Exploration of declarative languages applicability to development of large-scale data processing systems

December 2016

Slavik Derevyanko, Anil Pacaci

Declarative languages for distributed systems

- A research group at UC Berkeley lead by Prof. Hellerstein:
 - claims that the problems with distributed software come from the usage of imperative
 sequential programming languages to describe systems that are inherently non-sequential
 - resulting systems tend to be much smaller: 20KLOC / 1KLOC for HDFS
- Related PhD theses we've studied in this class:
 - Peter Alvaro: Data-centric Programming for Distributed Systems, 2015
 - Peter Bailis: Coordination Avoidance in Distributed Databases, 2015. I-Confluence

Project goals

- Decided to verify claims on applicability of declarative logic programming for development of distributed software systems
- Decided to build one of the distributed data processing models presented in class
- Decided to implement Google's Pregel, as a simple synchronous model for parallel computation based on Valiant's Bulk Synchronous Parallel BSP model
- To test correctness of our Pregel model implemented PageRank on top of it

Bloom Bud declarative framework

- All data is represented as collections of facts (or tables containing records)
- New facts can be derived by declaring transformational rules

```
workers_list <= connect{ |worker|
  [worker.worker_addr, worker.id, false]
}</pre>
```

No shared state: nodes exchange data as network messages (Overlog)

```
channel <~ message ["IP:port recipient", "IP:port sender", payload_object]</pre>
```

Introduction of notion of time - data collections evolve over time (Dedalus)
 When is counter incremented?

```
counter(To,X+1) <= counter(To,X), request(To,_)
response(@From,X) <~ counter(@To,X), request(@To,From)</pre>
```

What does **response** contain?

Building Pregel using Bud Bloom declarative framework

Pregel distributed graph processing model

Master node superstep coordination

```
1 #start iterating
  supersteps <= master stdio { | network message |</pre>
      [0, false, false] if(network message=="start" and graph loaded.reveal and supersteps.empty?)
   #table :supersteps, [:id] => [:request sent, :completed]
   #if all workers completed the superstep, start a new one
   supersteps <+ workers_list.group([], bool_and(:superstep_completed)) {|columns|</pre>
      if columns.first == true and supersteps count.reveal < MAX SUPERSTEPS</pre>
10
        [supersteps count+1, false, false]
11
12
     end
13
14
   # for the latest superstep tuple in "supersteps", send a request to Workers to start the superstep
   multicast <= supersteps.argmax([], :id) {|superstep|</pre>
     if(!superstep.request sent and !superstep.completed)
17
       superstep.request sent=true
18
       ["start", {:superstep=>superstep.id}]
20
     end
21
```

Worker node superstep processing

```
state do
     table :vertices, [:id] => [:value, :total adjacent vertices, :vertices to, :messages inbox]
     table :queue in next, [:vertex id, :vertex from] => [:message value]
     table :queue out, [:adjacent vertex worker id, :vertex from, :vertex to] => [:message, :sent, :delivered]
   end
   # Generating vertex messages on superstep start
 8 queue out <+ (vertices * worker input).pairs.flat map do [vertex, worker input command]
     if(worker input command.message.command=="start")
       vertex messages = @pregel vertex processor.compute(vertex)
11
     end
12 end
13
14 # delivery of the vertex messages to adjacent vertices for the next Pregel superstep
15 vertex pipe <- (queue out * workers list).pairs(:adjacent vertex worker id => :id) do |vertex message, worker|
       if(vertex message.sent == false)
16
17
         vertex message.sent = true
         [worker.worker addr, ip port(), vertex message]
18
19
20 end
21
22 # remove all outgoing vertex messages from "queue out" in next timestep
23 # They are sent to recipients in the current timestep.
24 queue out <- (queue out * queue out.group([], bool and(:sent))).lefts
25
26 # send back a confirmation to Master that the superstep is complete
27 # This message is sent after all vertex messages were *sent*, not *delivered*
28 control pipe <~ queue out.group([], bool and(:sent)) {|vertex messages sent|</pre>
     [@master address, ip port, "success"] if vertex messages sent==true
30 }
```


PageRank implementation

```
class PageRankVertexProcessor
      def compute(vertex)
        messages = []
 4
        if(!vertex.messages inbox.nil? and !vertex.messages inbox.empty?)
 5
          new vertex value=0
 6
7
          vertex.messages inbox.each {|message|
            new vertex value+=message[1]
 8 9
          vertex.value = 0.15/@graph loader.vertices all.size + 0.85*new vertex value
10
        end
11
12
        vertex.vertices to.each { |adjacent vertex|
13
          adjacent vertex worker id = @graph loader.graph partition for vertex(adjacent vertex)
          messages << [adjacent vertex worker id, vertex.id, adjacent vertex,
14
15
            vertex.value.to f / vertex.total adjacent vertices]
16
17
        messages
18
      end
19 end
```

Comparing declarative and imperative programming

Advantages - less code

```
#send commands to all workers
   control pipe <~ (workers list * multicast).combos do |worker, message|
      [worker.worker addr, ip port, message]
    end
 5
    # update workers list on job-completion messages
   workers list <+- (workers list * control pipe)</pre>
      .pairs(workers list.worker addr => control pipe.from) do |worker, command|
 8
        if(command.message.command == "load" and command.message.params[:status]=="success")
10
          [worker.worker addr, worker.id, true, worker.superstep completed]
        elsif(command.message.command == "start" and command.message.params[:status]=="success")
11
12
          #worker completed the current superstep
          [worker.worker addr, worker.id, worker.graph loaded, true]
13
14
        end
15 end
```


Troubles, limitations

Demo

PageRank by matrix multiplication

		У	a	m	r1	r2	r3	r4	r5	r6	r7	r8	r9	r10	r11	r12	r13	r14	r15	
	у	0.5	0.5	0	0.333	0.333	0.417	0.375	0.417	0.385	0.411	0.391	0.408	0.394	0.405	0.396	0.403	0.397	0.402	
	a	0.5	0	1	0.333	0.500	0.333	0.458	0.354	0.438	0.370	0.424	0.380	0.416	0.387	0.410	0.392	0.407	0.394	
	m	0	0.5	0	0.333	0.167	0.250	0.167	0.229	0.177	0.219	0.185	0.212	0.190	0.208	0.194	0.205	0.196	0.203	
PageRank cal	Iculation	by matr	ix multip	olication:	PageRa	nk weigl	nts assig	nment u	sing Pre	gel verte	x-centri	c model:								
Y_next_iteration A_next_iteration M_next_iteration $y = \frac{1}{3}$ $a = \frac{1}{3}$ $m = \frac{1}{3}$ $m = \frac{1}{3}$ $m = \frac{1}{3}$ $m = \frac{1}{3}$	on_value	e: r2[1]= e: r2[2]= /3:1= -6.	[1,0]*r1 -[2,0]*r1 -[2,0]*r1 -[2,0]*r1 -[2,0]*r1	[0]+[1,1]*r1 [0]+[2,1]*r1 	1]+[1,2]*r1[2] [1]+[2,2]*r1[2]			a: sin	and rend resser	gl ge	m) i (3)	m (or a a service of the	0 =1	Jsou manks to	1	13/10/13/12	42		

Publishings

TCP network communication (instead of UDP)

