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Periods of a word

An integer p, with 1 < p < |x|, is called a period of a finite word x
if x[i/] = x[i +p] for 1 < i <|x| —p.

Example: alfalfa has period 3.
A period p of x is nontrivial if p < |x|.

The least period of a word x is called the period, and is written
per(x).

The number of nontrivial periods of a word x is denoted nnp(x).
For example, nnp(adoradora) = 2.
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Exponent and critical exponent

The exponent of a finite nonempty word x is defined to be
exp(x) = |x|/ per(x).

For example, exp(entente) = 7/3.

The critical exponent ce(x) of a finite or infinite word x is defined
to be

ce(x) := sup{exp(p) : pis a nonempty factor of x}.
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Motivation for the talk

The original motivation for this research was to answer the
following question:

When does a word have lots of periods?

Obviously, one way a word can have lots of periods is if it is
periodic: 0" has n periods. So a word with high exponent will have
lots of periods.

On the other hand, 07 1™ 0" has lots of periods, but very small
exponent (n? 4 2n)/(n?> + n) &~ 1 +1/n. So exponent alone can't
be the whole story. Maybe critical exponent?

No! A word like 0170 has only one period, but has high critical
exponent.

So what should we do?
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Initial critical exponent

Instead we'll consider the initial critical exponent.

The initial critical exponent ice(x) of a finite or infinite word x is
defined to be

ice(x) := sup{exp(p) : pis a nonempty prefix of x}.

For example, ice(phosphorus) = 7/4.

This concept was (essentially) introduced by Berthé, Holton, and
Zamboni in 2006.
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Digression: borders of a word

A word w is a border of a word x if w is both a prefix and suffix of
X.

For example, ionization has the border ion.

Borders are allowed to overlap, but we generally rule out borders w
where w = € or w = x.

A border w of x is short if |w| < |x|/2.

Basic observation: A word has a nontrivial period t iff it has a
border of length n — t.

Example: abracadabra has nontrivial periods 7 and 10, and
borders of length 4 and 1.
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An inequality for the number of periods

Now, back to counting periods. Here is our main result #1,
relating periods to ice:

Theorem. Let x be a bordered word of length n > 1. Let
e = ice(x). Then

o) < & In(n/2)
PO < 2 1t e/ = 1))

Proof.
Break the bound up into two pieces, by considering the periods of
size < n/2 and > n/2. Call these the short and long periods.
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Proof of the period inequality

Let p = per(x), the shortest period of x.
If p is short, then x has short periods p,2p,3p,...,[n/(2p)]p.

Clearly ice(x) > n/p, so we get at most e/2 short periods from
this list.

To see that there are no other short periods, let g be some short
period not on this list. Then p < g < n/2 by assumption.

By the Fine-Wilf theorem, if a word of length n has two periods
p, g with n > p+ g — gcd(p, q), then it also has period ged(p, q).

Since ged(p, q) < p, either gcd(p, g) < p, which is a contradiction,
or gcd(p, g) = p, which means q is a multiple of p, another
contradiction.
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Proof of the period inequality

Next, let's consider the long periods or, alternatively, the short
borders (those of length < n/2).

Suppose x has borders y, z of length g and r respectively, with
q<r<nj2

Then x = yy'y = zZz'z for words y’ and z’. Hence z = yt = t'y for
some nonempty words t and t’.

Then by the Lyndon-Schiitzenberger theorem we know there exist
words u, v with u nonempty, and an integer d > 0, such that
t' =uv, t =wvu, and y = (uv)9u.

Hence x has the prefix z = yt = (uv)?*1u, which means
e = ice(x) > |2|/|uv| = r/(r — q).
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Proof of the period inequality

The inequality r/(r — q) < e is equivalent to r/q > e/(e — 1).

If by < by < --- < by are the lengths of all the short borders of x
then

b1 >1
b, > (e/(e—1))b1 > e/(e —1),

and so forth, and hence b; > (e/(e — 1)) L.

All these borders are of length at most n/2, so
n/2 > b > (e/(e —1))1L.

Hence | ( /2)
n(n
t<14+ —7
= n(e/(e = 1))’
and the result follows. ®
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Expected value of initial critical exponent

Theorem. Let k > 2. Over a k-letter alphabet, the expected
number of borders (equivalently, the number of nontrival periods)
of a length-n word is k™1 + k=2 + ... 4+ k17" < ﬁ

Proof. By the linearity of expectation, the expected number of
borders is the sum, from i =1 to n — 1, of the expected value of
the indicator random variable B; taking the value 1 if there is a
border of length /, and 0 otherwise.

Once the left border of length i is chosen arbitrarily, the i bits of
the right border are fixed, and so there are n — i free choices of
symbols.

This means that E[B;] = k"~ /k" = k="
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Expected value of initial critical exponent

Theorem. The expected value of ice(x), for finite or infinite words
x, is ©(1).

Proof. Let's count the fraction H; of words having at least a j'th
power prefix. Count the number of words having a j'th power
prefix with period 1, 2, 3, etc. This double counts, but shows that
Hi < k' 4+ k20D ... = 1/(ki=* —1) for j > 2. Clearly H; = 1.
Then H;_1 — H; is the fraction of words having a (j — 1)th power
prefix but no jth power prefix. These words will have an ice at
most j. So the expected value of ice is bounded above by

2(H1 — Hg) + 3(H2 — H3) + 4(H3 — H4) + .-

=2H1+Hy+Hs+Hy+ - =2+ Ho+Hs + Hg + -+

=24+ (K T-1)=2+> 1/(K -1).

j22 Jjz21
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Characteristic Sturmian words

Let 0 < v < 1 be an irrational real number with continued fraction
expansion [0, a1, a2, . . .].

The characteristic Sturmian word X, is an infinite word
X1X2X3 PR

defined by
xi=|(i+1a] — |ia].

For example, for & = v/2 — 1 the characteristic Sturmian word X, is

010100101001010100101001010100- - - .
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The Ostrowski a-numeration system

You were waiting patiently for the numeration systems. Here they
are.

With every real irrational a, 0 < o < 1,
we associate a numeration system based
on the continued fraction expansion o =
[0, a1, a2, a3,...] This is called the Os-
trowski a-numeration system.

Define p;/q; = [0, a1, ..., aj] to be the
i'th convergent. In the (ordinary) Os-
trowski a-numeration system, we write

Alexander Ostrowski
n= ) dg (1893-1986)

0<i<t
Photo courtesy of Archives of the
Where dt > 0 and the di satisfy certain Mathematisches Forschungsinstitut
inequalities. Oberwolfach
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The lazy Ostrowski numeration system

But we're going to be more concerned with the /azy Ostrowski
system (Epifanio et al., 2012, 2016).

This representation is again defined through the sum
= ZOS/St d;q; but with slightly different conditions:

(a) 0< dp < ay;

(b) 0<d; <ajpq fori>1;

(c) Fori>2,if di =0, then di_1 = aj;
(d) If dp =0, then do = a — 1.

By convention, we write it as a finite word d;d;_1 - - - didp, starting

with the most significant digit.
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Main result #2

Here it is in words:
From the lazy Ostrowski a-representation of n, one can directly
read off all the periods of the length-n prefix X, of the Sturmian

characteristic word x,,.

More precisely,
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Main result #2

Let Y, for n > 1 be the prefix of x,, of length n.

Let PER(n) denote the set of all periods of Y, (including the
trivial period n).

Theorem. (a) The number of periods of Y, (including the trivial
period n) is equal to the sum of the digits in the lazy Ostrowski
representation of n.

(b) Suppose the lazy Ostrowski representation of nis > o, diq;.
Define

A(n) =< eqj + Z digi:l<e<djand0<j<t
J<i<t

Then PER(n) = A(n).
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Example of the theorem

As an example of the theorem, suppose o = /2 — 1.
Write n = 23 in lazy Ostrowski: 12 +2 -5+ 1.

Then the periods are
12,1245=17,124+54+5=22,124+5+5+4+1 = 23.

So the nonempty borders are size 11,6, 1.
Take Y23 =01010010100101010010100.

Here are the borders:

01010010100101010010100
01010010100101010010100
01010010100101010010100
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Brief sketch of the proof

Let X; = Yg,.

Frid (2018) defined two kinds of Ostrowski representations.

A representation n = Zogigt diq; is legal if 0 < d; < aj41.

A representation n = ZOSISt d;q; is valid if Y, = Xf‘ e Xgo.

She proved the very nice result: every legal representation is
valid.
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Brief sketch of the proof

Let n =) 4<;<, diq; be the lazy Ostrowski representation of n. It's
legal, hence valid, hence Y, = XZ& X! - X

What we want to show is that each of the following is a period of

Yo
2 d
Xe, X2, ..., X,
d di 32 di ydi—1
XX 1, XEXP 4, ) XEXTT,
XXPT XX, dex"’f L XAXE, L, XEXTT L XX,

To show A(n) C PER(n), we let U be one of the words above.
Then by Frid's theorem Y, = UY,, for an appropriate n’.

But Y,y is a prefix of Y}, so Y, is a prefix of UY,,.
So U is a period of Y}, as desired. That proves one direction of

our theorem. For the other direction, we use an induction.
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News flash!

Philipp Hieronymi and his group at lllinois have implemented a
prover for Sturmian characteristic words.

With this prover they were able to prove our Main Result #2
above just by stating it in first-order logic!
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Special case of the Fibonacci word

In the special case of the Fibonacci word f, we have
a=(v5-1)/2.

To get the periods of the length-n prefix Y, of f, write n in “lazy
Fibonacci” representation:

n:Fat+Fat71+"'+Fal
where a; > a;_1 > --- > aj.
Then the periods are

Faﬂ
Fat + Fat_17

ey

Faet Faoy + -+ Fay.
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Special case of the Fibonacci word

More results on the Fibonacci word:

The shortest prefix of f having exactly n periods (including the
trivial period) is of length Fpy3 — 2, for n > 1.

The longest prefix of f having exactly n periods (including the
trivial period) is of length Fap0 — 1, for n > 1.

The least period of f[0..m — 1] is F, for Fpp1 —1 < m < Fppo —2
and n > 2.
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Tightness of the inequality on periods

Let g5, for s > 1, be the prefix of length Fs1» — 2 of f. Thus, for
example, g1 =€, go =0, g3 = 010, g» = 010010, and so forth.

In our period inequality
In(n/2)
in(e/(e — 1))

the bound is tight, up to an additive factor, for the words gs.

nnp(x) < g+1+

Let 7 = (14 v/5)/2, the golden ratio.
Theorem. Take x = g5 for s > 4. Then the left-hand side of the

inequality is s — 2, while the right-hand side is asymptotically s + ¢
for c =3+ 72/2 — (In2/5)/(InT) = 1.19632.
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Measures of periodicity for infinite words

What we have seen suggests exploring

__nnp(x)
M) = e in x|

as a measure of periodicity for finite words x. It also suggests
studying the following measures of periodicity for infinite words x.

For n > 2 let Y, be the prefix of length n of x. Then define

P(x) := “,:nj;p M(Yy)
p(x) := liminf M(Y,)

n—o00

For the “typical” infinite word x we have P(x) = p(x) = 0.

Thus it is of interest to find words x where P(x) and p(x) are large.
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An example: the period-doubling word

The period-doubling word d is defined to be the fixed point of the
morphism sending 1 — 10 and 0 — 11.

Theorem. P(d) = 515 = 0.7213 and p(d) = ;15 = 0.36067.
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An example: the period-doubling word

Proof. Let r(n) denote the number of periods (including the trivial
period) in the length-n prefix of d. We can use the theorem-proving
software Walnut to calculate the periods of prefixes of d.

We write a first-order logical formula pdp(m, p) stating that the
prefix of length m > 1 of d has period p, 1 < p < m:

m) A d[0.m—p—1]=d[p.m—1]
m) AVt (0<t<m-—p) = d[t]=d[t+p]

pdp(m, p) := (1

<p<
=(1<p<
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An example: the period-doubling word

Such a formula can be automatically translated, using Walnut, to
an automaton that recognizes the language

{(n,p)2 : the length-n prefix of d has period p}.
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An example: the period-doubling word

Such an automaton can be automatically converted by Walnut to
a linear representation for r(n). This is a triple (v, p, w) where
v, w are vectors, and p is a matrix-valued morphism, such that

r(n) = v-p((n)2) - w.

The values are given below:

100000 011000 0
001000 0010190 1
v=1[100000] p(0)= |g00010 p(1)= | 000000 W= 1o
000101 000001 1
000001 000001 1
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An example: the period-doubling word

From this we can easily compute the relations

r(0)=0
r2n+1)=r(n)+1, n>0
r(4n)=r(n)+1, n>1
r(4n+2) =r(n) + 1, >0

Reinterpreting this definition for r, we see that r(n) is equal to the

length of the (unique) factorization of (n)> into the factors 1, 00,

and 10.

It now follows that

(a) The smallest m such that r(m) =nis m=2"—1,

(b) The largest m such that r(m) = nis m = |22"*1/3], with
(m)2 = (10)".
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An example: the period-doubling word

Similarly, we can use Walnut to determine the smallest period p of
every length-n prefix of d. We use the predicate

pdip(n, p) := pdp(n,p) A Vq (1< q<p) = pdp(n,q).

This gives the automaton

[1,0] ‘ 9 0.17 (001, [1,0]
[1,1] ‘
OO

Inspection of this automaton shows that least period of the prefix

of length nis, for s > 2, equal to 32572 for 2° < n < 5-25"2 and
25 for 5-2572 < n < 251, So the ice of every length-n prefix of d
for 2t —1<np<2ttl —2 js2 217t

(0,0]

The result now follows. 32/36



Shortest overlap-free binary word with p periods

Recall that an overlap is a word of the form axaxa, where a is a
single letter and x is a (possibly empty) word. An example in
English is the word alfalfa. We say a word is overlap-free if no
finite factor is an overlap.

Define f(p) to be the length of the shortest overlap-free binary
word having p nontrivial periods.

Theorem. We have (1) =2, f(2) =5, and

f(p) < -4P*2+§ for p> 3.
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Shortest overlap-free binary word with p periods

Proof sketch. Define 1(0) = 01 and (1) = 10. If w = axa for a
single letter a, define y(w) = a~*u?(w)a~!. Furthermore define

A _ ] 001001100100, if n=3;
" (A1), if n> 4.

Then we can prove by induction that A, is a overlap-free
palindrome with n nontrivial periods for n>3. ®
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Shortest squarefree ternary word with p periods

Recall that a square is a word of the form xx, where x is a
nonempty word. An example in English is the word murmur. We
say a word is squarefree if no finite factor is a square.

Define g(p) to be the length of the shortest squarefree ternary
word having p nontrivial periods.

Theorem. We have g(1) =3, g(2) =7, and

17 1
g(p)sﬁ-ﬂ’*wg for p > 3.
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Open problems

1. Prove that the bound for binary overlap-free words f(p)
obtained above is optimal.

2. For ternary squarefree words, determine the asymptotic
behavior of g(p).

3. Find an exact expression for the limit, as n — oo, of the
expected value of ice of the length-n words over a k-letter
alphabet. For example, for kK = 2, this seems to be about
2.494.
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