Exploration of declarative languages applicability to
development of large-scale data processing systems

December 2016
Slavik Derevyanko, Anil Pacaci

UNIVERSITY OF

WATERLOO

Declarative languages for distributed systems

e A research group at UC Berkeley lead by Prof. Hellerstein:

o claims that the problems with distributed software come from the usage of imperative
sequential programming languages to describe systems that are inherently non-sequential

o resulting systems tend to be much smaller: 20KLOC / IKLOC for HDFS
e Related PhD theses we’ve studied in this class:

o Peter Alvaro: Data-centric Programming for Distributed Systems, 2015

o Peter Bailis: Coordination Avoidance in Distributed Databases, 2015. I-Confluence

Overview 2/17 %) WATERLOO

Project goals

e Decided to verify claims on applicability of declarative logic programming for
development of distributed software systems

e Decided to build one of the distributed data processing models presented in class

e Decided to implement Google’s Pregel, as a simple synchronous model for
parallel computation based on Valiant’s Bulk Synchronous Parallel BSP model

e To test correctness of our Pregel model - implemented PageRank on top of it

Overview 3117 %I WATERLGO

Bloom Bud declarative framework

e All data is represented as collections of facts (or tables containing records)

e New facts can be derived by declaring transformational rules

workers list <= connect{ |worker]|
[worker.worker addr, worker.id, false]

}
e No shared state: nodes exchange data as network messages (Overlog)

channel <~ message [“IP:port recipient”, “IP:port sender”, payload object]

e Introduction of notion of time - data collections evolve over time (Dedalus)
When is counter incremented?

counter(To,X+1) <= counter(To,X), request(To,)

response(@From,XLsi:\Ezizfer(@To,X), request(@To,From)

What does response contain?

Overview 4117 %I WATERLGO

Building Pregel using Bud Bloom declarative
framework

IIIIIIIIIIII

Pregel distributed graph processing model

Incoming
Buffer

Worker1

Worker2

Worker3

Outgoing
Buffer

compute

compute

compute

Superstep 1

Synchronization Barrier

Pregel implementation

Incoming
Buffer

Outgoing
Buffer

compute

compute

compute

Superstep 2

Synchronization Barrier

6117 B WATERLGO

Master node superstep coordination

ook WNRE

21
22

#start iterating
supersteps <= master stdio { |network message|
[0, false, false] if(network message.message=="start" and graph loaded.reveal and supersteps.empty?)

}

#table :supersteps, [:id] => [:request sent, :completed]

#if all workers completed the superstep, start a new one
supersteps <+ workers list.group([], bool and(:superstep_completed)) {|columns|
if columns.first == true and supersteps count.reveal < MAX SUPERSTEPS
[supersteps count+l, false, false]
end

¥

for the latest superstep tuple in "supersteps", send a request to Workers to start the superstep
multicast <= supersteps.argmax([], :id) {|superstep]
if(!superstep.request sent and !superstep.completed)
superstep.request sent=true
["start", {:superstep=>superstep.id}]
end

¥

Pregel implementation 7117 % WATERLOO

Worker node superstep processing

wKN =

oo

29
30

state do

table :vertices, [:id] => [:value, :total_adjacent_vertices, :vertices_to, :messages_inbox]

table :queue_in_next, [:vertex_id, :vertex_from] => [:message_value]

table :queue_out, [:adjacent_vertex_worker_id, :vertex_from, :vertex_to] => [:message, :sent, :delivered]
end

Generating vertex messages on superstep start
queue out <+ (vertices * worker_input).pairs.flat_map do |vertex, worker input command |
if(worker input command.message.command=="start")
vertex messages = @pregel vertex processor.compute(vertex)
end
end

delivery of the vertex messages to adjacent vertices for the next Pregel superstep
vertex pipe <~ (queue out * workers list).pairs(:adjacent_vertex worker_id => :id) do |vertex message, worker|
if(vertex message.sent == false)
vertex_message.sent = true
[worker.worker_addr, ip port(), vertex message]
end
end

remove all outgoing vertex messages from "queue out" in next timestep
They are sent to recipients in the current timestep.
queue out <- (queue_out * queue out.group([], bool and(:sent))).lefts

send back a confirmation to Master that the superstep is complete

This message is sent after all vertex messages were *sent*, not *delivered*

control pipe <~ queue out.group([], bool and(:sent)) {|vertex messages sent]|
[@master address, ip port, "success"] if vertex messages sent==true

|

W UNIVERSITY OF
N

Pregel implementation 8/17 % WATERLOO

PageRank implementation

1 class PageRankVertexProcessor

2 def compute(vertex)

3 messages = []

4 if(!vertex.messages inbox.nil? and !vertex.messages inbox.empty?)
5 new vertex value=0

(=]

vertex.messages inbox.each {|message|
new vertex value+=message[1]

}

vertex.value = 0.15/@graph loader.vertices all.size + 0.85*new vertex value
10 end

0 ~J

[Us]

11

12 vertex.vertices to.each { |adjacent vertex|

13 adjacent vertex worker id = @graph loader.graph partition for vertex(adjacent vertex)
14 messages << [adjacent vertex worker id, vertex.id, adjacent vertex,

15 vertex.value.to f / vertex.total adjacent vertices]

16)

17 messages

18 end

19 end

W UNIVERSITY OF
N

Pregel implementation 9/17 % WATERLOO

Comparing declarative and imperative
programming

IIIIIIIIIIII

H
DWooodoumpbs WN M

=
U WN =

Advantages - less code

#send commands to all workers

control pipe <~ (workers list * multicast).combos do |worker, message|
[worker.worker addr, ip port, message]

end

update workers list on job-completion messages
workers list <+- (workers list * control pipe)

.pairs(workers list.worker addr
if (command.message.command ==
[worker.worker addr, worker.
elsif(command.message.command

=> control pipe.from) do |worker, command |

"load" and command.message.params|[:status]=="success")

id, true, worker.superstep completed]

== "start" and command.message.params|[:status]=="success")

#worker completed the current superstep

[worker.worker addr, worker.
end

end

Bud Experience

id, worker.graph loaded, true]

11/17 % WATERLOO

Troubles, limitations

bloom :superstep initialization do
table :queue in next, [:vertex id, :vertex from] => [:message value]

vertices <+- (vertices * control pipe).pairs do |vertex, payload|

if payload.message.command=="start" :
messages = [] !teratlng over all network messages,
queue_in next.each {|message]| Iperative code
if verftex.id == message.vertex id
messages << [message[l], message[2]]
end
1
[vertex.id, vertex.value, vertex.total adjacent vertices, vertex.vertices to, messages]
end
end

12/17 % WATERLOO

Bud Experience

Demo

% WATERLOO

rl

PageRank by matrix multiplication

2
=)
o
o
=

2 r3 4 5 6 7 8

0333 0.417 0375 0417 | 0.385 0.411 | 0.391
0500 | 0.333 | 0.458 | 0.354 | 0.438 | 0.370 | 0.424
0.167 0.250 0.167 | 0.228 0.177 0.219 0.185

r9 rio

| 0.408 | 0.394 | 0.405 | 0396 | 0,403 | 0.397 | 0.402 |
{0380 | 0416 | 0:367 | 0:A10 |0 397 | 0407 | 0334
0212 090 0.208 0194 0.205 0.196 0.203

rll | r12 | ri3 rid

ris

PageRank calculation by matrix multiplication: PageRank weights assignmert using Pregel vertex-centric model|

'¥_next_iteration_value: r2[0]=[0,0]*rL[0]+[0,1]*rL[1]+[0,2]*rL[2]
A_next_iteration_value: r2[L]=[L,0]*r1[0]+[1,1]*rL[1]+[1,2]*r1[2]

M_next_iteration_value: r2[2]=[2,0]*r1[0]+[2,1]*r1[1]+[2,.2]*r1[2]

14 /17

@

UNIVERSITY OF

WATERLOO

, Thank
w Q@M! -
® V)

o

[

IIIIIIIIIIII

network communication (instead of UDP)

bloom-lang / bud @ Watch~ 45

Code (@ Issues 97 Pull requests 1 Projects 0 Wiki Pulse Graphs

Support TCP channels + TCP semantics

neilconway opened this issue on Mar 12, 2011 - 5 comments

]
@ neilconway commented on Mar 12, 2011 Member

We currently provide unreliable channels, implemented via UDP. This is perfectly reasonable, but most
applications will want something a bit more sophisticated:

1. Flow control / congestion avoidance

2. Packet fragmentation and reassembly -- trying to send large tuples via UDP is unlikely to be successful
3. Reliable delivery

4. Ordered delivery -- at least in some cases (#7)

We could implement this stuff in Bloom on top of reliable channels, but another approach would be to provide
support for sending messages via TCP. This raises some interesting questions:

» TCP's reliable delivery and ordering properties are defined with respect to an individual session. How
should this behavior be mapped to language semantics?

¢ How should error handling work?

W Star = 483

Projects

None yet

Labels
research

wishlist

Milestone

No milestone

Assignees

No one

2 participanis

16 /17

¥ Fork 42

% WATERLOO

