NATAD (TIMELY DATAFLOW) &
STREAMING SYSTEMS

(S 3&d: MODELS AND APPLICATIONS OF DISTRIBUTED DATA SYSTEMS
Mon, NOV /Th 2016

WHAT TS “TIMELY DATAFLOW !
WHAT 1§ 175 STGNTFICANCE?

DATAFLOW 1!

DATAFLOW!!

Stages

DATAFLOW!!

Stages makeup a directed graph
where data flows along

connectors
Ty ™y E— p—\
Y M N AN Y
/] V] V] ‘>
;/ — — \—) e S

DATAFLOW!!

Stages makeup a directed graph
so it allows iterations

—)

4
L

|
T
T
|

DATAFLOW!!

Physical stages is where systems exploit
opportunities for parallelism

4
4
AL
1l

O
Q) L) L) L) Lo

DATAFLOW!!

Also stages can run on different

‘/Imachines in the cluster
|)

™ —
machinel machine2 \ / machine3 \
—\ RS EE— S

O

O C LN P "

O —/

O) (L _LiJ

DATAFLOW!!

With stages parallelized as such.
connectors presenting the flow,
have different types of mapping

N7

203
a

one-to-one | one-to-many

=

elelele)
QRO
oJeleYe)

DATAFLOW

e Batch Processing e.g. MapReduce, Spark
e Asynchronous Processing e.g. Storm, MillWheel
e Variations for Graph Processing e.g. Pregel, GraphLab

DATAFLOW: BATCH PROCESSING

stages require synchronization

g 1

T . . . Y

==

4
1|

DATAFLOW: BATCH PROCESSING

stages require synchronization

e 1

/[stateL

input
'% (M) =) @ =) @) =) @ =) 6

LS A L . L e

DATAFLOW: BATCH PROCESSING

stages require synchronization

irl'g{>

4

4

v
Y > —,
@) =) @ =))
— e oo

DATAFLOW: BATCH PROCESSING

stages require synchronization

irgb

DATAFLOW: BATCH PROCESSING

stages require synchronization

amm— —)
B (1) =) @ #)ﬁ =) @ = 6

DATAFLOW: BATCH PROCESSING

e Iterations make use of synchronization.
e The cost 1is latency.

DATAFLOW: ASYNCHRONOUS PROCESSING

stages do NOT require synchronization
all stages are active and output data
after processing input data.

— P =, ™ - ()

DATAFLOW: ASYNCHRONOUS PROCESSING

e Compared with batch:

o latency 1is lower.

o Aggregations are incremental and data changes over time.

e More efficient for distributed systems.

o Stages do not need coordination.

e Correspondence between input & output is lost.

50, WHAT 15 (NATAD)
TIMELY DATAFLOW !

TIMELY DATAFLOW!!

stages are asynchronous.
They can synchronize if needed.
Make use of logical timestamps.

e N o

)@) @
- |

TIMELY DATAFLOW

e Reconcile both models batch and async.
e Low-latency and high-throughput.

WHERE DOES NATAD FIT!!

NATAD!!

e It is the prototype built by Microsoft Research
underlying Timely dataflow Computational model.

e Iterative and incremental computations.
e The logical timestamps allow coordination.

e Provides efficiency, maintainability and simplicity.

LETS LOOK AT A COMPUTATIONAL
ERAMPLE

User Queries Low-latency Responses
Z o E T
(%) oin}>{oin

i)

aiad

T, L o E%L i
_ ~

NATAD!!

e It is the prototype built by Microsoft Research
underlying Timely dataflow Computational model.

[HE TIMELY DATAFLOW
GRAPH STRUCTURE

GRAPH STRUCTURE

(input, integer epoch)

N

p
External

6Joro)

GRAPH STRUCTURE

(input, integer epoch) (message, epoch)

Ou 'L

External External

o

\
(0u)
@

/

GRAPH STRUCTURE

/Floot Context \

(input, epoch)ﬁ £ Loop Context & - .
External @ o o e e @ , External
Producer LConsumer_s J

~ | (input,
trmestaltp) o
£

GRAPH STRUCTURE

(input, epoch)
External

e 1input comes 1n as (data, 0),

~

/Hoot Context

(- Loop Context

@_

(input,

ttmestaltp)

External

E

(data, 1),

(data, 2)

o Within a loop, I adds a loop counter so it is (data, epoch, 0)

F in each iteration increments the loop counter (data, epoch, 1) etc.

E removes the loop counter and it is back to (data, epoch)

PROGRAMMING MODEL
USING THE TIMESTAMPS

PROGRAMMING MODEL

/-~ N

(input, epoch)

2 T ™
[External External
! Producer __ ~ Consumers J
(input,
timestamp)

Root Context /

PROGRAMMING MODEL

(input, epoch)

e

|

External
Producer

Ty

P

4

endBy(edge,

message,
timestamp)

(input,
timestamp)

lf Ty
N External

L Consumers)

Root Context /

PROGRAMMING MODEL

nRecv(edge,
message,
timestamp)

input, epoch
:{, put, €p) Og §

- External , External
Producer ! Consumers)
(input,
timestamp)

Root Context /

PROGRAMMING MODEL
e (timestamp) ™\
(input, epoch) lok/)

-

f O -
External J‘ , External

~ Producer - Consumers

L b if
(input,

timestamp)

Root Context /

PROGRAMMING MODEL

(input, epoch) O

-

f O e
External J‘ , External

~ Producer - Consumers

L R L
(input,

timestamp)

Root Context /

PROGRAMMING MODEL SUMMARY

SendBy (edge, message, timestamp)
OnRecv(edge, message, timestamp)
NotifyAt(timestamp)
OnNotify(timestamp)

PROGRAMMING MODEL
IN PRACTICE

NOTICE

e Project was discontinued in 2014.
Silicon Valley lab closed.

e The paper uses C#.
The latest one 1s open sourced and is 1in Rust.

WORD COUNT EXAMPLE

Class V<Msg, Time>: Vertex<Time> { ... }

/ N

(input, epoch)

~ Fa 7N
External @ @ , External
Producer ~ Consumers

(word,
timestamp)

Root Context /

WORD COUNT EXAMPLE

{ Dict<Time, Dict<Msg, int> > counts; ... }

(input, epoch)

|

External
Frogil_.;qqr

-,

-

-

L)

(word,

timestamp)

\

O

External

5
~ Consumers

]

Root Context /

WORD COUNT EXAMPLE (2 DIFFERENT IMPLEMENTATIONS)

{ void OnRecv (Edge e, Msg m, Time t) { ... }
void OnNotify (Time t) { ... } }
~ N

(input, epoch)

™ s ™\
{ External @ @ , External
s Producer kConsumers . J
(word,
timestamp)

Root Context /

WRITING PROGRAMS IN GENERAL

e It is possible to write programs against the Timely
Dataflow abstraction.

e It is possible to use libraries (MapReduce, Pregel,
PowerGraph, LINQ etc.)

e In General:
o Define Input, computational & Output vertices.
o Create a timely dataflow graph using the appropriate interface.
o Supply labeled data to input stages.
o Stages follow a push-based model.

TIMELY GUARANTEES

HOW TS TIMELY DATAFLOW ACHTEVED

\

(input, epoch) o e
pe —~, I iy
s O oo g

~ Producer — _ Consumers

_ Root Context /

HOW TS TIMELY DATAFLOW ACHTEVED

e Key point: timestamps at which future message can occur
depends on: 1. Unprocessed events & 2. Graph Structure.

(input, epoch)

N
External
Producer

=,

" External J

5
_ Consumers

\ Root Context /

HOW TS TIMELY DATAFLOW ACHTEVED

e Pointstamp of an event (timestamp, location: E or V)
o SendBy -> Msg event of pointstamp (t, e)
o NotifyAt -> Notif event of pointstamp (t, v)

(input, epoch)

External
Frogiqoqr

=,

-

External

_}_I
~ Consumers

Root Context /

HOW TS TIMELY DATAFLOW ACHTEVED

e Pointstamp(tl, 11) could-result-in Pointstamp(t2, 12)
If there is a path between 11 and 12 presented by f()
i.e. f(tl) <= t2

HOW TS TIMELY DATAFLOW ACHTEVED (CORRECTNESS GUARANTEES)

e Path Summary between A and C: “”

/~ N\

(input, epoch) A e 9’

P N p .

T OOV OR OO O TRy ™~
Producer - Consumers

¢ gt ‘ o

_ Root Context /

HOW TS TIMELY DATAFLOW ACHTEVED (CORRECTNESS GUARANTEES)

e Path Summary between A and C: “add” or “add-increment(n)”

(input, epoch)

-\-\' .
[External
s Producer

_ Root Context /

, External
- Consumers J

SINGLE-THREADED IMPLEMENTATION

e Scheduler that needs to deliver events.

(input, epoch) o e

" ™ s ™

T Do
Producer - Consumers

N : - ~ e o

_ Root Context /

SINGLE-THREADED IMPLEMENTATION

e Scheduler has active pointstamps <-> unprocessed events.

(input, epoch)

" ™ s ™
External , External
Producer Lconsumer_s J

_ Root Context /

SINGLE-THREADED IMPLEMENTATION

e Scheduler has active pointstamps <-> unprocessed events.

e Scheduler has two counts:
o Occurrence count of not resolved event.

o Precursor count of how many active pointstamps precede it in the
could-result-in order.

SINGLE-THREADED IMPLEMENTATION

e Pointstamp(t, 1) becomes active.
Precursor count to number of existing active pointstamps
that could result in 1it.
Increment precursor count of any pointstamp it
could-result-1in.
Becomes not active when occurrence 1is zero.
When not active, decrement the precursor count for any
pointstamp that it could-result-in.

{E DISTRIBUTED
(NVIRONMENT

DISTRIBUTED IMPLEMENTATION
Logical graph o—m-)o—)o

i
Jole

sssssss

DISTRIBUTED PROGRESS TRACKING

e Initial protocol: same as single multi-threaded.
o Broadcast occurrence count updates.

e Do not immediately update local occurrence count.

o Broadcast progress updates to all workers including myself.
o Broadcast from a worker to another delivered in a FIFO manner.

e Use of a projected timestamp.
e A technique to buffer and accumulate updates.

MTCRO-STRAGGLERS

e Have a big effect on overall performance.
o Packet Loss (Networking)
o Contention on concurrent data
o Garbage collection

PERFORMANCE EVALUATION

PERFORMANCE EVALUATION

e I invite you to read: “Scalability! BUT at what Cost”

http://www.frankmcsherry.org/assets/COST.pdf

PERFORMANCE EVALUATION

e Comparison with:
o SQL Server Parallel Data Warehouse (RDBMS)

o Scalable HyperLink Store (distributed in-memory DB for storing large
portions of the web graph)

o DryadLINQ (data parallel computing using a declarative / high level

programming language)

e Algos i.e. PageRank, SCC etc.

CONCLUSTON: “OUR PROTOTYPE OUTPERFORMS GENERAL-PURPOSE
BATCH PROCESSORS AND OFTEN QUTPERFORMS STATE-OF - THE-ART
ASYNC SYSTEMS WHICH PROVIDE FEW SEMANTIC GUARANTEES.”

CONCLUSTON: “OUR PROTOTYPE OUTPERFORMS GENERAL-PURPOSE
BATCH PROCESSORS AND OFTEN QUTPERFORMS STATE-OF - THE-ART
ASYNC SYSTEMS WHICH PROVIDE FEW SEMANTIC GUARANTEES.”

STREAMING 3YSTEMS
AS OF TODAY

STREAMING SYSTEMS

e Systems that have unbounded data in mind.
e They are a superset of batch processing systems.

STREAMING SYSTEMS

Event Time

Reference: Fig-1: Example of time domain mapping. Streaming 101

https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101

STREAMING SYSTEMS

Design Questions:

results are calculated?
The types of transformations within the pipeline.
Where in event time are results calculated?
The use of event-time windowing within the pipeline.
in processing time are results materialized? The
use of watermarks and triggers.
How do refinements of results relate?
Discard or accumulate or accumulate and retract.

[N,

RESOURCES

e Link to transcribed talk in pdf format.

e Timely Dataflow (Rust Implementation)

e Frank blog posts:
o Timely dataflow

o Differential dataflow

e The world beyond batch: Streaming 101

e The world beyond batch: Streaming 102

https://drive.google.com/file/d/0B2DA-FLyHV9eRkpJbWlDVS0xSkU/view?usp=sharing
https://github.com/frankmcsherry/timely-dataflow
https://github.com/frankmcsherry/blog/tree/master/posts
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102

