
The Logical Approach to Automatic Sequences
Part 2: Logic and Automata

Jeffrey Shallit
School of Computer Science

University of Waterloo
Waterloo, Ontario N2L 3G1

Canada
shallit@cs.uwaterloo.ca

https://cs.uwaterloo.ca/~shallit

1 / 32

Outline of today’s talk

In this talk we will explore the work of Presburger, Büchi, Bruyère,
Point, Villemaire, and Hodgson relating automata to logic.

2 / 32

From Monday: Formal definition of our automaton model

Formally, a deterministic finite automaton with output (DFAO) is a
6-tuple M = (Q,Σ, δ, q0,∆, τ) as follows:.

I Q is a finite nonempty set of states;.

I Σ is the input alphabet (usually Σk);.

I δ : Q ×Σ→ Q is the transition function, which is extended to
Q × Σ∗;.

I q0 is the initial (or “start”) state;.

I ∆ is the output alphabet;.

I τ : Q → ∆ is the output map.

3 / 32

From Monday: Deterministic finite automata (DFA’s)

A different, slightly simpler model:.

I No output function, just a distinguished set of states F called
the final or accepting states.

I An automaton accepts a word w if processing w takes M
from q0 to a state of F .

I The language accepted by automaton M, written L(M), is the
set of all words accepted.

I A language is regular if it is accepted by some DFA

I There is an efficient algorithm to find the (unique) minimal
DFA equivalent to a given DFA (e.g., Valmari).

4 / 32

Nondeterministic automata

We will need another model of automata: nondeterministic
automata (NFA).

I like deterministic automata, except that from each state there
can be 0, 1, or more transitions on a single symbol

I Acceptance is defined by the existence of some path from the
initial state to the final state, labeled by the input

I The transition function δ now has domain Q × Σ and range
2Q .

I We can convert an NFA to an equivalent DFA with a
construction called the “subset construction”; its states are
subsets of states of the original automaton.

I In the worst case, an NFA with n states can require as many
as 2n states in an equivalent DFA.

5 / 32

Example of a nondeterministic automaton

A classic example: a nondeterministic machine accepting the set of
all binary strings having a 0 symbol in the fourth position from the
end:

q0

0,1

q10 q20,1 q30,1 q40,1

Small problem: it is not easy to take the complement of a
nondeterministic automaton.

One must first convert the NFA to a DFA.

6 / 32

Hilbert’s dreams

I To show that every true statement is provable (killed by
Gödel)

I To provide an algorithm to decide if an input statement is
provable (killed by Turing)

I Nevertheless, some subclasses of problems are decidable —
i.e., an algorithm exists guaranteed to prove or disprove any
statement

7 / 32

First-order logic

By first-order logic, we mean the set of all formulas formed from

I any finite number of variables that can take values in some
domain;

I equality defined on variables;

I possibly other comparison operators that can be applied to
variables, such as less than, greater than, etc., depending on
domain;

I possibly other functions applied to the variables, such as
addition or multiplication;

I logical operations such as and (∧), or (∨), logical
implication (=⇒), iff (⇐⇒), and not (¬);

I quantifiers, such as for all (∀) and there exists (∃).

8 / 32

First-order logic

I Variables can be either bound (by a quantifier) or unbound.

I If all variables are bound, then we can assign a truth value to
the formula.

I If some variables are unbound, then we can consider the set of
all values of the variables for which the formula is true.

A first-order logical theory is decidable if there is an algorithm
that, given a well-formed formula with all variables bound, will
decide its truth.

In the case of unbound variables, we’d like to algorithmically
construct the representations of all integers for which the formula
is true.

9 / 32

Presburger arithmetic

Presburger arithmetic is Th(N,+), the first-order theory of the
natural numbers N = {0, 1, 2, . . .} with addition.

Mojżesz Presburger (1904–1943)
(died in the Holocaust)

10 / 32

Presburger arithmetic

I Sometimes Presburger arithmetic is written to include <, the
“less-than” operator

I But it is not really needed, since the assertion x < y is
equivalent to ∃z (z 6= 0) ∧ y = x + z .

11 / 32

Example: The Chicken McNuggets Problem

A famous problem in elementary arithmetic books in the US:

At McDonald’s, Chicken McNuggets are available in packs of
either 6, 9, or 20 nuggets. What is the largest number of
McNuggets that one cannot purchase?

12 / 32

Presburger arithmetic

In Presburger arithmetic we can express the “Chicken McNuggets
theorem” that 43 is the largest integer that cannot be represented
as a non-negative integer linear combination of 6, 9, and 20, as
follows:

(∀n > 43 ∃x , y , z ≥ 0 such that n = 6x + 9y + 20z) ∧
¬(∃x , y , z ≥ 0 such that 43 = 6x + 9y + 20z). (1)

Here, of course, “6x” is shorthand for the expression
“x + x + x + x + x + x”, and similarly for 9y and 20z .

13 / 32

More examples

x is even:
∃y x = y + y

definition of the number x = 1:

(x 6= 0) ∧ (∀y (y 6= 0) =⇒ y ≥ x)

commutativity of addition:

∀x ∀y (x + y = y + x)

14 / 32

Presburger’s theorem

Presburger proved that Th(N,+, 0, 1) is decidable: that is, there
exists an algorithm that, given a well-formed formula in the theory,
will decide its truth.

He used quantifier elimination.

15 / 32

Decidability of Presburger arithmetic: Büchi’s proof

J. Richard Büchi found a much simpler proof of Presburger’s
result, based on automata. It gives us automata for the unbound
variable case, too!

Ideas:

I represent integers in an integer base k ≥ 2 using the alphabet
Σk = {0, 1, . . . , k − 1}.

I represent n-tuples of integers as words over the alphabet Σn
k ,

padding with leading zeroes, if necessary. This corresponds to
reading the base-k representations of the n-tuples in parallel.

I For example, the pair (21, 7) can be represented in base 2 by
the word

[1, 0][0, 0][1, 1][0, 1][1, 1].

16 / 32

Büchi’s proof

I Automata will accept words over the alphabet Σn
k representing

n-tuples of integers

I The language accepted is the set of all n-tuples of integers for
which the formula (or subformula) is true

I Parsing the formula corresponds to performing operations on
automata

I For example, if automaton M corresponds to some formula ϕ,
then ¬ϕ can be obtained by changing the “finality” of M’s
states: a final state becomes non-final and vice-versa

I Care is needed to handle the “leading zeroes” problem

17 / 32

Decidability of Presburger arithmetic

I The relation x + y = z can be checked by a simple 2-state
automaton depicted below, where transitions not depicted
lead to a nonaccepting “dead state”.

{[a,b,c] : a+b = c} {[a,b,c] : a+b+1 = c}
{[a,b,c] : a+b+1=c+k}

{[a,b,c] : a+b = c+k }

carry

no
carry

18 / 32

Decidability of Presburger arithmetic: proof sketch

I Relations like x = y and x < y can be checked similarly.
(exercise)

I Given a formula with free variables x1, x2, . . . , xn, we construct
an automaton accepting the base-k expansion of those
n-tuples (x1, . . . , xn) for which the proposition holds.

I If a formula is of the form ∃x1, x2, . . . xn p(x1, . . . , xn), then
we use nondeterminism to “guess” the xi and check them.

I If the formula is of the form ∀p, we use the equivalence
∀p ≡ ¬∃¬p; this may require using the subset construction to
convert an NFA to a DFA and then flipping the “finality” of
states.

I Ultimately, if all variables are bound, we are left with a single
state machine that either accepts (formula is true) or rejects
(formula is false)

19 / 32

The bad news

I The worst-case running time of the algorithm above is
bounded above by

22
..

.2p(N)

,

where the number of 2’s in the exponent is equal to the
number of quantifier alternations, p is a polynomial, and N is
the number of states needed to describe the underlying
automatic sequence.

I The bound for Presburger arithmetic can be improved to
double-exponential.

20 / 32

The proof using automata

A couple of additional tricks: if the last quantifiers are ∃, all we
need to do is check to see if the resulting automaton accepts some
word.

In this case, we do not need to convert an NFA to a DFA.

We can check acceptance with depth-first search, by seeing if there
is a path in the automaton from the initial state q0 to a state of F .
This can be done in time linear in the size of the automaton.

Similarly, if we want to know if there are infinitely many integers
for which some formula holds (which is sometimes written ∃∞) we
just need to check for which states q there is a nonempty cycle
beginning and ending at q (which can be done using depth-first
search), and then check to see if there is a path from q0 to q and
q to a final state. Again, linear time.

21 / 32

Some subtleties

Every integer has infinitely many representations!

For example, 5 in base 2 can be written as 101, 0101, 00101, and
so forth.

It is best to allow all possible representations in our automata.

(If we do not, then we can run into problems working with k-tuples
of integers where one integer has a larger representation than
other.)

22 / 32

Augmenting Presburger arithmetic

As described, Presburger arithmetic isn’t so interesting (although
used, e.g., in system verification).

But if we add DFAO’s to the mix, using the same decision
procedure, we suddenly can prove theorems people actually want
to prove.

For example, we can start with a 2-DFAO M for the Thue-Morse
sequence t, write a formula for t having an overlap, and use the
decision procedure to decide it — thus reproving Thue’s 1912
result by machine.

But what is the logical theory corresponding to starting with a
DFAO?

23 / 32

Büchi’s mistake

Julius Richard Büchi (1924–1984) was apparently the first to
consider this question.

He thought one should add, to Presburger arithmetic, the function
νk(n), which is the function computing the exponent of the
highest power of k dividing n. For example, ν2(24) = 3.

This was a mistake.

The correct function to add is Vk(n), the function computing the
highest power of k, say ke , dividing n. For example, V2(24) = 8.

Exercise: show that for k ≥ 2 the theory Th(N,+,Vk) coincides
with Th(N,+,Vk2).

24 / 32

Presburger arithmetic augmented

Theorem. A set of integers is definable in Th(N,+,Vk) if and
only if its characteristic sequence is k-automatic.

Proof. First we show how to construct a finite automaton Mϕ

corresponding to any formula ϕ of Th(N,+,Vk).

The idea again is that Mϕ will accept the base-k representations of
all n-tuples (x1, x2, . . . , xn) of natural numbers making
ϕ(x1, x2, . . . , xn) true.

We use the least-significant-digit first representation for numbers.

We observe that Th(N,R+,RVk
) is equivalent to Th(N,+,Vk),

where R+(x , y , z) is the relation x + y = z and RVk
(x , y) is the

relation Vk(x) = y .

We already saw automata for addition, so it suffices to give an
automaton for Vk(x) = y . (Exercise)

25 / 32

Presburger arithmetic with Vk is decidable

Corollary. The theory Th(N,+,Vk) is decidable.

Proof. We can decide if a formula in Th(N,+,Vk) is true, just as
with Presburger arithmetic, by creating the automaton associated
with the formula and checking if it accepts.

26 / 32

Presburger arithmetic augmented

Next we show how to encode a binary automatic sequence
(s(n))n≥0 in Th(N,+,Vk). Actually we encode {n : s(n) = 1}
and we use the equivalent theory Th(N,R+,RVk

).

The basic idea, given an integer x for which s(x) = 1, is to encode
another integer y that gives the sequence of states x encounters as
it is processed by the automaton.

To do so we need new relations

ej ,k(x , y)

for 0 ≤ j < k. The meaning of this relation is that y is some
power of k , say y = ke , and the coefficient of ke in the base-k
representation of x is equal to j .

We also need λk(x), which is the greatest power of k occurring
with a nonzero coefficient in the base-k representation of x . By
definition we set λk(0) = 1.

We also need Pk(x), which is true if x is a power of k and false
otherwise. 27 / 32

Presburger arithmetic augmented

Now we show how to express ej ,k(x , y) and λk(x) and Pk(x) in
Th(N,+,Vk).

Pk(x) is the easiest. We have Pk(x) is the same as Vk(x) = x .

λk(x) = y is the next easiest. The basic idea is to observe that if
we trap x between two powers of k , say ke ≤ x < ke+1, then
λk(x) = ke .

So λk(x) = y is the same as

(Pk(y) ∧ (y ≤ x) ∧ x < ky) ∨ ((x = 0) ∧ (y = 1)).

Finally, we can express ej ,k(x , y) as follows: we group the powers
of k appearing in x as follows: those appearing in y , those of
exponent less than the one occurring in y , and those of exponent
greater.

28 / 32

Presburger arithmetic augmented

So ej ,k(x , y) is equivalent to

Pk(y) ∧ (∃` ∃g (x = `+jy+g) ∧ (` < y)∧ ((y < Vk(g))∨(g = 0))).

Now that we have these relations, we can encode the computation
of a DFAO with a large formula (similar to the way we encode a
Turing machine with a SAT formula):

To simplify things, we assume the DFAO has at most k states. If it
has more, another trick is needed.

The idea is to create a base-k integer y that encodes the series of
states encountered as we process the base-k digits of the input
integer x .

29 / 32

Presburger arithmetic augmented

If x =
∑

0≤i≤l aik
i , the input is a0a1 · · · al and the series of states

encountered is p0, p1, . . . , pl+1. Our formula should say that
(i) p0 = 0
(ii) δ(pi , ai) = pi+1 for 0 ≤ i ≤ l
(iii) pl+1 ∈ F .

This is

(i) e1,k(y , 1)

(ii) ∀t Pk(t) ∧ (t < z) ∧∧
δ(q,b)=q′

(
eq,k(y , t) ∧ eb,k(x , t) =⇒ eq′,k(y , kt)

)
(iii)

∨
q∈F eq,k(y , z)

Finally, the formula is

∃y ∃z Pk(z) ∧ (z > y) (z > x) ∧ (i) ∧ (ii) ∧ (iii).

30 / 32

Not all morphic sequences have decidable theories

I Consider the morphism a→ abcc, b → bcc, c → c.

I The fixed point of this morphism is

s = abccbccccbccccccbccccccccb · · ·

I It encodes, in the positions of the b’s, the characteristic
sequence of the squares.

I So the first-order theory Th(N,+, 0, 1, n→ s[n]) is powerful
enough to express the assertion that “n is a square”

I With that, one can express multiplication, and so it is
undecidable (Church, 1936).

31 / 32

Open Problems

Is the logical theory (N,+,P2,P3) decidable? Here Pk is the
predicate “is a power of k”.

We know the theory (N,+, ·) is undecidable (Church, 1936).
Is the logical theory (N,+, n→ p(n)) decidable? Here p(n) is the
primality predicate, which is true if n is prime and false otherwise.

Is the logical theory (N,+, n→ ϕ(n)) decidable? Here ϕ(n) is
Euler’s phi function, counting the number of integers ≤ n and
relatively prime to it.

Is the following problem decidable? Given two k-automatic
sequences (a(n))n≥0 and (b(n))n≥0, are there integers c ≥ 1 and
d ≥ 0 such that a(n) = b(cn + d) for all n?

32 / 32

