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Seven Points of the Talk

1. A decision procedure for answering questions about a large
class of interesting sequences exists (and handles famous
sequences such as Thue-Morse, Rudin-Shapiro, etc.), based
on first-order logic

2. Many properties that have been studied in the literature can
be phrased in first-order logic (including some for which this is
not obvious!)

3. The decision procedure is relatively easy to implement and
often runs remarkably quickly, despite its formidable
worst-case complexity — and we have an implementation that
is publicly available

4. The method can also be used to not simply decide, but also
enumerate, many aspects of sequences



Seven Points of the Talk

5. Many results already in the literature (in dozens of papers and
Ph. D. theses) can be reproved by our program in a matter of
seconds (including fixing at least one that was wrong!)

6. Many new results can be proved

7. There are some well-defined limits to what we can do because
either

> the property is not expressible in first-order logic; or
» the underlying sequence leads to undecidability



For which sequences does it work?

> One large class: the class of k-automatic sequences

» These are infinite sequences
a = goaiaz - -

over a finite alphabet of letters, generated by a finite-state
machine (automaton)

» The automaton, given n as input, computes a, as follows:

> nis represented in some fixed integer base k > 2

» The automaton moves from state to state according to this
input

» Each state has an output letter associated with it

» The output on input n is the output associated with the last
state reached



The canonical example: the Thue-Morse automaton

A AO
=00

This automaton generates the Thue-Morse sequence

t = (tn)n>0 = 0110100110010110 - - - .



What kind of properties can we handle?

1. Ultimate periodicity: t is not ultimately periodic.

2. Repetitions: t contains no factor that is an overlap, that is, a
word of the form axaxa, where a is a single letter and x is an
arbitrary finite word. (Example in English: alfalfa.)

3. t contains infinitely many distinct square factors xx, but for
each such factor we have |x| =2" or 3-2", for n > 0.

4. Palindromes: t has infinitely many distinct palindromic factors
(A palindrome is a word equal to its reverse, like radar.)

5. The number p(n) of distinct palindromic factors of length n in

t is given by
0, ifnoddand n>5;
1, ifn=0;

p(n) = - K k+1
2, if1<n<4,ornevenand3-4%+2<n< 457
4, if neven and 4K +2 < n < 3.4k,

/37



Historically interesting properties of t

6. t is mirror-invariant: if x is a finite factor of t, then so is its

reverse XR.

7. Recurrence: t is recurrent, that is, every factor that occurs,
occurs infinitely often.

8. t is uniformly recurrent, that is, for all factors x occurring in
t, there is a constant c(x) such that two consecutive
occurrences of x are separated by at most ¢(x) symbols.

9. tis linearly recurrent, that is, it is uniformly recurrent and
furthermore there is a constant C such that ¢(x) < C|x| for
all factors x. In fact, the optimal bound is given by ¢(1) = 3,
c(2) =8, and c(n) =9 -2¢ for n > 3, where
e = lloga(n — 2)).



Historically interesting properties of t

10.

11.

12.

Dynamical systems: the lexicographically least sequence in the
shift orbit closure of tis t; t, t3 ---, which is also
2-automatic.

The subword complexity p(n) of t, which is the function
counting the number of distinct factors of t, is given by

2", if0<n<2;
p(n) =< 2n+2t42 2 f3.2t<p<2tt241;.
4n — 2t — 4, if2t+1<n<3.2t1L

t has an unbordered factor of length n if n % 1 (mod 6) (Here
by an unbordered word y we mean one with no expression in
the form y = uvu for words u, v with u nonempty.)
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Hilbert's dreams

» To show that every true statement is provable (killed by
Godel)

» To provide an algorithm to decide if an input statement is
provable (killed by Turing)

» Nevertheless, some subclasses of problems are decidable —
i.e., an algorithm exists guaranteed to prove or disprove any
statement



First-order logic

» Let Th(N, +,0,1) denote the set of all true first-order
sentences in the logical theory of the natural numbers with
addition.

» This is sometimes called Presburger arithmetic.

» Here we are allowed to use any number of variables, logical
1" "

connectives like “and”, “or", “not”, etc., and quantifiers like
Jand V.
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Example: The Chicken McNuggets Problem

A famous problem in elementary arithmetic books in the US:

6 Piece Chicken
McNuggets: Meal

At McDonald’s, Chicken McNuggets are available in packs of
either 6, 9, or 20 nuggets. What is the largest number of
McNuggets that one cannot purchase?
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Presburger arithmetic

In Presburger arithmetic we can express the “Chicken McNuggets
theorem” that 43 is the largest integer that cannot be represented
as a non-negative integer linear combination of 6,9, and 20, as
follows:

(Yn > 43 3x,y,z > 0 such that n = 6x + 9y + 20z) A
—(3x,y,z > 0 such that 43 = 6x + 9y +20z). (1)

Here, of course, “6x" is shorthand for the expression
“X+x+ x4+ x+ x+ x", and similarly for 9y and 20z.
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Presburger’s theorem

Figure: Mojzesz Presburger (1904-1943)

Presburger proved that Th(N, +,0,1) is decidable: that is, there
exists an algorithm that, given a sentence in the theory, will decide
its truth. He used quantifier elimination.
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Decidability of Presburger arithmetic: Rabin’s proof

Rabin found a much simpler proof of Presburger’s result, based on
automata.

Ideas:

> represent integers in an integer base k > 2 using the alphabet
Y ={0,1,...,k—1}.

> represent n-tuples of integers as words over the alphabet %7,
padding with leading zeroes, if necessary. This corresponds to
reading the base-k representations of the n-tuples in parallel.

» For example, the pair (21,7) can be represented in base 2 by

the word
[1,0][0,0][1, 1][0, 1][1, 1].
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Decidability of Presburger arithmetic

» Then the relation x + y = z can be checked by a simple
2-state automaton depicted below, where transitions not
depicted lead to a nonaccepting “dead state”.

{la,b,c] : a+b=c} {la;b,c] : a+b+1=c+k}
{[a,b,c] : a+b+1=c}

\_/

{[a»b7c] : a+b:c+k}

Figure: Checking addition in base k
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Decidability of Presburger arithmetic: proof sketch

> Relations like x = y and x < y can be checked similarly.

» Given a formula with free variables x1, xo, . .., x,, we construct
an automaton accepting the base-k expansion of those
n-tuples (xi, ..., xp) for which the proposition holds.

» If a formula is of the form 3xy, x, ... x, p(x1,...,Xn), then
we use nondeterminism to “guess” the x; and check them.

» If the formula is of the form Vp, we use the equivalence
Vp = —3d-p; this may require using the subset construction to
convert an NFA to a DFA and then flipping the “finality” of
states.

» Finally, the truth of a formula can be checked by using the
usual depth-first search techniques to see if any final state is
reachable from the start state.
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The bad news

» The worst-case running time of the algorithm above is
bounded above by

. _QP(N)
2% :
where the number of 2's in the exponent is equal to the
number of quantifier alternations, p is a polynomial, and N is

the number of states needed to describe the underlying
automatic sequence.

» This bound can be improved to double-exponential.
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The good news

» With a small extension to Presburger's logical theory —
adding the function Vi(n), the largest power of k dividing n
— one can also verify many more interesting statements
(examples to follow). But then the worst-case time bound

returns to
. _2P(N)

2%
» Beautiful theory due to Biichi, Bruyere, Hansel, Michaux,
Villemaire, etc.

» Despite the awful worst-case bound on running time, an
implementation often succeeds in verifying statements in the
theory in a reasonable amount of time and space.

» Many old results from the literature can been verified with
this technique, and many new ones can be proved.
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Deciding periodicity

First example:
» An infinite word a is periodic if it is of the form x“ = xxx - - -
for a finite nonempty word x.

» It is ultimately periodic if it is of the form yx“ for a (possibly
empty) finite word y.

» Honkala (1986) proved that ultimate periodicity is decidable
for automatic sequences.

» Using this approach: it suffices to express ultimately
periodicity as an automatic predicate:

dp>1,N>0Vi>Na[i] =a[i + p].

» When we run this on the Thue-Morse sequence, we discover
(as expected) that t is not ultimately periodic.
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Repetitions

» Thue (1912) proved that t contains no overlaps; that is, t is
overlap-free.

» Using this technique, we can express the property of having an
overlap axaxa beginning at position N with |ax| = p, as
follows: a[N..N + p] = a[N + p..N + 2p|.

» So the corresponding automatic predicate for t is
dp>1,N>0¢t[N.N+p] =t[N+p..N+2p],
or, in other words,
Ip>IL,N>0Vi,0<i<pt[N+i]=t[N+p+i].

» Qur program easily verifies that indeed t is overlap-free.
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Mirror invariance

We can express the property that a is mirror-invariant as follows:
VN >0,0>13N >0a[N.N+¢—1] =a[N.N +¢—1]F

which is the same as

VN>0,4>13N' >0Vi,0<i<la[N+i]=a[N+¢—i—1],

which can be easily checked by the method.
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Recurrence

» We can express the property that a is recurrent by saying that
for each factor, and each integer M there exists a copy of that
factor occurring at a position after M in a.

» This corresponds to the following predicate:
VN,M>0,0>13IM > M a[N.N+l—1] = a[M'.M'+/-1].

> An easy argument shows that an infinite word a is recurrent if
and only if each finite factor occurs at least twice. This means
that the following simpler predicate suffices:

YN>0,0>13IM#N a[N.N+£¢—1]=a[M.M+¢—1].
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Uniform recurrence

» For uniform recurrence, we need to express the fact that two
consecutive occurrences of each factor are separated by no
more than C positions.

> Since there are only finitely many factors of each length, we
can take C to be the maximum of the constants
corresponding to each factor of that length.

» Thus uniform recurrence corresponds to the following
predicate:

Ve>13C>1YN>03IMwith N<M<SN+C
a[N.N+/¢—1] =a[M.M+¢—1].
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Orbit closure

» The shift orbit of a sequence a = apaiap - - - is the set of all
sequences under the shift, that is, the set

S = {a,-a,-+1a,-+2 ) > 0}

» The orbit closure is the topological closure S under the usual
topology.

» In other words, a sequence b = bgby by - - - is in S if and only
if, for each j > 0, the prefix by - - - b; is a factor of a.

» “Most” sequences in the orbit closure of a k-automatic
sequence are not automatic themselves.

» However, we can use the method to show that two
distinguished sequences, the lexicographically least and

lexicographically greatest sequences in the orbit closure, are
indeed k-automatic.
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Unbordered factors

» A word is bordered if it can be expressed as uvu for words u, v
with u nonempty, and otherwise it is unbordered.

» Currie and Saari proved that t has an unbordered factor of
length nif n % 1 (mod 6).

» However, these are not the only lengths with an unbordered
factor; for example,

0011010010110100110010110100101

is an unbordered factor of length 31.
» We can express the property that t has an unbordered factor
of length ¢ as follows:

IN>0V),1<j<l/2t[N.N+j—1] #t[N+{—j..N+¢—1].
» Using this technique, we were able to prove

Theorem
There is an unbordered factor of length ¢ in t if and only iff
()2 ¢ 1(01*0)*10*1.
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Balance

> Let |w|, denote the number of occurrences of the letter a in
the word w.

» A word z is said to be balanced if for all finite factors w, x of
the same length and all alphabet symbols a we have

“W\a — |x|a’ <1.

> At first glance it is not obvious how to express this property in
first-order arithmetic. (How do we count symbols?)
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Balance

» Luckily, for binary words over {0,1} there is an equivalent
characterization: a word z is unbalanced if and only if there
exists a palindrome v such that both 0u0 and 1ul are factors
of z.

» Now that is a first-order statement!

» So we can, for example, write a predicate for all the balanced
factors of Thue-Morse.

» The result: there are exactly 41 balanced factors of the
Thue-Morse word, and the longest is of length 8.
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Enumeration

» In many cases we can count the number T(n) of length-n
factors of an automatic sequence having a particular property
P.

» Here by “count” we mean, give an algorithm A to compute
T(n) efficiently, that is, in time bounded by a polynomial in
log n.

» Although finding the algorithm A may not be particularly
efficient, once we have it, we can compute T(n) quickly.
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Subword complexity

» Subword complexity counts the number of distinct length-n
factors of a sequence.

» To count these factors in an automatic sequence, we create a
DFA M accepting the language

{(n,0)x : a[n..n+ £ — 1] is the first
occurrence of the given factor}
= {(n )k : V' <na[n.n+—1)#aln'..n +¢—1]}.
> the number of n corresponding to a given £ is just the number

of distinct subwords of length ¢
» this number can be expressed as the product

vM,, - - My w

for suitable vectors v, w and matrices My, ..., Mi_1, where
aj - - aj is the base-k representation of £, thus giving an
efficient algorithm to compute it.
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Enumeration

In a similar way, we can handle
» palindrome complexity (the number of distinct length-n
palindromic factors)
» the number of words whose reversals are also factors;
» the number of squares of a given length;

» the number of unbordered factors

and so forth.

30/
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Getting some new results

» We are interested in binary words avoiding the pattern xxx~.

» An example of this pattern in English is contained in the word
bepepper.

> Are there infinite binary words avoiding this pattern?
» Of course: (01)“ =010101---.

» But there are other periodic examples, like (0010011011)«,
that also avoid the pattern

> Are there aperiodic examples?
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Avoidability

Yes! Take the infinite Fibonacci word f (generated by iterating the
morphism 0 — 01, 1 — 0)and run it through the following
transducer:

0/00
130

obtaining the infinite word
r =001001101101100100110110110010010011011001001001101100 - - -

Claim: it avoids the patterns xxx® and also xxRxR.
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To prove this we use the predicate

3i > 0Vt, 0 < t < n(r[i+t] = r[i+t+n]) A (r[i+t] = r[i+3n—1—t]),

which says that the first block of length n equals the second block,
and the first block equals the reverse of the the third block.
The word r itself is generated by an 8-state automaton:

When we run this predicate on the automaton, we get that only
length n = 0 is accepted. So the pattern xxx® doesn't occur. This
takes about 8 seconds on a laptop and the largest intermediate

automaton has 8304 states.
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What other properties of automatic sequences are

decidable?

v

A difficult candidate: abelian properties

We say that a nonempty word x is an abelian square if it of
the form ww’ with |w| = |w/| and w’ a permutation of w.
(An example in English is the word reappear.)

Luke Schaeffer showed that the predicate for abelian
squarefreeness is indeed inexpressible in Th(N, +,0,1, V)

However, for some sequences (e.g., Thue-Morse, Fibonacci)
many abelian properties are decidable
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Other limits to the approach

» Consider the morphism a — abcc, b — bcc, ¢ — c.
» The fixed point of this morphism is

s = abccbceccebecceccebecceceeeh - - -

» It encodes, in the positions of the b’s, the characteristic
sequence of the squares.

» So the first-order theory Th(N, +,0,1, n — s[n]) is powerful
enough to express the assertion that “n is a square”

» With that, one can express multiplication, and so it is
undecidable.
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Three Open Problems

> Is there a first-order characterization of the balance property
for alphabets of more than two symbols?

» Let p denote the characteristic sequence of the prime
numbers. Is the logical theory Th(N,+,0,1,n — p(n))
decidable?

» Is the following problem decidable? Given two k-automatic
sequences (a(n))n>0 and (b(n))s>0, are there integers ¢ > 1
and d > 0 such that a(n) = b(cn + d) for all n?
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The Walnut Prover

Our publicly-available prover, written by Hamoon Mousavi, is
called Walnut and can be downloaded from

www.cs.uwaterloo.ca/~shallit/papers.html .
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