SkewTune

Mitigating Skew in MapReduce Applications

Presented by Hao Tan

What is SkewTune:

SkewTune is an extension to MapReduce system that transparently

mitigate skew

Quick review: MapReduce system

map task

bufferm

Reduce
phase

gg:%lt;?‘ y reduce task
sp||| to disk

on dis

parrmons :
3 mixture ? in-memory and on-disk data

._.‘. o ._.“--’
Other maps ", Other reduces

Overview

e |[ntroduction to skew
e Previous approaches
e Design goals

e SkewTune approach

o Skew detection

o Skew mitigation

e Conclusion
e Q&A

Skew: highly variable task runtimes

|deally, every mapper and reducer are expected to get roughly equal amount of
workload. However, expectation is always different from the reality:

Time (seconds)
100 200
Shuffle

Sort

B Exec

R
E
D
8]
C
E

Types of Skew: Map Phase

e EXxpensive Record

o PageRank: vertex with large outlink degree need disproportional amount of time to process

e Heterogeneous Map

o Various dataset are concatenated

o Map task performs different transformations based on dataset type

Types of Skew: Reduce Phase

e Partitioning skew

o Bad hash functions

e Expensive key group

o Some key groups might take longer time to process

Previous approaches

e Skew-resistant operators

e Dividing work into extremely fine-grained partitions and re-allocating these
partitions to machines as needed

e Sampling the output of an operator and plan how to partition it

e Backup jobs

e User defined cost function for partitioning data

Design Goals

e Developer Transparency:
o No user involvement for skew mitigation
e Mitigation Transparency:
o Outputs obtained with/without SkewTune mitigation should remain the same
e Maximal Applicability:
o Can be applied to all MapReduce applications
e No Synchronization Barriers:

o Does not block a operator before it finishes its current job

Architecture

Status, New task
Job Task
-
Tracker Tracker Status
dcbaubmit Stop response
Mapoutputios | 4] Task [HDFS
¥ -
; ST Job ST Task
N utput
Client 9 Tracker [Tracker Status TR
Stop request
Job submit 8 to%t?égsu it New map output loc.

New map output loc.

Figure 5: SkewTune Architecture. Each arrow is from
sender to receiver. Messages related to mitigation are
shown. Requests are underlined. Mitigator jobs are cre-
ated and submitted to the job tracker by the SkewTune
job tracker. Status is the progress report.

Skew Detection

Answers two questions:

e \When to detect and mitigate skew

e Which task should be mitigated

When to detect: Late Skew Detection

e SkewTune delays any skew mitigation decisions until a slot becomes
available.

e Cluster will have high utilization as long as each slot is running some tasks

e Reduce the opportunities of false positive.

e Avoid false negative, cluster utilization is maintained at the highest level

Which task should be mitigated

e Only one task will be labeled as the straggler
e Pick the one with the greatest estimated remaining time.
e Flag skew when:

Tremain

2

> w (repartitioning overhead)
Intuition: remaining workload must be handled by at least 2 mitigators , therefore
the performance gain is:

Trema.in

2

High-level Concepit:

SLOT 1 | Task T1

sLoT2 | T
SLOT3 | T

SEep i = —]

-
Time

(a.) Without SkewTune, operator runtime is that of the slow-
est task.

I ! 1
SLOT! | T2D s |Td|

] | (]
SLOT2 | 200l Tdo|
SLOT 3 | 720 Tdb)|
Se) P = m——

: | 1 ._

£ ty 1 Time
(b) With SkewTune, the system detects available resources
as task T1 completes at t1. SkewTune identifies task T2 as
the straggler and re-partitions its unprocessed input data.
SkewTune repeats the process until all tasks complete.

Pseudo code: skew detection

Algorithm 1 GetNextTask()

Input: R: set of running tasks
W: set of unscheduled waiting tasks
inProgress: global flag indicating mitigation in progress
Output: a task to schedule
1: task < null
2: if W#0 then
task < chooseNextTask(W)
else if —inProgress then
task < argmax,, ;. time_remain(task)
if task # null A time_remain(task) > 2-w then
stopAndMitigate(task) /* asynchronous */
task < null
2 inProgress + true
10: end if
11: end if
12: return task

e R iR ol

Skew Mitigation
1. Stopping the straggler
2. Partitioning unprocessed input data

3. Generating plan for mitigation

Step 1: Stop the straggler

e Coordinator sends the stop request to the straggler
e Straggler captures the position of its last processed record in its input

e |f the straggler is difficult to stop:

o Coordinator find another straggler

o If straggler is the last task in the job, repartition its entire input and reprocess

Step 2: Partitioning remaining input data

e For achieving mitigation transparency, unprocessed data will be
range-partitioned

e A range for a map task is a fragment of file

e A range for a reduce task is an interval of reduce keys

e Two approaches

o Local scan
o Parallel scan

Local Scan VS Parallel Scan

e Local scan is preferred when the size of unprocessed data is small
e Parallel scan is preferred when the size of unprocessed data is large
e To choose between parallel scan and local scan, simply check:

ma obytes | ne N
é > X{ZOEOn by | }_|_

Z 3 o

e For parallel scan, multiple tasks is created to scan the map outputs that straggler’s input is
made up of. Its runtime is determined by the slowest task.

Pseudo code:

Algorithm 2 Generatelntervals() e Forlocal scan, interval size is

Input: I: Sorted stream of intervals

b: Initial bytes-per-interval. Set to s for local scan. H

s: Target bytes-per-interval. flxed .

k: Minimum number of intervals. ,
Output: list of intervals =
1: result + [] /* resulting intervals */ ® |t 1S Set to be

2: eur + new_interval() /* current interval */

3: forall iec] do

4 if i.bytes > bV cur.bytes > b then i I-LJ
5 if b< s then - k|5|
6: result.appendTfNotEmpty{cur)

T: if |result| > 2 x k then

8: /* accumulated enough intervals. increase b. */

9 b+ min{2 x b, s}

10: /* recursively recompute buffered intervals */
11: result + GeneratelIntervals(result,b,b, k)
12: end if

13: else

14: result.appendIfNotEmpty(cur)

15: end if

16: cur + i /* open a new interval */

17: else

18: cur.updateStat(i) /* aggregate statistics */

19: cur.end « i.end

20: end if

21: end for

22: result.appendIfNotEmpty(cur)
23: return result

Wide interval can be a problem

e Intervals generated by different
tasks can overlap with each other.

Range Est. values

k3, ks3] 4
begin values end ([;:3:;:';]) g ° Qoordinator will break intervals
ks : 4 9 kr:3 = (k. kso) 0+10/5 into noq-overlappmg segments
@ 10 kigp 1 2> [ks0, kso] 2 +10/5 and estimate their sizes
kso : 14 kos:5 (kso,kg5) 14 +10/5
Intervals from Parallel Local ko5, kos) 5+ 10/5
Scans. (k9s,k100) 0+10/5
[k100, k100) 2 e Wide interval will introduce
Aligned ranges and uncertainties to the estimation.

estimated # of values.

Solution:

Algorithm 2 Generatelntervals()

Input: I: Sorted stream of intervals
b: Initial bytes-per-interval. Set to s for local scan.
s: Target bytes-per-interval.
k: Minimum number of intervals.

Output: list of intervals

1: result + [] /* resulting intervals */

2: cur + new_interval() /* current interval */

3: forall iel do

4: if i.bytes > bV cur.bytes > b then
5: if b<s then
6: result.appendTfNotEmptv(cur)
T if |result| > 2 x k then
8: /* accumulated enough intervals. increase b. */
9: b+ min{2 x b, s}
10: /* recursively recompute buffered intervals */
11: result + GenerateIntervals(result,b,b,k)
12: énd it
13: else
14: result.appendIfNotEmpty(cur)
15: end if
16: cur + i /* open a new interval */
17: else
18: cur.updateStat(i) /* aggregate statistics */
19: cur.end + i.end
20: endif
21: end for

22: result.appendIfNotEmpty(cur)
23: return result

Setting the upper bound of
interval size to be

a]
k- max{|S], [O])

s=1

Start scanning will a small
interval size (4KB) and
adaptively incrementing
the interval size when
there are more
unprocessed data

Step 3: Generating plan for mitigation

Algorithm 3 LinearGreedyPlan()

Input: I: a sorted array of intervals

T: a sorted array of t,cmain for all slots in the cluster

@: time remaining estimator

w: repartitioning overhead

p: task scheduling overhead
Output: list of intervals
! opt + 0; i+ 0 /* n: # of slots that yield optimal time */
2: W+ 6(R) /* remaining work+work running in n nodes */
: /* use increasingly many slots to do the remaining work */
4: while n < [T| Aopt > T[n] do
opt! +— &::'_[%]iﬁ /* optimal time using n + 1 slots */
if opt' —Tn] <2-w then

break /* assigned too little work to the last slot */

& end if
! opt+—opt'y W+ W+Tnl+p; n+—n+1
10: end while

113 P + [] /* intervals assigned to slots */

124 end + 0 /* index of interval to consider */

133 while end < |I| do

14 begin + end; remain + opt —T[|P|] —p

15 while remain >0 do

16 test +— 0(I[end]) /* estimated proc. time of interval *
17 if remain < 0.5-test then

18 break /* assign to the next slot */

19 end if

20 end +— end + 1; remain < remain — test
21 end while

22 if begin = end then

23 end +— end + 1 /* assign a single interval */
24 end if

25 P.append(new_interval(I[begin], I[end — 1]}))

26: end while
27: return P

Calculate the optimal runtime
when remaining workload is
perfectly splitted among
mitigators.

Keep incrementing number of
mitigators until too little work is
assigned (less than 2 * w)
Greedily assign intervals to
each slot to make runtime as
close to optimal runtime as
possible

Conclusion

e SkewTune presents an elegant solutions for mitigating two common types
of skew
o Uneven distribution of data to operators

o Some subset of data taking longer time to process

e [t minimizes user involvement for skew mitigation while providing
significant performance improvement.

e It's general-purposed and can be applied to all MapReduce applications

Discussion & Questions

Q: What are the limitations of SkewTune system?

Thank you!

