The Logical Approach to Automatic Sequences

Part 4: Enumeration and Automatic Sequences

Jeffrey Shallit
School of Computer Science, University of Waterloo
Waterloo, Ontario N2L 3G1
Canada
shallit@cs.uwaterloo.ca
https://cs.uwaterloo.ca/"shallit

/56

Main points of today's talk

» Many quantities dealing with k-automatic sequences are
k-regular
» Many quantities dealing with automatic sequences can be
“automatically” enumerated
» That is, we can algorithmically construct a polynomial-time

algorithm to enumerate the quantity, given a first-order
formula describing it

» We should add this to our “combinatorial arsenal” of
techniques, along with more traditional enumeration decision
methods (Wilf, Gosper, Zeilberger, etc.)

> In between k-automatic and k-regular is k-synchronized,
which gives even faster algorithms for enumeration in some
cases

What is a formula?

» Traditional (vague) answer: an expression involving traditional
operation such as addition, subtraction, multiplication,
division, exponentiation, and perhaps additional functions
such as factorial, binomial coefficient, trig and inverse trig
functions, n'th roots, logarithm, floor, ceiling, summation,
product, special functions, and so forth.

» Modern (precise) answer: an enumeration formula is an
algorithm that runs in little-o of the time required to actually
list the things being enumerated.

» A good formula is one that runs in time polynomial in n and
the output size.

> A very good formula is one that runs in time polynomial in
log n and the output size.

» See Herb Wilf, What is an answer?, Amer. Math. Monthly
89 (1982), 289-292.

Enumerating aspects of automatic sequences

Many papers in the literature are concerned with enumerating
various aspects of automatic sequences.

For example: subword complexity p(n), the number of distinct
factors of a sequence of length n.

A classic result of Cobham: for automatic sequences p(n) = O(n).

For morphic sequences it is possible for the subword complexity to
be as high as Q(n?): for example, the fixed point, starting with a,
of the morphism a — ab, b — bc, and ¢ — c:

abbcbccbceececbeccebeccecbeccccecbeccecccebeccececccecbeccecceece - - -

Other aspects of enumeration

Palindrome complexity: the number of distinct factors of length n
that are palindromes. (See Allouche, Baake, et al., 2003)

Unbordered complexity: the number of distinct factors of length n
that are unbordered. (See Currie and Saari 2009)

Reversal complexity: the number of distinct factors of length n
whose reversals are also factors.

Conjugate complexity: the number of distinct factors of length n
whose conjugates are also factors.

Squares: the number of distinct factors of length 2n that are
squares of order n. (Order of square xx is |x]|.)

The punch line

If P is a property of the factors of a k-automatic sequence that is
expressible in a first-order formula, then the number fp(n) of such
length-n factors is k-regular.

This means there is a linear representation, in terms of matrices
and vectors for computing fp(n).

This always gives an algorithm Ap to compute fp(n) that runs in
O((log n)3) time: a very good formula!

However:
» Given P, finding the algorithm Ap might take a huge amount
of time (depending on P)
» the constant factor in the O((log n)3)-time algorithm might
be ridiculously large.

Nondeterministic automata and path cardinalities

Theorem. Given an NFA M = (Q, ¥, J, qo, F) define a
matrix-valued morphism

p(a)ij = number of paths labeled a from g; to g;.

Then for words x the quantity 1i(x);; is the number of paths
labeled x from g; to g;.

Proof. By induction on the length of the path.

Corollary. Let v=[100 --- 0], where there is 1 in the position
of the start state qo, and w' a boolean vector with 1's in positions
of the final states. Then vu(x)w’ > 0 if and only if x is accepted
by M.

k-regular sequences and enumeration

k-regular sequences and their connections to automata give a
framework for enumerating these aspects of automatic sequences.

Basic idea:

Theorem. Let S C N x N. Given a DFA accepting the language
L={(i,n)k : (i,n) €S},

the function
fs(n)=|{i : (i,n) € S}|

is k-regular.

Proof. From the DFA M accepting L, make an NFA M’ by
projecting each label on a transition to its second coordinate.
Thus, for example, transitions labeled [0,1] and [1, 1] from g; to g;
get projected to two arrows labeled 1 from g; to g;.

Now use the theorem about NFA's.

An example: counting palindromic factors

How do we count, for example, the palindromic factors of length n
— call it f(n) — of an automatic sequence such as t ?

An obvious first try is to consider the language
Lpar = {(i,n)2 : Sli..i+ n—1] is a palindrome }.

However, this doesn't work because each n can have many
different i associated with it, and we are double- (or triple- or
more) counting the same palindrome many times.

What we need to do is count a single i for each distinct palindrome.
The easiest way to do this is to count, not occurrences of
palindromes, but first occurrences of palindromes in the sequence.

Thus what we really want is

Lpar = {(i,n)2 : Sli..i+ n—1] is a palindrome and any
occurrence of the same factor S[j..j + n— 1] has j > i}

Counting palindrome factors

We can do this with the first-order formula

(VI (I<n)y=S[i+=S[(i+n)—(+1)])
A (Vj(Ym (m<n)= S[i+m]=S[j+m])=(>1i)).

In Walnut, for the Thue-Morse sequence, this is:

eval tmpalc "(Al (1<n) => T[i+1] = T[(i+n)-(1+1)]) &
(Aj (Am (m<n) => T[i+m] = T[j+m]) => (G>=i))":

10/56

Getting the matrices from Walnut

The latest version of Walnut allows one to obtain the matrices (in
Maple format) corresponding to a formula. The syntax is

eval tmpalc n "(Al (1<n) => T[i+l] = T[(i+n)-(1+1)]) &
(4j (Am (m<n) => T[i+m] = T[j+m]) => (§>=i))":

Here “n” can be replaced by any list of free variables.

The result is stored (in this case) in the file tmpalc.mpl.

11/56

(]
(7]
e
O
=
o)
>
L=
T
G
(@)
>
=
X
<2
o
£
O
(U]
(]
£
(©)
O
=
“©
o

0011000000000O0GO0O0]

00100000C1000O0O0CO0O

0000O0O0OO0OO0O0O1O0O0OO0OT1O00

0000O0O0OO0OCO0COOOOOT1IO00

0000O00O0OO0COOOOOOO0O)]

[11 0010000000000 O]

Vv =

11000000O0OO0OO0OOCOOODO

000000O0O0OO0O1100O0O0CDO0

0000O00100O0O0OO0OT1IO0GO0CO

0000O0CO0COOO0OO0OOOOOTLIO

000000O0OO0OC11TO0O0O0OO0OTO0O)]

We find, for f(n) the number of palindromes of length n of the

Thue-Morse sequence

w=[1011000010001000]"

12/56

Palindrome complexity of Thue-Morse

When we compute the first few terms of the palindrome
complexity using these matrices we find

10 11 12 13 14 15 16 17 18 19 20
4 0 4 0 2 0 2 0 4 0 4

n |01 2 3 4
)1 2 2 2

56 7 8 9
f(n 0 4040

This data suggests that the palindrome complexity for t is bounded
above by 4.

How could we prove this?

13/56

The semigroup trick

We know that
f(n) = vu((n)2)w
for the vectors v, w and matrices (0), p(1).

We can compute the size of the semigroup generated by £(0) and
(1) using a queue-based algorithm.

It is 68.

By computing vMw for all M in this semigroup, we see that
f(n) € {0,1,2,4}.

14 /56

The semigroup trick

Now we can contruct a 2-DFAQ out of all possible products Mw,
with output of each state Mw equal to vMw.

When we do this, we get an automaton with 68 states that can be
minimized to one with 14 states:

15/56

Minimal linear representations

There is an algorithm to minimize linear representations.
The result is a representation of smallest rank.
It may not be unique.

For example, when we run it on the matrices for palindrome
complexity of Thue-Morse we get the following minimized
representation:

V=[100000 0]

r1 0 0 0 0 O 07 01 o o0 o0 o0 O

00100 0 O 00 o 1 o0 0 O

00001 0 O 0600 0 0 0 1 0

2 3 _3 1 2

M/(O): 000 00O 0 1 M’(l): 00 5 -5 T5 10 5
0o 6 Ll 1 _7 1

5 5 5 0 5 00 o0 o o0 1 O

002 2 2% -2 2 00 0 0 0 1 0
1 6 1 71

L0 0 5 5 5 15 5 oo % & & § -§]

w=[122220 4]

16 /56

Finding relations from the matrices

The function f(n) for palindrome complexity of Thue-Morse
satisfies

f(4n+3) =f(4n+1)
f(8n) =f(2n)+f(2n+1)—f(4n+1)
f(8n+1)=f(4n+1)
(8n+4)—f(8n+2)
f(8n+5) =
(16n+6)—f(4n+1)+f(4n+2)
f(16n+10) = f(4n+1) + f(4n+2)
f(16n+ 14) = f(4n+ 2)
f(32n+2) = f(8n+2)
f(32n+18) = f(8n + 6)

17 /56

Determining the relations from the matrices

We can mechanically find the relations for any given k-regular
sequence g.

Suppose we are given the linear representation of a k-regular
sequence g, that is, vectors v, w and matrices My, My, ..., Mx_1
such that

g(n) = vMa Ms, - - - Maw,

where ajay - - - aj = (n)x.

To make this really work perfectly you need to first insure that
vMpy = v. But if you are willing to give up the relations at n =0
this is not absolutely necessary. (This is because of the “leading
zeroes" problem; if the canonical representation for n is x, then the
canonical representation for 2n is x0 — except if n =0, when it is
just x. So if vMow # vw, you have a small problem.)

18 /56

Determining the relations from the matrices

Now let M be arbitrary and consider vM as a vector with variable
entries, say [a1, az, ..., aq].

Successively compute vMM, w for words y of length 0,1,2,...
over Y, ={0,1,..., k — 1}; this will give an expression in terms of
the variables ay, ..., aq4.

After at most d + 1 such relations, we find an expression for

vMM, w for some y as a linear combination of previously
computed expressions.

When this happens, you no longer need to consider any expression
having y as a suffix.

Eventually the procedure halts, and this corresponds to a system of
equations for g.

19 /56

Determining the relations from the matrices

Example: Let k =2, v =1[6,1], w = [2,4]", and
-3 1
o - [7 4]
0 2
- 5]

Suppose M is some product of My and Mj, and suppose
vM = [a, b]. We find

vMw = 2a-+4b

vMMow = —2a+18b
vMMiw = —8a—2b
vMMoMow = 24a+70b

vMMiMow = 36a+ 24b

20 /56

Determining the relations from the matrices

Solving the linear system, we get

35 9
vMMiw = ﬁvMW—ﬁvl\/low
vMMoMow = 13vMw + vMyw
174 24
vMM{Mow = ivl\/lw—ﬁvl\/low.
This gives us, for n > 1, that
35 9
g2n+1) = > g(n)+ g(2n)
g(4n) = 13g(n) + g(2n)
174 24
4 2) = — — —g(2
glan+2) = “g(n)~ 22g(2n)

In practice this could be speeded up by not letting vM be
completely symbolic, but computing the transitive closure of

T := (Mo OR M) and putting 0's in the entries that correspond
toQ'sin T.

21/56

Counting palindrome occurrences in Thue-Morse prefixes

A small variation of our technique allows us to compute the
number g(n) of nonempty palindromes (not necessarily distinct)
occurring in prefixes of length n of t.

We need a formula asserting that a palindrome occurs in a prefix
of length n:

(i+¢<n) AN (Vj<Itli+j]=tli+I—-(+1)]).

In Walnut this is

eval palpref n "(1>0) & (i+l<=n) & (Aj (j<1) =>
(Tli+j] = TLi+1-(G+1D1))":

The result is a linear representation of rank 29.

It can be minimized to a linear representation of rank 9 on the
next slide.

22 /56

Counting palindrome occurrences in Thue-Morse prefixes

The linear representation for g(n) is given by

v=[10000000 0]

l o~ oo

n(0) =

ANV OOOCOOO
O wrHOOOOoH
PO NMOOOCOOOO
JBL»J»—'H
O wWHOOOOOoOOo

-
=
|
-
<)
=
o

N wWoOoorOoO
owrol cooo
—
OwWooOrFOOO
=
[
=
Il
T |
cocoocoococooooo

T 1
[=NeNeoNeNoNoNeNaol S

—
o
|
—
2
N

w=[0 12468 10 12 18]

If we want to get asymptotics for g(n), we can consider n of the
form 2k,

This corresponds to understanding the asymptotics of the entries
of vu(1)p(0)<w.
For this it suffices to understand the asymptotics of 1(0)X.

23 /56

Counting palindrome occurrences in Thue-Morse prefixes

Since £4(0) satisfies its own minimal polynomial p(X), the entries
of 1(0)k all satisfy a linear recurrence of order at most 9, which
can be deduced from p(X).

In Maple the minimal polynomial can be computed with the
commands

with(linalg);
factor (minpoly (m0,X)) ;

and we get

p(X) = (X +2)(X —2)*(X —1)3(X +1)3.

24 /56

Counting palindrome occurrences in Thue-Morse prefixes

From the fundamental theorem of linear recurrences this means
that viu(1)u(0)kw can be expressed in the form

c1(=2) 4 (c2 + c3k)2K + ¢4 + csk + ck® + (c7 + cgk + cok®)(—1)*.

When we solve for the constants, we get

a=1/24 ¢ =37/72 c3=5/12 ¢ =1/3
=0 =0 ¢=1/9 =0 =0
1 37 1 5 1
2k —ok —k2k 4 2 (—D)k.
0 8(27) = 5 72 T3tk gty
This gives the asymptotics of g(2*) as ©(k2), and so
g(n) = O(nlog n).
In general, more detailed asymptotics may require understanding
the joint spectral radius, which is not easy to compute.

—(-2)+

25 /56

Counting palindrome occurrences in Thue-Morse prefixes

Exercise: Do the same thing for counting the number g’(n) of
distinct palindromes occurring in a prefix of length n of the
Thue-Morse sequence.

— Find the formula
— Find a linear representation

— Find a closed form for g’(2%)

26 /56

Summary of results provable with the method

If a = (an)n>0 is a k-automatic sequence, then the following
associated sequences are (effectively) k-regular.

> its subword complexity function, n — number of distinct
factors of length n

» Previously known for fixed points of k-uniform morphisms
(Mossé, 1996)

> its palindrome complexity function, n — number of distinct
factors of length n that are palindromes

» Previously known for fixed points of primitive k-uniform
morphisms (Allouche, Baake, Cassaigne, Damanik, 2003)

> its sequence of separator lengths (length of smallest factor
that begins at position n and does not occur previously)
» Previously known for fixed points of k-uniform circular
morphisms (Garel, 1997)

27 /56

Summary of results

If a = (an)n>0 is a k-automatic sequence, then the following
associated sequences are k-regular sequences:

» the number of distinct square factors of length n; the number
of squares beginning at (centered at, ending at) position n;
the length of the longest square beginning at (centered at,
ending at) position n; the number of palindromes beginning at
(centered at, ending at) position n; the number of distinct
recurrent factors of length n; etc.,

» Previously known for the Thue-Morse sequence (Brown,
Rampersad, Shallit, Vasiga, 2006)

28 /56

New results

If (an)n>0 is a k-automatic sequence, then the following associated
sequences are k-regular sequences:

» The recurrence function of a, n — the smallest integer t such
that every factor of length t of a contains every factor of
length n

» The appearance function of a, n — the smallest integer t
such that the prefix of length t of a contains every factor of
length n

29 /56

Other computable functions

» Given a regular language L encoding a set S of pairs of
integers, the quantity sup(, q)es g is either infinite or rational,
and it is computable

» The critical exponent of an automatic sequence (exponent of
the largest power of any factor) is a rational number and is

computable.

» The optimal constant for linear recurrence for an automatic
sequence is rational and computable.

30/56

Linear recurrence

A sequence a = (ap)n>0 is linearly recurrent if there is a constant

C such that for all £ > 0, and all factors x of length ¢ occurring in
a, any two consecutive occurrences of x are separated by at most

C/ positions.

Given a, can we determine the smallest value of C that works?

The idea is, given the automaton for a, to construct an automaton
accepting the language of pairs (d, ¢) such that

(a) there is some factor of length ¢ for which there is another
occurrence at distance d and

(b) this occurrence is actually the very next occurrence.

Then sup(y ¢)es % gives the optimal C.

31/56

Synchronized sequences

In some cases, the sequence we are trying to enumerate, in addition
to being k-regular, has a stronger property: it is k-synchronized.

A sequence (sp)n>0 over N is k-synchronized if there is a DFA
accepting the language

L={(n,sn)x : n>0}.

32/56

Synchronized sequences

Example. The function f(n) = n+ 1 is k-synchronized. For
example, for k = 2, the following automaton suffices:

[0,0], [1,1]

33/56

Why synchronized sequences?

» If f(n) is k-synchronized, then
we can compute f(n) in O(log n) time

» If f(n) is k-synchronized, then f(n) = O(n)

» If f(n) is non-decreasing and k-synchronized, then either

f(n) =0©(1) or f(n) = ©(n)

34/56

Efficient computation of synchronized sequences

To compute f(n) in O(log n) time:

» On input n, construct the O(log n)-state machine M’
accepting those words with first component of the form
0*(n)k and second component anything

> Intersect, using the familiar direct product construction, with
the DFA M accepting { (n,f(n))x : n>0}

» Resulting automaton accepts exactly one word
» Find accepting path using depth-first search
» Label of accepting path gives f(n) in base k

35/56

Growth bounds

Theorem. If f(n) is k-synchronized, then f(n) = O(n).

Proof.

» Suppose f is k-synchronized and accepted by a DFA with ¢
states.

» If f(n) # O(n), then there exists n such that f(n) > k'n.

» So the base-k representation of (n, f(n)) starts with at least t
zeros in the first component, and a nonzero symbol in the
second component.

» Apply the pumping lemma to z = (n, f(n))x
> We see that “pumping” gives a new word in the language
with n unchanged, but f(n) increased.

» But f is a function, a contradiction. H

36 /56

Closure properties of synchronized sequences

The class of k-synchronized sequences is closed under

> sum

» N-linear combination

» f(n) — |af(n)] for « rational

> term-wise maximum and minimum

> running maximum: g(n) = maxo<j<n (i)
» discrete inverse: g(n) = min{i : f(i) > n}

» composition

37/56

Many aspects of k-automatic sequences are k-synchronized

Example: the appearance function.

Ax(n) = length of shortest prefix of x containing all length-n
factors of x

= the smallest integer t such that every length-n factor of x
occurs at least once in x[0..t — 1].

= t such that every length-n factor of x occurs in x[0..t — 1]
but the length-n factor ending at position t — 1 occurs exactly
once in x[0..t — 1]

38/56

Appearance function formula

L={(nt)xy : Vi>03j<t—n
such that x[i..i+n—1] =x[j.j + n— 1]
and Vi< t—n
X[0..6 +n—1] # x[t — n..t — 1]}.

39/56

Other synchronized functions

» separator function: length of the shortest factor of x

beginning at position n that never appeared previously in x
(Carpi & Maggi, 2001)

> repetitivity index: the minimal distance between two

consecutive occurrences of the same length-n factor in x
(Carpi & D’Alonzo, 2009)

» recurrence function: size of the smallest “window” always
guaranteed to contain all length-n factors in x (Charlier &
Rampersad & S, 2011)

40 /56

Subword complexity

px(n) = number of distinct length-n factors of x

» known to be k-regular
» known to be O(n) for k-automatic sequences

> this suggests it could be k-synchronized

41/56

Novel occurrences

Call a length-n factor novel at position i if it occurs there but in
no earlier location.

Here is a formula for novel factors:

{(n,i)k : Vj,0<j<i x[i.i+n—=1]#x[j.j+n—1]}

Theorem. In any sequence of linear complexity, the starting
positions of novel occurrences of factors are “clumped together” in
a bounded number of contiguous blocks.

42 /56

Novel factors for Thue-Morse

Consider the Thue-Morse sequence
t =tptitr--- = 0110100110010110- - -,

The gray squares in the rows below depict the evolution of novel
length-n factors in the Thue-Morse sequence for 1 < n < 9.

0123 45 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24
0110100110010110100101100

-
=

I
—_

© 0N s W o S

43 /56

Bound on number of contiguous blocks

Theorem. Let x be an infinite word. For n > 1, the number of
contiguous blocks of starting occurrences of novel factors in row n
is at most px(n) — px(n—1) + 1.

Proof. By induction on n. Base case easy.

Assume true for n — 1. We prove for n.

Every position marking the start of a novel occurrence is still novel.
Further, in every block except the first, we get novel occurrences
at one position to the left of the beginning of the block.

So if row n — 1 has t contiguous blocks, then we get t — 1 novel
occurrences at the beginning of each block, except the first.

44 /56

Bound on number of contiguous blocks

The remaining px(n) — px(n — 1) — (t — 1) novel occurrences could
be, in the worst case, in their own individual contiguous blocks.

Thus row n has at most t + px(n) — px(n — 1) — (t — 1)
= px(n) — px(n — 1) + 1 contiguous blocks.

45 /56

Bound for Thue-Morse

For Thue-Morse example, it is well-known that
pe(n) — pe(n—1) < 4.

So the number of contiguous blocks of novel factors is at most 5.

This is achieved, for example, for n = 6.

46 /56

Linear complexity

Corollary. If the sequence x has linear complexity (that is,

px(n) = O(n)), then there is a constant C such that every row in
the evolution of novel occurrences consists of at most C
contiguous blocks.

Proof. By a deep result of Cassaigne (1996) we know that there
exists a constant C such that px(n) — px(n — 1) < C — 1. Hence
from our result, there are at most C contiguous blocks in any row.

47 / 56

Subword complexity of automatic sequences is

k-synchronized

Theorem. Let x be a k-automatic sequence. Then its subword
complexity function py(n) is k-synchronized.

Proof. Construct a DFA to accept
{(n,m)x : n>0and m=pg(n)}.

There is a finite constant C > 1 such that the number of
contiguous blocks of novel factors is bounded by C.

Nondeterministically “guess” the endpoints of every block and
then verify that each factor of length n starting at the positions
inside blocks is a novel occurrence, while all other factors are not.

Finally, verify that m is the sum of the sizes of the blocks.

48 / 56

A corollary

Corollary. Given a k-automatic sequence X, there is an algorithm
that, on input n in base k, will compute the subword complexity
px(n) expressed in base k in time O(log n).

49 /56

Example: subword complexity for Thue-Morse

1,0]

10 _Dioil 12 i

.11 £1,0>0,1]

13 :)0,0]

S

50 /56

Applications: an improvement on Goldstein

Corollary. There is an algorithm, that, given a k-automatic
sequence x, will compute

> sup,>1 px(n)/n,

> limsup,>1 px(n)/n,

> inf,>1 px(n)/n, and

> liminf,>1 px(n)/n.
Proof. We already showed how to construct an automaton

accepting {(n, px(n))x : n > 1}. Using Schaeffer & S (2012), we
can compute the sup, limsup etc.

51/56

Theorem. If x is k-automatic, then the following are
k-synchronized:

» the function counting the number of distinct length-n factors
that are powers;

» the function counting the number of distinct length-n factors
that are primitive words.

52 /56

Sketch of proof

Main ideas:

» A word x is a power if and only if there exist nonempty words
¥,z such that x = yz = zy.

» Thus, we can express the formula P(i,j) := “x[i..j] is a
power” as follows: “there exists d, 0 < d <j — i+ 1, such
that x[i..j — d] = x[i + d..j] and
X[j—d+1.j]=x[i..i+d—-1]".

» Furthermore, we can express the formula P'(i, n) :=
“x[i..i + n — 1] is a length-n power and is a novel occurrence
of that factor in x".

» We show that once again the novel occurrences of length-n
powers are clustered into a finite number of blocks.

53 /56

Sketch of proof

» Then we can nondeterministically guess the endpoints of these
blocks, and verify that the length-n factors beginning at the
positions inside the blocks are novel occurrences of powers,
while those outside are not, and sum the lengths of the
blocks, using a finite automaton built from M.

» So the counting function for powers is k-synchronized.

» The number of length-n primitive words in x is then also
k-synchronized, since it is expressible as the total number of
words of length n, minus the number of length-n powers.

54 /56

Unsynchronized sequences

Are other aspects of k-automatic sequences always k-synchronized?
No.

Recall that a word w is bordered if it has a nonempty prefix, other
than w itself, that is also a suffix. Alternatively, w is bordered if it
can be written in the form w = tvt, where t is nonempty.
Otherwise a word is unbordered.

55 /56

Unsynchronized sequences

Theorem. The characteristic sequence of the powers of 2

¢ = 0110100010 - - is 2-automatic, but the function uc(n)
counting the number of unbordered factors is not 2-synchronized.
Proof. It is not hard to verify that c is 2-automatic and that c has
exactly r + 2 unbordered factors of length 2" 4+ 1, for r > 2 —
namely, the factors beginning at positions 2/ for 0 < i < r — 1, and
the factors beginning at positions 21 and 3 - 2. However, if
uc(n) were 2-synchronized, then reading an input where the first
component looks like 0'10"~11 (and hence a representation of

2" + 1) for large r would force the transitions to enter a cycle. If
the transitions in or before the cycle contained a nonzero entry in
the second component, this would force u¢(n) to grow linearly with
n when n is of the form 2" + 1. Otherwise, the corresponding
transitions for the second component are just Q’s, in which case
uc(n) is bounded above by a constant, for n of the form 2" + 1.
Both cases lead to a contradiction. O

56 /56

