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Outline
● Disorderly programming 
● Overview for overlog
● Implementation in protocols (two-phase commit)
● Large-scale storage system (BOOM-FS)
● Revison for the implementation
● CALM Theroem
● Future work
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Disorderly programming
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● Hypothesis:
○ challenges of programming distributed systems arise from the mismatch between the 

sequential model of computation in which programs are specified as an ordered list of 
operations to perform

● What is disorderly programming
○ extends the declarative programming paradigm with a minimal set of ordering constructs



Why distributed programming is hard
The challenges of distributed programming systems
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concurrency asynchrony performance
variability partial failure

asynchrony: uncertainty about the ordering and the timing

partial failure: some of computing components may fail to run, 
while others keep running without an outcome



Motivation
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Problem 

● All programmers must learn to be distributed programmers. 
● Few tools exist to assist application programmers

❖ make distributed systems easier to program and reason about
❖ transform the difficult problem of distributed programming into 

problem of data-parallel querying
❖ design a new class of “disorderly” programming languages 

➢ concise expression of common distributed systems patterns
➢ capture uncertainty in their semantics



Disorderly programming language
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➢ encourages programmers to underspecify order( try to 
relax the dependence for order.)

➢ make it easy (and natural) to express safe and scalable 
computations

➢ extend the declarative programming paradigm with a 
minimal set of ordering constructs.



Background-Overlog
1.recursive query language extended from Datalog

2.combine data-centric design with declarative programming
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head(A, C) :- clause1(A, B), clause2(B, C);

recv_msg(@A, Payload) :-
send_msg(@B, Payload), peers(@B, A);

next_msg(Payload) :-
queued_msgs(SeqNum, 
Payload),
least_msg(SeqNum);

SELECT payload FROM 
queued_msgs
WHERE seqnum =
(SELECT min(seqnum) FROM 
queued_msgs);

least_msg(min<SeqNum>) :-
queued_msgs(SeqNum, _);



Features
add notation to specify the data location

provide some SQL like extensions such as primary keys and aggregation.

define a model  for processing and generate changes to tables.
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Implementation-Consensus protocols
Difficulty: high-level →  low-level 

● increase program size
● increase complexity

2PC(two-phase commit)

Paxos 

specifed in the literature in a high level:

messages, invariants, and state machine transitions.
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2PC implementation
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2PC implementation
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Two-phase commit
“commit” or “abort” 

NOT attempt to make progress in 
the face of node failures.
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multicast

High level constructs(idioms) :
● multicast(join)
● sequence



Timer
2 details for the impl:

● timeouts 
● persistence

coordinator will choose to abort if 
response of peers takes too long
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sequence



BOOM-FS(Berkeley Order of Magnitude)
An API-compliant reimplementation of the HDFS (Hadoop distributed file 
system) using overlog in internals

● high availability master nodes (via an implementation of MultiPaxos in Overlog)
● scale-out of master nodes to multiple machines (via simple data partitioning)
● unique reflection-based monitoring and debugging facilities (via metaprogramming in Overlog)  
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http://boom.cs.berkeley.edu/


Working of HDFS
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heartbeat
data operations

metadata ops



relations in file system 
● represent the file system metadata as a collection of relations.
● query over this schema
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● a recursive query language like Overlog was a natural fit 
for expressing file system policy. 

eg. derive fqpath from file 



protocols in BOOM-FS
➢ metadata protocol

 clients and NameNodes use it to exchange file metadata

➢ heartbeat protocol 

DataNodes use it to notify the NameNode

➢ data protocol 

clients and DataNodes use it to exchange chunks.
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metadata protocol
namenode rules

● specify the result tuple should be 
stored at client

● handle errors and return failure 
message
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Listing 2.7 return the set of DataNodes that hold a given chunk in 
BOOM-FS



Evaluation

● similar performance, scaling and failure-handling properties  to those of 
HDFS

● can tolerate DataNode failures but has a single point of failure and scalability 
bottleneck at the NameNode.

● consists of simple message handling and management of the hierarchical file 
system namespace.
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Table 2.3: Code size of two file system implementations



Validation for the performance

conclusion：BOOM-FS performance is slightly worse than HDFS, but remains 
very competitive
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Figure 2.2: CDFs representing the elapsed time between job startup and task completion for both
map and reduce tasks.



Revision
● Availability
● Scalability
● Monitoring
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Availability Rev
Goal: retrofitting BOOM-FS with high availability failover
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● Implemented using a globally-consistent distributed log represented using Paxos
○ Guarantees a consistently ordered sequence of events over state replicas
○ Supports replication of distributed filesystem metadata

● All state-altering events are represented in BOOM_FS as Paxos Decrees
○ Passed into Paxos as a single Overlog rule
○ Stores tentative actions in intermediate table (actions not yet complete)

● Actions are considered complete when they are visible in a table join with the local Paxos log
○ Local Paxos log contains completed actions
○ Maintains globally accepted ordering of actions



Availability Rev - Validation
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● Criteria
○ Paxos operation according to specs at fine grained level
○ Evaluate high availability by triggering master failures

● What is the impact of the consensus protocol on system performance?
● What is the effect of failures on completion time?
● how the implementation will perform when the matser fails?

Table 2.4: Job completion times with a single NameNode, 3 Paxos-enabled 
NameNodes, backup NameNode failure, and primary NameNode failure



Scalability Rev
NameNode is scalable across multiple NameNode-partitions.
● adding a “partition” column to the Overlog tables containing NameNode 

state
● use a simple strategy based on the hash of the fully qualified pathname of 

each file
● modified the client library
● No support atomic “move” or “rename” across partitions
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Monitoring and Debugging Rev
Singh et al. idea: Overlog queries can monitor complex 
protocols

● convert distributed overlog rules into global invariants
● added a relation called die to JOL

○ java event listener is triggered when tuples are inserted into die relation
○ body: overlog rule with invariant check
○ head: die relation

increase the size of a program   VS   improve readability  and reliability.
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Monitoring via Metaprogramming
● replicate the body of each rule in an Overlog program
● send its output to a log table
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quorum(@Master, Round) :-
priestCnt(@Master, Pcnt),
lastPromiseCnt(@Master, Round, Vcnt),
Vcnt > (Pcnt / 2);

eg. the Paxos rule that tests whether a
particular round of voting has reached quorum:

trace_r1(@Master, Round, RuleHead, Tstamp) :-
priestCnt(@Master, Pcnt),
lastPromiseCnt(@Master, Round, Vcnt),
Vcnt > (Pcnt / 2),
RuleHead = "quorum",
Tstamp = System.currentTimeMillis();



CALM Theorem
Consistency And Logical Monotonicity (CALM).

● logically monotonic distributed code is eventually consistent without 
any need for coordination protocols (distributed locks, two-phase 
commit, paxos, etc.)

● eventual consistency can be guaranteed in any program by 
protecting non-monotonic statements (“points of order”) with 
coordination protocols.
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Monotonic logic: 

As input set grows, output set does not shrink

“Mistake-free”

Order independent

Expressive but sometimes awkward

e.g., selection, projection and join

Non-Monotonic Logic

New inputs might invalidate previous outputs

Requires coordination 

Order sensitive

e.g., aggregation, negation
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Monotonic programs are therefore easy to distribute and can tolerate message 
reordering and delays



Minimize Coordination
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When must we coordinate?

❖ In cases where an analysis cannot guarantee monotonicity of a whole 
program

how should we do to coordinate?

❖ Dedalus,  Bloom



Use CALM principle 
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monotonicity: develop checks for distributed consistency (no coordination)

●  non-monotonic symbols are not contained(NOT,  IN )
●  semantics of predicates eg. MIN(x)<100

non-monotonicity: provide a conservative assessment (need coordination)

● flag all non-monotonic predicates in a program
● add coordination logic at its points of order.
● visualize the Points of Order in a dependency graph



Conclusion
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● Using tables as a uniform data representation simplified the 
problem of state management 

● natural to express these systems and protocols with high-level 
declarative queries, describing continuous transformations over 
that state.

● The uniformity of data-centric interfaces also enabled 
interposition  of components in a natural manner

● timestepped dataflow execution model is simpler than traditional 
notions of concurrent programming



Weaknesses of overlog
● ambiguous temporal semantics: 

○ not easy to express the info accumulation and state change using 
implication

● semantics does not model asyn communication.
○ unable to characterize uncertainty about when or whether the 

conclusions of such an implication will hold.
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Future work
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● disorderly debugging of large-scale data management 
systems

● unify the analysis techniques developed in this thesis
● explore hybrid approaches that use data lineage to 

communicate details about consistency anomalies back 
to programmers

reference: http://bloom-lang.net/calm/,    http://boom.cs.berkeley.edu/     

            Large Scale and Big Data: Processing and Management       edited by Sherif Sakr, Mohamed Gaber

http://bloom-lang.net/calm/
http://bloom-lang.net/calm/
http://boom.cs.berkeley.edu/


Thanks!
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