
Distributed Convolutional Neural
Network with Apache Spark

Yuwei Jiao, Vivi Ma

16-12-03 CS 848 Final Project 1

Outline
•  Background

•  Fundamental CNN Workflow

•  Challenges

•  Implementation with Apache Spark

•  Implementation with TensorFlow

•  Future Work

2 16-12-03 CS 848 Final Project

Background

3 16-12-03 CS 848 Final Project

Fundamental CNN Workflow

4 16-12-03 CS 848 Final Project

Setting

5 16-12-03 CS 848 Final Project

Language: Python 3

Dataset: CIFAR10

Convolution: 32 filters(5x5x3), stride 1, zero-padding 2;

Pooling: 2x2 filter size, stride 2, max pooling;

Fully Connected: 16x16x32 => 10 classifications;

Challenges

6 16-12-03 CS 848 Final Project

•  Time Complexity

•  Space Complexity

Profiling of Naive Implementation

7 16-12-03 CS 848 Final Project

Profiling of Naive Implementation

8 16-12-03 CS 848 Final Project

Conv
forward 4.252s

backward 10.411s

ReLU
forward 0.504s

backward 0.458s

Pooling
forward 2.155s

backward 3.049s

FC
forward 0.159s

backward 0.380s 20
00

 Im
ag

es
 p

er

Ite
ra

tio
n

Profiling of Naive Implementation

9 16-12-03 CS 848 Final Project

•  Convolution:

Forward
im2col() 0.871s

dot() 1.150s

Backward

dot() 2.841s

col2im 0.289s

im2col 0.877s

dot() 1.849s

sum() 0.035s

Profiling of Naive Implementation

10 16-12-03 CS 848 Final Project

•  Pooling:

Forward
im2col() 1.647s

argmax() 0.257s

transformation 0.249s

Backward

im2col() 1.661s

argmax() 0.219s

transformation 0.480s

col2im() 0.512s

Can we solve with Spark?

11 16-12-03 CS 848 Final Project

•  Matrix Multiplication

•  im2col()

Can we solve with Spark?

12 16-12-03 CS 848 Final Project

Calculation:

• NumPy.dot(): 0.672s

• Naive: O(n^3) - REALLY SLOW!

• Outer Product : TOO MUCH MEM!

Matrix size:
• A = (1000 * 32 * 32) * (5 * 5 * 3)
• B = (5 * 5 * 3) * 32
• C = A * B
• A + B = 1.08 * 10^10 bits ~ 1GB

Communication:

• Speed: high-speed network
doesn’t work!!!!!

BALANCE BETWEEN COMMUNICATION COST AND
EXECUTION TIME

Can we solve with Spark?

13 16-12-03 CS 848 Final Project

•  Batch Processing

Spark Implementation

14

Time /s Foward Backward Update Total

NAIVE 2.315 4.512 2.503 6.833

HDFS 21.030 5.504 2.506 34.701

16-12-03 CS 848 Final Project

Problems Arise

Returning intermediate results from forward run and reuse
them in backward run: transferring huge amount of data
back and forth, and creates gigantic RDD for backward
run. - doesn’t work too well with Spark

15 16-12-03 CS 848 Final Project

State of the Art: TensorFlow

16 16-12-03 CS 848 Final Project

Observations

17

•  Parameter Tuning

•  Deployment of Trained CNN

16-12-03 CS 848 Final Project

Future Work
•  Make forward execution and backward propagation for

each batch executed on the same worker to reduce

communication cost. - awareness of locality

•  Polling: ensure all batch accepted by nodes, handle

failure

•  Compare Spark-CNN performance with GPU-CNN.

18 16-12-03 CS 848 Final Project

Reference
•  Image CNN:

http://i.imgur.com/qMs50Ma.png

•  Wiki Convolutional Neural Network:

https://en.wikipedia.org/wiki/Convolutional_neural_network

•  CS231n Convolutional Neural Networks:

http://cs231n.github.io/convolutional-networks/

19 16-12-03 CS 848 Final Project

20 16-12-03 CS 848 Final Project

Q & A
Thanks !

