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Repetitions

Repetitions

A square is a nonempty word of the form xx , such as the

English word murmur.

The order of a square xx is |x |, the length of x .

Antisquares

For a binary word x , we let x be the bitwise complement of x .

For example, if x = 0110, then x = 1001.

An antisquare is a word of the form x x . So 0110 is an

antisquare.
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Avoiding squares in binary words

• Every binary word of length 4 contains a square.

• Entringer, Jackson, and Schatz (1974) constructed an

infinite binary word avoiding squares of order > 2.

• We use the term avoid to mean “the word has no factor

(= contiguous subsequence) of the given form”.

• Fraenkel and Simpson (1995) constructed an infinite

binary word avoiding all squares, except three: 00, 11,

and 0101. There is no infinite binary word containing only

two distinct squares, so their result is optimal.
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Avoiding antisquares

• Remember: an antisquare is a word of the form x x .

• The only infinite binary words avoiding all antisquares are

the trivial ones: 0ω = 000 · · · and 1ω = 111 · · · .
• The only infinite binary words containing exactly one

antisquare are also trivial: 0 1ω and 1 0ω.

• But every word in {1000, 10000}ω has exactly two

antisquares — namely 01 and 10 — and infinitely many

of these are aperiodic.
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Our first main result

• We consider the simultaneous avoidance of squares and

antisquares in binary words

• We determine, for each a, b ≥ 0, the longest binary word

containing at most a squares and b antisquares (it could

be infinite)

4/21



Summary of results on squares and antisquares

The following table gives the length of the longest binary word

containing at most a squares and b antisquares:

a

b
0 1 2 3 4 5 6 7 8 9 10 11 12 13 · · ·

0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 · · ·
1 3 4 7 7 7 7 7 7 7 7 7 7 7 7 · · ·
2 5 6 11 11 11 11 12 12 12 13 15 18 18 18 · · ·
3 7 8 15 15 15 20 20 20 24 29 34 53 98 ∞ · · ·
4 9 10 19 19 27 31 45 56 233 ∞ ∞ ∞ ∞ · · ·
5 11 12 27 27 40 ∞ ∞ ∞ ∞ · · ·
6 13 14 35 38 313 ∞ · · ·
7 15 16 45 ∞ ∞ · · ·
8 17 18 147 ∞ · · ·
9 19 20 ∞ · · ·

10 21 22 ∞ · · ·
...
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How these results were obtained

• For the finite results, we use breadth-first search of the

tree of possibilities. Sometimes this took a while (e.g., 6

squares and 4 antisquare — longest string of length 313).

• For the infinite results corresponding to

(a, b) ∈ {(3, 13), (4, 9), (5, 5), (7, 3), (9, 2)}

we explicitly constructed an infinite binary word with the

desired properties.

• In each case this involves finding a suitable morphism

ha,b : {0, 1, 2}∗ → {0, 1}∗ and then applying that

morphism to an infinite squarefree word over {0, 1, 2}.
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Example of a morphism

For example, here is h7,3:

0→ 0100100100001010000

1→ 01001001000001

2→ 0100100101000

When we apply this morphism to an infinite squarefree word

over {0, 1, 2}, we get only the seven squares

02, (00)2, (01)2, (10)2, (001)2, (010)2, (100)2

and only the three antisquares

01, 10, 1001.

In terms of the total number of squares plus antisquares, this

achieves the minimum: ten.
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Looking at these results from a broader perspective

• We tried to avoid words of the form xh(x), where h is a

morphism. These are called pseudosquares.

• More specifically, we considered the case where h is a

coding (letter-to-letter map) that is a permutation of the

underlying alphabet Σ = {0, 1}.
• It is impossible to avoid xh(x) for all x , so we only

succeeded for sufficiently large words x .

• We could consider larger alphabets and hope to obtain

analogous results.
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Avoiding pseudosquares for permutations: negative

result

Theorem

For all finite alphabets Σ, and for all words w of length ≥ 10

over Σ, there exists a permutation p of Σ and a factor of w

of the form xp(x) where |x | ≥ 2.

Proof idea. If there is a word avoiding xp(x) for |x | ≥ 2, then

there is an ordered one: where the first letter is 0, the first

non-0 letter is 1, the first non-{0, 1} letter is 2, etc.

So we can use breadth-first search, but examine only ordered

words, expanding the size of the alphabet each time a

candidate word is extended in length.
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Avoiding pseudosquares for permutations: negative

result

Breadth-first search with an expanding alphabet size easily

proves:

The longest ordered words avoiding xp(x) are of length 9:

{001000122, 001000211, 001000233, 001222022,

001222122, 001222322}.
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Avoiding pseudosquares for permutations: positive

result

Theorem

There exists an infinite word w over the binary alphabet

Σ2 = {0, 1} that avoids xp(x) for all permutations p and all

x with |x | ≥ 3.

Proof.

By direct construction, using our previous results on avoiding

squares and antisquares.
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Further generalization: to transformations

• Now we understand avoiding pseudosquares for

permutations.

• How about for transformations of the underlying

alphabet?

• Now the space of possible pseudosquares increases in size,

so it becomes harder to avoid them, and requires going to

a larger set of exceptions.

12/21



Avoiding pseudosquares for transformations: nega-

tive result

Theorem

For all finite alphabets Σ, and all words w of length ≥ 31

over Σ, there exists a transformation t : Σ∗ → Σ∗ such that

w contains a factor of the form xt(x) for |x | ≥ 3.

Proof idea. Again, use the tree traversal method while

extending the alphabet size. There are 24745 ordered words of

length 30 avoiding xt(x) for |x | ≥ 3; the lexicog. first is

000001100101001100202001101200,

while the lexicographically last is

011112233232332244343445565789.
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Avoiding pseudosquares for permutations: positive

result

Theorem

There exists an infinite word w over the binary alphabet

Σ2 = {0, 1} avoiding xt(x) for all transformations t and

every x with |x | ≥ 4.

Proof. By direct construction. Use the fixed point of the

morphism

0→ 01 1→ 23

2→ 45 3→ 21

4→ 23 5→ 42

followed by the coding n→ bn/3c. The result can now easily

be verified with Walnut. 14/21



Further generalization: to arbitrary morphisms

• Now we understand pseudosquares with permutations and

transformations.

• Now let’s generalize even further: to arbitrary

(nonerasing) morphisms.

• We are trying to avoid xh(x) for all nonerasing

morphisms h, simultaneously!

• This leads to our second main result.
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Avoiding pseudosquares for arbitrary morphisms: neg-

ative result

Theorem

No infinite word over a finite alphabet avoids all factors of

the form xh(x), for all nonerasing morphisms h, with |x | ≥ 4.

Proof.

• Assume such a word z exists. By a result of de Luca and

Varricchio, there is a uniformly recurrent word y whose

factors are a subset of those of z. Such a word also

avoids the factors xh(x).

• Suppose y contains a word of the form au, where a is any

single letter and u does not contain a and |u| ≥ 3.
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• Since y is uniformly recurrent, it must also contain a

factor of the form auvu for some v .

• But this is an occurrence of xh(x) (take h(a) = v and h

the identity on other letters).

• Suppose y contains a word of the form aaa. Clearly y

cannot equal aω, so y contains baaa for some b 6= a. This

contradicts the previous case.

• Suppose y contains three consecutive distinct letters, say

abc . Then the next letter has to be a from above.

Repeating this reasoning on the last three letters, we see

the next letter has to be b, then c , etc. So y contains

abcabcab, which is an occurrence of xh(x) for h(a) = b,

h(b) = c , and h(c) = a.

• Now y avoids aaa, abc , and abbc for distinct letters

a, b, c . So it must be a binary word.
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• Now suppose y contains both 0100 and 1011. Then 0100

is followed by 1. By recurrence y must contain 01001u11

for some u, which is of the form xh(x) for h(0) = 1 and

h(1) = u. Without loss of generality say y does not

contain 0100.

• Now it is easy to check that the longest binary word

avoiding 000, 111, 0100, and all squares xx with |x | ≥ 4

is of length 67. We are done.
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Avoiding pseudosquares for arbitrary morphisms: pos-

itive result

Theorem

There exists an infinite binary word that avoids all factors of

the form xh(x) for all nonerasing binary morphisms h, with

|x | ≥ 5.

Proof. By direct construction, by applying a certain

57-uniform morphism to a squarefree word over {0, 1, 2}.
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The morphism

0→ 101000110010100110001011001010110001010100011001011000110

1→ 101000110010100110001010110001101001100010101000110101001

2→ 101000110010100110001010100011010011000101011000110101001

20/21



Related work

• Chiniforooshan, Kari, and Zhu (2013) studied avoiding

words of the form xθ(x), where θ is an antimorphic

involution.

• This means that θ2(x) = x and θ(xy) = θ(y)θ(x).

• For binary words the only ones are θ(x) = x , θ(x) = x ,

θ(x) = xR , and θ(x) = xR .

• Bischoff, Currie, and Nowotka (2012) studied the

avoidability of more general patterns with involution

• Rumyantsev and Ushakov (2006), Durand, Levin, and

Shen (2008), and Miller (2012) studied avoiding factors

of low Kolmogorov complexity. This is more general than

our results, but they can’t obtain explicit bounds.
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