ac.uk/14234/1/15_-_Data_Streams.pptx

2. http://ilpubs.stanford.edu:8090/758/1/2003-67.pdf

3. http://www.desertislesql.com/wordpress1/wp-content/uploads/2015/11/SlidingWindows.jpg

http://www.edshare.soton.ac.uk/14234/1/15_-_Data_Streams.pptx
http://ilpubs.stanford.edu:8090/758/1/2003-67.pdf

