
Automatically Proving Theorems in

Combinatorics on Words Using a Computer

Jeffrey Shallit
School of Computer Science

University of Waterloo
Waterloo, Ontario N2L 3G1

Canada
shallit@cs.uwaterloo.ca

https://www.cs.uwaterloo.ca/~shallit

Joint work with Jean-Paul Allouche, Émilie Charlier, Narad
Rampersad, Dane Henshall, Luke Schaeffer, Eric Rowland, Daniel
Goč, and Hamoon Mousavi.

1 / 37

Seven Points of the Talk

1. A decision procedure for answering questions about a large
class of interesting sequences exists (and handles famous
sequences such as Thue-Morse, Rudin-Shapiro, etc.), based
on first-order logic

2. Many properties that have been studied in the literature can
be phrased in first-order logic (including some for which this is
not obvious!)

3. The decision procedure is relatively easy to implement and
often runs remarkably quickly, despite its formidable
worst-case complexity — and we have an implementation that
is publicly available

4. The method can also be used to not simply decide, but also
enumerate, many aspects of sequences

2 / 37

Seven Points of the Talk

5. Many results already in the literature (in dozens of papers and
Ph. D. theses) can be reproved by our program in a matter of
seconds (including fixing at least one that was wrong!)

6. Many new results can be proved

7. There are some well-defined limits to what we can do because
either

◮ the property is not expressible in first-order logic; or
◮ the underlying sequence leads to undecidability

3 / 37

For which sequences does it work?

◮ One large class: the class of k-automatic sequences

◮ These are infinite sequences

a = a0a1a2 · · ·

over a finite alphabet of letters, generated by a finite-state
machine (automaton)

◮ The automaton, given n as input, computes an as follows:

◮ n is represented in some fixed integer base k ≥ 2
◮ The automaton moves from state to state according to this

input
◮ Each state has an output letter associated with it
◮ The output on input n is the output associated with the last

state reached

4 / 37

The canonical example: the Thue-Morse automaton

0 0
1

1

0 1

This automaton generates the Thue-Morse sequence

t = (tn)n≥0 = 0110100110010110 · · · .

5 / 37

What kind of properties can we handle?

1. Ultimate periodicity: t is not ultimately periodic.

2. Repetitions: t contains no factor that is an overlap, that is, a
word of the form axaxa, where a is a single letter and x is an
arbitrary finite word. (Example in English: alfalfa.)

3. t contains infinitely many distinct square factors xx , but for
each such factor we have |x | = 2n or 3 · 2n, for n ≥ 0.

4. Palindromes: t has infinitely many distinct palindromic factors
(A palindrome is a word equal to its reverse, like radar.)

5. The number p(n) of distinct palindromic factors of length n in
t is given by

p(n) =























0, if n odd and n ≥ 5;

1, if n = 0;

2, if 1 ≤ n ≤ 4, or n even and 3 · 4k + 2 ≤ n ≤ 4k+1;

4, if n even and 4k + 2 ≤ n ≤ 3 · 4k .

6 / 37

Historically interesting properties of t

6. t is mirror-invariant: if x is a finite factor of t, then so is its
reverse xR .

7. Recurrence: t is recurrent, that is, every factor that occurs,
occurs infinitely often.

8. t is uniformly recurrent, that is, for all factors x occurring in
t, there is a constant c(x) such that two consecutive
occurrences of x are separated by at most c(x) symbols.

9. t is linearly recurrent, that is, it is uniformly recurrent and
furthermore there is a constant C such that c(x) ≤ C |x | for
all factors x . In fact, the optimal bound is given by c(1) = 3,
c(2) = 8, and c(n) = 9 · 2e for n ≥ 3, where
e = ⌊log2(n − 2)⌋.

7 / 37

Historically interesting properties of t

10. Dynamical systems: the lexicographically least sequence in the
shift orbit closure of t is t1 t2 t3 · · · , which is also
2-automatic.

11. The subword complexity ρ(n) of t, which is the function
counting the number of distinct factors of t, is given by

ρ(n) =











2n, if 0 ≤ n ≤ 2;

2n + 2t+2 − 2, if 3 · 2t ≤ n ≤ 2t+2 + 1;

4n − 2t − 4, if 2t + 1 ≤ n ≤ 3 · 2t−1;

.

12. t has an unbordered factor of length n if n 6≡ 1 (mod 6) (Here
by an unbordered word y we mean one with no expression in
the form y = uvu for words u, v with u nonempty.)

8 / 37

Hilbert’s dreams

◮ To show that every true statement is provable (killed by
Gödel)

◮ To provide an algorithm to decide if an input statement is
provable (killed by Turing)

◮ Nevertheless, some subclasses of problems are decidable —
i.e., an algorithm exists guaranteed to prove or disprove any
statement

9 / 37

First-order logic

◮ Let Th(N,+, 0, 1) denote the set of all true first-order
sentences in the logical theory of the natural numbers with
addition.

◮ This is sometimes called Presburger arithmetic.

◮ Here we are allowed to use any number of variables, logical
connectives like “and”, “or”, “not”, etc., and quantifiers like
∃ and ∀.

10 / 37

Example: The Chicken McNuggets Problem

A famous problem in elementary arithmetic books in the US:

At McDonald’s, Chicken McNuggets are available in packs of

either 6, 9, or 20 nuggets. What is the largest number of

McNuggets that one cannot purchase?

11 / 37

Presburger arithmetic

In Presburger arithmetic we can express the “Chicken McNuggets
theorem” that 43 is the largest integer that cannot be represented
as a non-negative integer linear combination of 6, 9, and 20, as
follows:

(∀n > 43 ∃x , y , z ≥ 0 such that n = 6x + 9y + 20z) ∧

¬(∃x , y , z ≥ 0 such that 43 = 6x + 9y + 20z). (1)

Here, of course, “6x” is shorthand for the expression
“x + x + x + x + x + x”, and similarly for 9y and 20z .

12 / 37

Presburger’s theorem

Figure: Mojżesz Presburger (1904–1943)

Presburger proved that Th(N,+, 0, 1) is decidable: that is, there
exists an algorithm that, given a sentence in the theory, will decide
its truth. He used quantifier elimination.

13 / 37

Decidability of Presburger arithmetic: Rabin’s proof

Rabin found a much simpler proof of Presburger’s result, based on
automata.

Ideas:

◮ represent integers in an integer base k ≥ 2 using the alphabet
Σk = {0, 1, . . . , k − 1}.

◮ represent n-tuples of integers as words over the alphabet Σn
k ,

padding with leading zeroes, if necessary. This corresponds to
reading the base-k representations of the n-tuples in parallel.

◮ For example, the pair (21, 7) can be represented in base 2 by
the word

[1, 0][0, 0][1, 1][0, 1][1, 1].

14 / 37

Decidability of Presburger arithmetic

◮ Then the relation x + y = z can be checked by a simple
2-state automaton depicted below, where transitions not
depicted lead to a nonaccepting “dead state”.

{[a, b, c] : a+ b = c}

{[a, b, c] : a + b + 1 = c}

{[a, b, c] : a + b = c + k}

{[a, b, c] : a + b + 1 = c + k}

Figure: Checking addition in base k

15 / 37

Decidability of Presburger arithmetic: proof sketch

◮ Relations like x = y and x < y can be checked similarly.

◮ Given a formula with free variables x1, x2, . . . , xn, we construct
an automaton accepting the base-k expansion of those
n-tuples (x1, . . . , xn) for which the proposition holds.

◮ If a formula is of the form ∃x1, x2, . . . xn p(x1, . . . , xn), then
we use nondeterminism to “guess” the xi and check them.

◮ If the formula is of the form ∀p, we use the equivalence
∀p ≡ ¬∃¬p; this may require using the subset construction to
convert an NFA to a DFA and then flipping the “finality” of
states.

◮ Finally, the truth of a formula can be checked by using the
usual depth-first search techniques to see if any final state is
reachable from the start state.

16 / 37

The bad news

◮ The worst-case running time of the algorithm above is
bounded above by

22
..
.2p(N)

,

where the number of 2’s in the exponent is equal to the
number of quantifier alternations, p is a polynomial, and N is
the number of states needed to describe the underlying
automatic sequence.

◮ This bound can be improved to double-exponential.

17 / 37

The good news

◮ With a small extension to Presburger’s logical theory —
adding the function Vk(n), the largest power of k dividing n

— one can also verify many more interesting statements
(examples to follow). But then the worst-case time bound
returns to

22
..
.2p(N)

.

◮ Beautiful theory due to Büchi, Bruyère, Hansel, Michaux,
Villemaire, etc.

◮ Despite the awful worst-case bound on running time, an
implementation often succeeds in verifying statements in the
theory in a reasonable amount of time and space.

◮ Many old results from the literature can been verified with
this technique, and many new ones can be proved.

18 / 37

Deciding periodicity

First example:

◮ An infinite word a is periodic if it is of the form xω = xxx · · ·
for a finite nonempty word x .

◮ It is ultimately periodic if it is of the form yxω for a (possibly
empty) finite word y .

◮ Honkala (1986) proved that ultimate periodicity is decidable
for automatic sequences.

◮ Using this approach: it suffices to express ultimately
periodicity as an automatic predicate:

∃p ≥ 1,N ≥ 0 ∀i ≥ N a[i] = a[i + p].

◮ When we run this on the Thue-Morse sequence, we discover
(as expected) that t is not ultimately periodic.

19 / 37

Repetitions

◮ Thue (1912) proved that t contains no overlaps; that is, t is
overlap-free.

◮ Using this technique, we can express the property of having an
overlap axaxa beginning at position N with |ax | = p, as
follows: a[N..N + p] = a[N + p..N + 2p].

◮ So the corresponding automatic predicate for t is

∃p ≥ 1,N ≥ 0 t[N..N + p] = t[N + p..N + 2p],

or, in other words,

∃p ≥ 1,N ≥ 0 ∀i , 0 ≤ i ≤ p t[N + i] = t[N + p + i].

◮ Our program easily verifies that indeed t is overlap-free.

20 / 37

Mirror invariance

We can express the property that a is mirror-invariant as follows:

∀N ≥ 0, ℓ ≥ 1 ∃N ′ ≥ 0 a[N..N + ℓ− 1] = a[N ′..N ′ + ℓ− 1]R ,

which is the same as

∀N ≥ 0, ℓ ≥ 1 ∃N ′ ≥ 0 ∀i , 0 ≤ i < ℓ a[N + i] = a[N ′ + ℓ− i − 1],

which can be easily checked by the method.

21 / 37

Recurrence

◮ We can express the property that a is recurrent by saying that
for each factor, and each integer M there exists a copy of that
factor occurring at a position after M in a.

◮ This corresponds to the following predicate:

∀N,M ≥ 0, ℓ ≥ 1 ∃M ′ ≥ M a[N..N+ℓ−1] = a[M ′..M ′+ℓ−1].

◮ An easy argument shows that an infinite word a is recurrent if
and only if each finite factor occurs at least twice. This means
that the following simpler predicate suffices:

∀N ≥ 0, ℓ ≥ 1 ∃M 6= N a[N..N + ℓ− 1] = a[M..M + ℓ− 1].

22 / 37

Uniform recurrence

◮ For uniform recurrence, we need to express the fact that two
consecutive occurrences of each factor are separated by no
more than C positions.

◮ Since there are only finitely many factors of each length, we
can take C to be the maximum of the constants
corresponding to each factor of that length.

◮ Thus uniform recurrence corresponds to the following
predicate:

∀ℓ ≥ 1 ∃C ≥ 1 ∀N ≥ 0 ∃M with N < M ≤ N + C

a[N..N + ℓ− 1] = a[M..M + ℓ− 1].

23 / 37

Orbit closure

◮ The shift orbit of a sequence a = a0a1a2 · · · is the set of all
sequences under the shift, that is, the set

S = {aiai+1ai+2 · · · : i ≥ 0}.

◮ The orbit closure is the topological closure S under the usual
topology.

◮ In other words, a sequence b = b0b1b2 · · · is in S if and only
if, for each j ≥ 0, the prefix b0 · · · bj is a factor of a.

◮ “Most” sequences in the orbit closure of a k-automatic
sequence are not automatic themselves.

◮ However, we can use the method to show that two
distinguished sequences, the lexicographically least and
lexicographically greatest sequences in the orbit closure, are
indeed k-automatic.

24 / 37

Unbordered factors

◮ A word is bordered if it can be expressed as uvu for words u, v
with u nonempty, and otherwise it is unbordered.

◮ Currie and Saari proved that t has an unbordered factor of
length n if n 6≡ 1 (mod 6).

◮ However, these are not the only lengths with an unbordered
factor; for example,

0011010010110100110010110100101

is an unbordered factor of length 31.
◮ We can express the property that t has an unbordered factor

of length ℓ as follows:

∃N ≥ 0 ∀j , 1 ≤ j ≤ ℓ/2 t[N..N+ j−1] 6= t[N+ℓ− j ..N+ℓ−1].

◮ Using this technique, we were able to prove

Theorem
There is an unbordered factor of length ℓ in t if and only iff

(ℓ)2 6∈ 1(01∗0)∗10∗1.
25 / 37

Balance

◮ Let |w |a denote the number of occurrences of the letter a in
the word w .

◮ A word z is said to be balanced if for all finite factors w , x of
the same length and all alphabet symbols a we have

∣

∣|w |a − |x |a
∣

∣ ≤ 1.

◮ At first glance it is not obvious how to express this property in
first-order arithmetic. (How do we count symbols?)

26 / 37

Balance

◮ Luckily, for binary words over {0, 1} there is an equivalent
characterization: a word z is unbalanced if and only if there
exists a palindrome u such that both 0u0 and 1u1 are factors
of z .

◮ Now that is a first-order statement!

◮ So we can, for example, write a predicate for all the balanced
factors of Thue-Morse.

◮ The result: there are exactly 41 balanced factors of the
Thue-Morse word, and the longest is of length 8.

27 / 37

Enumeration

◮ In many cases we can count the number T (n) of length-n
factors of an automatic sequence having a particular property
P .

◮ Here by “count” we mean, give an algorithm A to compute
T (n) efficiently, that is, in time bounded by a polynomial in
log n.

◮ Although finding the algorithm A may not be particularly
efficient, once we have it, we can compute T (n) quickly.

28 / 37

Subword complexity

◮ Subword complexity counts the number of distinct length-n
factors of a sequence.

◮ To count these factors in an automatic sequence, we create a
DFA M accepting the language

{(n, ℓ)k : a[n..n + ℓ− 1] is the first

occurrence of the given factor}

= {(n, ℓ)k : ∀n′ < n a[n..n + ℓ− 1] 6= a[n′..n′ + ℓ− 1]}.

◮ the number of n corresponding to a given ℓ is just the number
of distinct subwords of length ℓ

◮ this number can be expressed as the product

vMa1 · · ·Maiw

for suitable vectors v ,w and matrices M0, . . . ,Mk−1, where
a1 · · · ai is the base-k representation of ℓ, thus giving an
efficient algorithm to compute it.

29 / 37

Enumeration

In a similar way, we can handle

◮ palindrome complexity (the number of distinct length-n
palindromic factors)

◮ the number of words whose reversals are also factors;

◮ the number of squares of a given length;

◮ the number of unbordered factors

and so forth.

30 / 37

Getting some new results

◮ We are interested in binary words avoiding the pattern xxxR .

◮ An example of this pattern in English is contained in the word
bepepper.

◮ Are there infinite binary words avoiding this pattern?

◮ Of course: (01)ω = 010101 · · · .

◮ But there are other periodic examples, like (0010011011)ω,
that also avoid the pattern

◮ Are there aperiodic examples?

31 / 37

Avoidability

Yes! Take the infinite Fibonacci word f (generated by iterating the
morphism 0 → 01, 1 → 0)and run it through the following
transducer:

0 1

0 / 0 0
1 /0

0 / 1 1
1 /1

obtaining the infinite word

r = 001001101101100100110110110010010011011001001001101100 · · · .

Claim: it avoids the patterns xxxR and also xxRxR .

32 / 37

Avoiding xxx
R

To prove this we use the predicate

∃i ≥ 0∀t, 0 ≤ t < n (r[i+t] = r[i+t+n]) ∧ (r[i+t] = r[i+3n−1−t]),

which says that the first block of length n equals the second block,
and the first block equals the reverse of the the third block.
The word r itself is generated by an 8-state automaton:

a/0

0

b1/01 a1/10 a0/0

0

b0/01
a2/10

b/1

1

0

0

b2/11

0

0

When we run this predicate on the automaton, we get that only
length n = 0 is accepted. So the pattern xxxR doesn’t occur. This
takes about 8 seconds on a laptop and the largest intermediate
automaton has 8304 states.

33 / 37

What other properties of automatic sequences are

decidable?

◮ A difficult candidate: abelian properties

◮ We say that a nonempty word x is an abelian square if it of
the form ww ′ with |w | = |w ′| and w ′ a permutation of w .
(An example in English is the word reappear.)

◮ Luke Schaeffer showed that the predicate for abelian
squarefreeness is indeed inexpressible in Th(N,+, 0, 1,Vk)

◮ However, for some sequences (e.g., Thue-Morse, Fibonacci)
many abelian properties are decidable

34 / 37

Other limits to the approach

◮ Consider the morphism a → abcc , b → bcc , c → c .

◮ The fixed point of this morphism is

s = abccbccccbccccccbccccccccb · · ·

◮ It encodes, in the positions of the b’s, the characteristic
sequence of the squares.

◮ So the first-order theory Th(N,+, 0, 1, n → s[n]) is powerful
enough to express the assertion that “n is a square”

◮ With that, one can express multiplication, and so it is
undecidable.

35 / 37

Three Open Problems

◮ Is there a first-order characterization of the balance property
for alphabets of more than two symbols?

◮ Let p denote the characteristic sequence of the prime
numbers. Is the logical theory Th(N,+, 0, 1, n → p(n))
decidable?

◮ Is the following problem decidable? Given two k-automatic
sequences (a(n))n≥0 and (b(n))n≥0, are there integers c ≥ 1
and d ≥ 0 such that a(n) = b(cn + d) for all n?

36 / 37

The Walnut Prover

Our publicly-available prover, written by Hamoon Mousavi, is
called Walnut and can be downloaded from

www.cs.uwaterloo.ca/~shallit/papers.html .

37 / 37

www.cs.uwaterloo.ca/~shallit/papers.html

