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Background 
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Fundamental CNN Workflow 
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Setting 
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Language: Python 3 

Dataset: CIFAR10 

Convolution: 32 filters(5x5x3), stride 1, zero-padding 2; 

Pooling: 2x2 filter size, stride 2, max pooling; 

Fully Connected: 16x16x32 => 10 classifications; 



Challenges  

6 16-12-03 CS 848 Final Project  

•  Time Complexity 

•  Space Complexity 



Profiling of Naive Implementation  
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Profiling of Naive Implementation  
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Conv 
forward 4.252s 

backward 10.411s 

ReLU 
forward 0.504s 

backward 0.458s 

Pooling 
forward 2.155s 

backward 3.049s 

FC 
forward 0.159s 

backward 0.380s 20
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Profiling of Naive Implementation  

9 16-12-03 CS 848 Final Project  

•  Convolution: 

 

 

 

Forward 
im2col() 0.871s 

dot() 1.150s 

Backward 

dot() 2.841s 

col2im 0.289s 

im2col 0.877s 

dot() 1.849s 

sum() 0.035s 



Profiling of Naive Implementation  
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•  Pooling: 

 

 

 

Forward 
im2col() 1.647s 

argmax() 0.257s 

transformation 0.249s 

Backward 

im2col() 1.661s 

argmax() 0.219s 

transformation 0.480s 

col2im() 0.512s 



Can we solve with Spark? 
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•  Matrix Multiplication 

•  im2col() 

 

 

 

 

 

 



Can we solve with Spark? 
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Calculation: 

• NumPy.dot(): 0.672s 

• Naive: O(n^3) - REALLY SLOW! 

• Outer Product : TOO MUCH MEM! 

Matrix size: 
• A = (1000 * 32 * 32) * (5 * 5 * 3)  
• B = (5 * 5 * 3) * 32 
• C = A * B 
• A + B = 1.08 * 10^10 bits ~ 1GB 

Communication: 

• Speed: high-speed network 
doesn’t work!!!!! 

BALANCE BETWEEN COMMUNICATION COST AND 
EXECUTION TIME 



Can we solve with Spark? 
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•  Batch Processing 

 



Spark Implementation 
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Time /s Foward Backward Update Total 

NAIVE 2.315 4.512 2.503 6.833 

HDFS 21.030 5.504 2.506  34.701 
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Problems Arise 

Returning intermediate results from forward run and reuse 
them in backward run: transferring huge amount of data 
back and forth, and creates gigantic RDD for backward 
run. - doesn’t work too well with Spark 
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State of the Art: TensorFlow 
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Observations 
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•  Parameter Tuning 

 

•  Deployment of Trained CNN 
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Future Work 
•  Make forward execution and backward propagation for 

each batch executed on the same worker to reduce 

communication cost.  - awareness of locality  

•  Polling: ensure all batch accepted by nodes, handle 

failure 

•  Compare Spark-CNN performance with GPU-CNN. 
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Reference 
•  Image CNN: 

http://i.imgur.com/qMs50Ma.png 

•  Wiki Convolutional Neural Network: 

https://en.wikipedia.org/wiki/Convolutional_neural_network 

•  CS231n Convolutional Neural Networks: 

http://cs231n.github.io/convolutional-networks/ 
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Q & A 
Thanks ! 


