

Critical exponent of infinite balanced words via the Pell number system

Aseem Baranwal, Jeffrey Shallit

School of Computer Science University of Waterloo Canada

Email: shallit@uwaterloo.ca

Web : https://cs.uwaterloo.ca/~shallit/

Repetitions

Repetitions

A *square* is a nonempty word of the form *xx*, such as the English word hotshots.

An *n'th power*, for *n* a natural number, is a nonempty word of the form $x^n = \overbrace{xx \cdots x}^n$.

Periods **Periods**

A positive integer p is the *period* of a (finite or infinite) word x if x[i] = x[i+p] for all indices i that are meaningful.

For example, alfalfa has period 3.

The smallest period is called the period.

Exponents

Fractional exponent

A word x is an e'th power (or has exponent e) if e = |x|/p, where p is the (smallest) period. For example, alfalfa is a 7/3-power.

Critical exponent

The *critical exponent* of a word w is the supremum of the exponents of all nonempty factors of x. For example, Mississippi has critical exponent 7/3, arising from the factor ississi.

Repetition threshold

Repetition threshold

The *repetition threshold* of a set of infinite words S is the infimum, over all words $w \in S$, of the critical exponent of w.

- It measures the *largest unavoidable repetition*.
- For S the set of all infinite words over a k-letter alphabet,
 Dejean gave a famous conjecture about this threshold in 1972.
- Finally proven by Currie and Rampersad, and independently by Rao, in 2011.

Another example of repetition threshold

Consider the set of bi-infinite odd palindromes O_k over a k-letter alphabet.

Results from JOS (2016):

- The repetition threshold for O_2 is 7/3.
- The repetition threshold for O_3 is 7/4.
- The repetition threshold for O_k , $k \ge 4$, is 3/2.

Balanced words

- A (finite or infinite) word w is balanced if, for each letter
 a, the number of occurrences of a in two identical-length
 finite factors of w is almost the same.
- More precisely, we demand that $||x|_a |y|_a| \le 1$ for all letters a and all identical-length factors x, y of w.
- For a two-letter alphabet, the infinite balanced words are well understood.
 - They coincide with the Sturmian words, words of the form

$$(\lfloor (n+1)\alpha + \beta \rfloor - \lfloor n\alpha + \beta \rfloor)_{n \geq 1}$$

for real α, β , $0 \le \alpha, \beta < 1$.

Balanced words over larger alphabets

For larger alphabets, there is a characterization of infinite balanced words due to Hubert and Graham, independently:

- Formed by taking an infinite balanced word over a 2-letter alphabet, and replacing the 0's that occur with $x^{\omega} = xxx \cdots$ and the 1's that occur with $y^{\omega} = yyy \cdots$, where x, y are constant-gap words over disjoint alphabets.
- A word x is called *constant-gap* if, for each letter a, the distance between two consecutive occurrences of a in x^{ω} is a constant (depending on the letter).
- Example: 0102 is a constant-gap word (successive 0's occur at distance 2, 1's and 2's occur at distance 4).
- But 0120 is not constant-gap.

Example of infinite balanced word over a 5-letter alphabet

Example: start with the Sturmian word with $\alpha = \sqrt{2} - 1$ and $\beta = 0$:

Substitute $(0102)^{\omega}$ for the 0's and $(34)^{\omega}$ for the 1's to get:

This is a balanced word over a 5-letter alphabet. Call it x_5 .

Critical exponents of infinite balanced words

Imposing balance is a strong condition.

There are only polynomially-many balanced words of length n over a k-letter alphabet.

We could consider the repetition threshold of the class of infinite balanced words.

Previous work on balanced words

- For alphabet size 2, the repetition threshold is $(5+\sqrt{5})/2=3.61803\cdots$ (Damanik & Lenz; Justin & Pirillo).
- Rampersad-JOS-Vandomme proved that the repetition threshold for alphabet size 3 is $2 + \sqrt{2}/2 = 2.7071 \cdots$
- They also proved that the repetition threshold for alphabet size 4 is $(5 + \sqrt{5})/4 = 1.809 \cdots$.
- They conjectured that for $k \ge 5$, the repetition threshold for the infinite balanced words over a k-letter alphabet is (k-2)/(k-3).

Our main result

We show that the Rampersad-JOS-Vandomme conjecture is true for k = 5: the repetition threshold for infinite balanced words over a 5-letter alphabet is 3/2.

Proof sketch: Step 1:

- Only finitely many balanced words over a 5-letter alphabet have critical exponent < 3/2
 - The longest is of length 44: 01203104120130410213014021031401203104120130
 - It can be found by a depth-first search of the tree of balanced words

Our main result

Step 2:

- We construct a candidate infinite balanced word by starting with the Sturmian word $\alpha = \sqrt{2} 1$ and $\beta = 0$ and substituting 0102 for the 0's and 34 for the 1's.
- That gives us the infinite balanced word

$$\mathbf{x}_5 = 0314023041032403104230140324013042 \cdots$$

that we already constructed on a previous slide.

• We use a theorem-prover based on α -Ostrowski representations to show that \mathbf{x}_5 has critical exponent 3/2.

Ostrowski representation

- Given a real number $0 \le \alpha < 1$, we can consider its continued fraction $[0, a_1, a_2, \ldots]$.
- The truncation of the continued fraction $[0, a_1, \ldots, a_i]$ is a rational number p_i/q_i .
- The *Ostrowski* α -representation of n is a certain linear combination of the q_i .
- The n'th symbol of the Sturmian word with $\beta=0$ has a simple characterization in terms of the Ostrowski α -representation of n.

Pell representation

- The continued fraction of $\alpha = \sqrt{2} 1$ is $[0, 2, 2, \ldots]$.
- The corresponding q_i are the *Pell numbers* 1, 2, 5, 12, 29, 70... and satisfy the linear recurrence $q_i = 2q_{i-1} + q_{i-2}$.
- The *Pell representation* of n is of the form $\sum_i a_i q_i$, where $a_i \in \{0, 1, 2\}$ and furthermore $a_i = 2$ implies that $a_{i-1} = 0$.
- If an infinite word is generated by an automaton taking Pell representations as input, it is called *Pell-automatic*.

\mathbf{x}_5 is Pell-automatic, and here is the automaton:

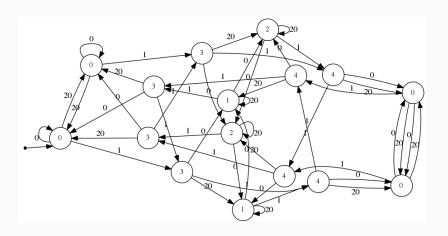


Figure 1: Automaton for the infinite word x_5 .

The Walnut theorem prover

- Walnut is a theorem prover (written by Hamoon Mousavi) that can prove or disprove theorems phrased as first-order logic predicates involving automatic sequences.
- My co-author Aseem Baranwal extended Walnut to work with Pell-automatic sequences.
- The only really hard part is building the adder: an automaton that takes x, y, z in parallel (represented in Pell representation) and checks if x + y = z.

Using Walnut

• Here is a first-order logic predicate for \mathbf{x}_5 having a power of exponent larger than 3/2:

$$\exists i \; \exists p \; (p \geq 1) \; \land \; \forall j \; (2j \leq p) \implies \mathbf{x}_5[i+j] = \mathbf{x}_5[i+j+p].$$

- When we enter this into Walnut it answers false, so x₅ has no powers larger than 3/2.
- But x₅ has the 3/2-power 032403, so this bound is optimal.

Further work

- It should be possible to prove the Rampersad-JOS-Vandomme conjecture on repetition threshold for infinite balanced words for some other alphabet sizes.
- We currently have no idea how to do it in general.
- We also don't know how to classify all constant-gap words.
- It would be nice to extend Walnut to handle all Sturmian words. This is doable.
- There is a lot more to study!

Walnut

For more about Walnut, visit

https://cs.uwaterloo.ca/~shallit/walnut.html .