
Data-centric Programming for
Distributed Systems

Chp2&3.2
by Peter Alvaro, 2015

presenter: Irene (Ying) Yu
2016/11/16

1

Outline
● Disorderly programming
● Overview for overlog
● Implementation in protocols (two-phase commit)
● Large-scale storage system (BOOM-FS)
● Revison for the implementation
● CALM Theroem
● Future work

2

Disorderly programming

3

● Hypothesis:
○ challenges of programming distributed systems arise from the mismatch between the

sequential model of computation in which programs are specified as an ordered list of
operations to perform

● What is disorderly programming
○ extends the declarative programming paradigm with a minimal set of ordering constructs

Why distributed programming is hard
The challenges of distributed programming systems

4

concurrency asynchrony performance
variability partial failure

asynchrony: uncertainty about the ordering and the timing

partial failure: some of computing components may fail to run,
while others keep running without an outcome

Motivation

5

Problem

● All programmers must learn to be distributed programmers.
● Few tools exist to assist application programmers

❖ make distributed systems easier to program and reason about
❖ transform the difficult problem of distributed programming into

problem of data-parallel querying
❖ design a new class of “disorderly” programming languages

➢ concise expression of common distributed systems patterns
➢ capture uncertainty in their semantics

Disorderly programming language

6

➢ encourages programmers to underspecify order(try to
relax the dependence for order.)

➢ make it easy (and natural) to express safe and scalable
computations

➢ extend the declarative programming paradigm with a
minimal set of ordering constructs.

Background-Overlog
1.recursive query language extended from Datalog

2.combine data-centric design with declarative programming

7

head(A, C) :- clause1(A, B), clause2(B, C);

recv_msg(@A, Payload) :-
send_msg(@B, Payload), peers(@B, A);

next_msg(Payload) :-
queued_msgs(SeqNum,
Payload),
least_msg(SeqNum);

SELECT payload FROM
queued_msgs
WHERE seqnum =
(SELECT min(seqnum) FROM
queued_msgs);

least_msg(min<SeqNum>) :-
queued_msgs(SeqNum, _);

Features
add notation to specify the data location

provide some SQL like extensions such as primary keys and aggregation.

define a model for processing and generate changes to tables.

8

Implementation-Consensus protocols
Difficulty: high-level → low-level

● increase program size
● increase complexity

2PC(two-phase commit)

Paxos

specifed in the literature in a high level:

messages, invariants, and state machine transitions.

9

2PC implementation

10

coordinator

commit

p1

yes

p2

p3

yes

yes

2PC implementation

11

coordinator

abort

p1

yes

p2

p3

yes

no

Two-phase commit
“commit” or “abort”

NOT attempt to make progress in
the face of node failures.

12

multicast

High level constructs(idioms) :
● multicast(join)
● sequence

Timer
2 details for the impl:

● timeouts
● persistence

coordinator will choose to abort if
response of peers takes too long

13

sequence

BOOM-FS(Berkeley Order of Magnitude)
An API-compliant reimplementation of the HDFS (Hadoop distributed file
system) using overlog in internals

● high availability master nodes (via an implementation of MultiPaxos in Overlog)
● scale-out of master nodes to multiple machines (via simple data partitioning)
● unique reflection-based monitoring and debugging facilities (via metaprogramming in Overlog)

14

http://boom.cs.berkeley.edu/

Working of HDFS

15

heartbeat
data operations

metadata ops

relations in file system
● represent the file system metadata as a collection of relations.
● query over this schema

16

17

● a recursive query language like Overlog was a natural fit
for expressing file system policy.

eg. derive fqpath from file

protocols in BOOM-FS
➢ metadata protocol

 clients and NameNodes use it to exchange file metadata

➢ heartbeat protocol

DataNodes use it to notify the NameNode

➢ data protocol

clients and DataNodes use it to exchange chunks.

18

metadata protocol
namenode rules

● specify the result tuple should be
stored at client

● handle errors and return failure
message

19

Listing 2.7 return the set of DataNodes that hold a given chunk in
BOOM-FS

Evaluation

● similar performance, scaling and failure-handling properties to those of
HDFS

● can tolerate DataNode failures but has a single point of failure and scalability
bottleneck at the NameNode.

● consists of simple message handling and management of the hierarchical file
system namespace.

20

Table 2.3: Code size of two file system implementations

Validation for the performance

conclusion：BOOM-FS performance is slightly worse than HDFS, but remains
very competitive

21

Figure 2.2: CDFs representing the elapsed time between job startup and task completion for both
map and reduce tasks.

Revision
● Availability
● Scalability
● Monitoring

22

Availability Rev
Goal: retrofitting BOOM-FS with high availability failover

23

● Implemented using a globally-consistent distributed log represented using Paxos
○ Guarantees a consistently ordered sequence of events over state replicas
○ Supports replication of distributed filesystem metadata

● All state-altering events are represented in BOOM_FS as Paxos Decrees
○ Passed into Paxos as a single Overlog rule
○ Stores tentative actions in intermediate table (actions not yet complete)

● Actions are considered complete when they are visible in a table join with the local Paxos log
○ Local Paxos log contains completed actions
○ Maintains globally accepted ordering of actions

Availability Rev - Validation

24

● Criteria
○ Paxos operation according to specs at fine grained level
○ Evaluate high availability by triggering master failures

● What is the impact of the consensus protocol on system performance?
● What is the effect of failures on completion time?
● how the implementation will perform when the matser fails?

Table 2.4: Job completion times with a single NameNode, 3 Paxos-enabled
NameNodes, backup NameNode failure, and primary NameNode failure

Scalability Rev
NameNode is scalable across multiple NameNode-partitions.
● adding a “partition” column to the Overlog tables containing NameNode

state
● use a simple strategy based on the hash of the fully qualified pathname of

each file
● modified the client library
● No support atomic “move” or “rename” across partitions

25

Monitoring and Debugging Rev
Singh et al. idea: Overlog queries can monitor complex
protocols

● convert distributed overlog rules into global invariants
● added a relation called die to JOL

○ java event listener is triggered when tuples are inserted into die relation
○ body: overlog rule with invariant check
○ head: die relation

increase the size of a program VS improve readability and reliability.

26

Monitoring via Metaprogramming
● replicate the body of each rule in an Overlog program
● send its output to a log table

27

quorum(@Master, Round) :-
priestCnt(@Master, Pcnt),
lastPromiseCnt(@Master, Round, Vcnt),
Vcnt > (Pcnt / 2);

eg. the Paxos rule that tests whether a
particular round of voting has reached quorum:

trace_r1(@Master, Round, RuleHead, Tstamp) :-
priestCnt(@Master, Pcnt),
lastPromiseCnt(@Master, Round, Vcnt),
Vcnt > (Pcnt / 2),
RuleHead = "quorum",
Tstamp = System.currentTimeMillis();

CALM Theorem
Consistency And Logical Monotonicity (CALM).

● logically monotonic distributed code is eventually consistent without
any need for coordination protocols (distributed locks, two-phase
commit, paxos, etc.)

● eventual consistency can be guaranteed in any program by
protecting non-monotonic statements (“points of order”) with
coordination protocols.

28

Monotonic logic:

As input set grows, output set does not shrink

“Mistake-free”

Order independent

Expressive but sometimes awkward

e.g., selection, projection and join

Non-Monotonic Logic

New inputs might invalidate previous outputs

Requires coordination

Order sensitive

e.g., aggregation, negation

29

Monotonic programs are therefore easy to distribute and can tolerate message
reordering and delays

Minimize Coordination

30

When must we coordinate?

❖ In cases where an analysis cannot guarantee monotonicity of a whole
program

how should we do to coordinate?

❖ Dedalus, Bloom

Use CALM principle

31

monotonicity: develop checks for distributed consistency (no coordination)

● non-monotonic symbols are not contained(NOT, IN)
● semantics of predicates eg. MIN(x)<100

non-monotonicity: provide a conservative assessment (need coordination)

● flag all non-monotonic predicates in a program
● add coordination logic at its points of order.
● visualize the Points of Order in a dependency graph

Conclusion

32

● Using tables as a uniform data representation simplified the
problem of state management

● natural to express these systems and protocols with high-level
declarative queries, describing continuous transformations over
that state.

● The uniformity of data-centric interfaces also enabled
interposition of components in a natural manner

● timestepped dataflow execution model is simpler than traditional
notions of concurrent programming

Weaknesses of overlog
● ambiguous temporal semantics:

○ not easy to express the info accumulation and state change using
implication

● semantics does not model asyn communication.
○ unable to characterize uncertainty about when or whether the

conclusions of such an implication will hold.

33

Future work

34

● disorderly debugging of large-scale data management
systems

● unify the analysis techniques developed in this thesis
● explore hybrid approaches that use data lineage to

communicate details about consistency anomalies back
to programmers

reference: http://bloom-lang.net/calm/, http://boom.cs.berkeley.edu/

 Large Scale and Big Data: Processing and Management edited by Sherif Sakr, Mohamed Gaber

http://bloom-lang.net/calm/
http://bloom-lang.net/calm/
http://boom.cs.berkeley.edu/

Thanks!

35

