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WHAT TS “TIMELY DATAFLOW !
WHAT 1§ 175 STGNTFICANCE?
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DATAFLOW!!

Stages




DATAFLOW!!

Stages makeup a directed graph
where data flows along

connectors
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DATAFLOW!!

Stages makeup a directed graph
so it allows iterations
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DATAFLOW!!

Physical stages is where systems exploit
opportunities for parallelism

4
4
AL
1l

O
Q) L) L) L) Lo



DATAFLOW!!

Also stages can run on different

‘/Imachines in the cluster
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DATAFLOW!!

With stages parallelized as such.
connectors presenting the flow,
have different types of mapping

N7

203
a

one-to-one | one-to-many

=

elelele)
QRO
oJeleYe)



DATAFLOW

e Batch Processing e.g. MapReduce, Spark
e Asynchronous Processing e.g. Storm, MillWheel
e Variations for Graph Processing e.g. Pregel, GraphLab



DATAFLOW: BATCH PROCESSING

stages require synchronization
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DATAFLOW: BATCH PROCESSING

stages require synchronization
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DATAFLOW: BATCH PROCESSING

stages require synchronization
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DATAFLOW: BATCH PROCESSING

stages require synchronization

irgb




DATAFLOW: BATCH PROCESSING

stages require synchronization
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DATAFLOW: BATCH PROCESSING

e Iterations make use of synchronization.
e The cost 1is latency.



DATAFLOW: ASYNCHRONOUS PROCESSING

stages do NOT require synchronization
all stages are active and output data
after processing input data.
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DATAFLOW: ASYNCHRONOUS PROCESSING

e Compared with batch:

o latency 1is lower.

o Aggregations are incremental and data changes over time.

e More efficient for distributed systems.

o Stages do not need coordination.

e Correspondence between input & output is lost.
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TIMELY DATAFLOW!!

stages are asynchronous.
They can synchronize if needed.
Make use of logical timestamps.
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TIMELY DATAFLOW

e Reconcile both models batch and async.
e Low-latency and high-throughput.



WHERE DOES NATAD FIT!!



NATAD!!

e It is the prototype built by Microsoft Research
underlying Timely dataflow Computational model.

e Iterative and incremental computations.
e The logical timestamps allow coordination.

e Provides efficiency, maintainability and simplicity.



LETS LOOK AT A COMPUTATIONAL
ERAMPLE



User Queries Low-latency Responses
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NATAD!!

e It is the prototype built by Microsoft Research
underlying Timely dataflow Computational model.




[HE TIMELY DATAFLOW
GRAPH STRUCTURE



GRAPH STRUCTURE

(input, integer epoch)
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GRAPH STRUCTURE

(input, integer epoch) (message, epoch)
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GRAPH STRUCTURE

/Floot Context \

(input, epoch)ﬁ £ Loop Context & - .
External @ o o e e @ ,  External
Producer LConsumer_s J

~ | (input,
trmestaltp) o
£




GRAPH STRUCTURE

(input, epoch)
External

e 1input comes 1n as (data, 0),
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(data, 1),

(data, 2)

o Within a loop, I adds a loop counter so it is (data, epoch, 0)

F in each iteration increments the loop counter (data, epoch, 1) etc.

E removes the loop counter and it is back to (data, epoch)



PROGRAMMING MODEL
USING THE TIMESTAMPS



PROGRAMMING MODEL
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PROGRAMMING MODEL

(input, epoch)
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PROGRAMMING MODEL

nRecv(edge,
message,
timestamp)
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PROGRAMMING MODEL
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PROGRAMMING MODEL
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PROGRAMMING MODEL SUMMARY

SendBy (edge, message, timestamp)
OnRecv(edge, message, timestamp)
NotifyAt(timestamp)
OnNotify(timestamp)



PROGRAMMING MODEL
IN PRACTICE



NOTICE

e Project was discontinued in 2014.
Silicon Valley lab closed.

e The paper uses C#.
The latest one 1s open sourced and is 1in Rust.



WORD COUNT EXAMPLE

Class V<Msg, Time>: Vertex<Time> { ... }
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WORD COUNT EXAMPLE

{ Dict<Time, Dict<Msg, int> > counts; ... }
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WORD COUNT EXAMPLE (2 DIFFERENT IMPLEMENTATIONS)

{ void OnRecv (Edge e, Msg m, Time t) { ... }
void OnNotify (Time t) { ... } }
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WRITING PROGRAMS IN GENERAL

e It is possible to write programs against the Timely
Dataflow abstraction.

e It is possible to use libraries (MapReduce, Pregel,
PowerGraph, LINQ etc.)

e In General:
o Define Input, computational & Output vertices.
o Create a timely dataflow graph using the appropriate interface.
o Supply labeled data to input stages.
o Stages follow a push-based model.



TIMELY GUARANTEES



HOW TS TIMELY DATAFLOW ACHTEVED
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HOW TS TIMELY DATAFLOW ACHTEVED

e Key point: timestamps at which future message can occur
depends on: 1. Unprocessed events & 2. Graph Structure.
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HOW TS TIMELY DATAFLOW ACHTEVED

e Pointstamp of an event (timestamp, location: E or V)
o SendBy -> Msg event of pointstamp (t, e)
o NotifyAt -> Notif event of pointstamp (t, v)
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HOW TS TIMELY DATAFLOW ACHTEVED

e Pointstamp(tl, 11) could-result-in Pointstamp(t2, 12)
If there is a path between 11 and 12 presented by f()
i.e. f(tl) <= t2



HOW TS TIMELY DATAFLOW ACHTEVED (CORRECTNESS GUARANTEES)

e Path Summary between A and C: “”
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HOW TS TIMELY DATAFLOW ACHTEVED (CORRECTNESS GUARANTEES)

e Path Summary between A and C: “add” or “add-increment(n)”
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SINGLE-THREADED IMPLEMENTATION

e Scheduler that needs to deliver events.
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SINGLE-THREADED IMPLEMENTATION

e Scheduler has active pointstamps <-> unprocessed events.
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SINGLE-THREADED IMPLEMENTATION

e Scheduler has active pointstamps <-> unprocessed events.

e Scheduler has two counts:
o Occurrence count of not resolved event.

o Precursor count of how many active pointstamps precede it in the
could-result-in order.



SINGLE-THREADED IMPLEMENTATION

e Pointstamp(t, 1) becomes active.
Precursor count to number of existing active pointstamps
that could result in 1it.
Increment precursor count of any pointstamp it
could-result-1in.
Becomes not active when occurrence 1is zero.
When not active, decrement the precursor count for any
pointstamp that it could-result-in.
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DISTRIBUTED IMPLEMENTATION
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DISTRIBUTED PROGRESS TRACKING

e Initial protocol: same as single multi-threaded.
o Broadcast occurrence count updates.

e Do not immediately update local occurrence count.

o Broadcast progress updates to all workers including myself.
o Broadcast from a worker to another delivered in a FIFO manner.

e Use of a projected timestamp.
e A technique to buffer and accumulate updates.



MTCRO-STRAGGLERS

e Have a big effect on overall performance.
o Packet Loss (Networking)
o Contention on concurrent data
o Garbage collection



PERFORMANCE EVALUATION



PERFORMANCE EVALUATION

e I invite you to read: “Scalability! BUT at what Cost”



http://www.frankmcsherry.org/assets/COST.pdf

PERFORMANCE EVALUATION

e Comparison with:
o SQL Server Parallel Data Warehouse (RDBMS)

o Scalable HyperLink Store ( distributed in-memory DB for storing large
portions of the web graph)

o DryadLINQ (data parallel computing using a declarative / high level

programming language)

e Algos i.e. PageRank, SCC etc.



CONCLUSTON: “OUR PROTOTYPE OUTPERFORMS GENERAL-PURPOSE
BATCH PROCESSORS AND OFTEN QUTPERFORMS STATE-OF - THE-ART
ASYNC SYSTEMS WHICH PROVIDE FEW SEMANTIC GUARANTEES.”



CONCLUSTON: “OUR PROTOTYPE OUTPERFORMS GENERAL-PURPOSE
BATCH PROCESSORS AND OFTEN QUTPERFORMS STATE-OF - THE-ART
ASYNC SYSTEMS WHICH PROVIDE FEW SEMANTIC GUARANTEES.”



STREAMING 3YSTEMS
AS OF TODAY



STREAMING SYSTEMS

e Systems that have unbounded data in mind.
e They are a superset of batch processing systems.



STREAMING SYSTEMS

Event Time

Reference: Fig-1: Example of time domain mapping. Streaming 101



https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101

STREAMING SYSTEMS

Design Questions:

results are calculated?
The types of transformations within the pipeline.
Where in event time are results calculated?
The use of event-time windowing within the pipeline.
in processing time are results materialized? The
use of watermarks and triggers.
How do refinements of results relate?
Discard or accumulate or accumulate and retract.
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RESOURCES

e Link to transcribed talk in pdf format.

e Timely Dataflow (Rust Implementation)

e Frank blog posts:
o Timely dataflow

o Differential dataflow

e The world beyond batch: Streaming 101

e The world beyond batch: Streaming 102


https://drive.google.com/file/d/0B2DA-FLyHV9eRkpJbWlDVS0xSkU/view?usp=sharing
https://github.com/frankmcsherry/timely-dataflow
https://github.com/frankmcsherry/blog/tree/master/posts
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102

