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Abstrat

Let f(x) = 3x+ 1 if x odd, and x=2 if x even. The \3x+ 1" onjeture states that

for all integers n � 1, there exists an i � 0 suh that f

i

(n) = 1. In this note we give a

relationship between this famous onjeture and �nite automata.

1 Introdution.

Let f be a funtion from the positive integers to the positive integers, de�ned as follows:

f(x) =

�

3x+ 1; if x odd;

x=2; if x even.

The Collatz, or \3x + 1" onjeture states that for all integers n � 1, there exists an

i � 0 suh that f

i

(n) = 1. By f

i

(n) we mean f iterated i times with itself, evaluated at n,

i.e.

i

z }| {

f(f(f(� � � f(n) � � �))):

The sequene of iterates (x; f(x); f

2

(x); : : :) is alled the trajetory of x. Following La-

garias [1985℄, we lassify the possible trajetories as follows:

�
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(i) onvergent: there exists i � 0 suh that f

i

(x) = 1;

(ii) non-trivial yli: the sequene f

i

(x) is eventually periodi, and f

i

(x) 6= 1 for all i � 0;

(iii) divergent: lim

i!1

f

i

(x) =1.

Thus, we an rephrase the \3x+1" onjeture as follows: every trajetory is onvergent.

Although the \3x + 1" problem has been studied sine at least 1952, little progress has

been made. For a detailed survey, see the artile of Lagarias [1985℄.

In this note we give a onnetion between the \3x+1" problem and �nite automata, �rst

notied by the seond author.

2 Representations and k-automati Sets

Let w = w

1

w

2

� � �w

k

2 (0 + 1)

�

be a string. If

k

X

i=1

w

i

2

k�i

= n;

we say that w is a representation for n, and we write [w℄ = n. For example, [0101℄ = 5.

If w = �, the empty string, or if k � 1 and w

1

6= 0, we say that w is the anonial

representation for n, and we write n

(2)

= w. For example, 5

(2)

= 101. Note that [�℄ = 0, and

0

(2)

= �. The set of all anonial representations is C = �+ 1(0 + 1)

�

.

Let S be a set of non-negative integers. Then we say S is 2{automati (or 2{reognizable)

if the set r(S) of anonial representations for elements of S is regular. Formally,

r(S) = fn

(2)

j n 2 Sg:

For example, the set

P = f1; 2; 4; 8; 16; : : :g

of powers of 2 is 2{regular; its set of anonial representations r(P ) is 10

�

. For more on these

onepts, see Perrin [1990℄.

The following is a useful trik: to show that a set of integers S is 2{automati, it suÆes

to show that any set whatsoever of representations for members of S is regular, not just the

set of anonial representations. More preisely, if L � (0 + 1)

�

is a language suh that

S = f[w℄ j w 2 Lg;

then r(S) is regular if L is regular. This is easy to see, sine

r(S) = (L

R

=0

�

)

R

\ C:

Here w

R

denotes the reversal of the word w, L

R

denotes the language whose words are

reversals of the words in L, and L

1

=L

2

denotes the language-theoreti quotient, i.e.

L

1

=L

2

= fx j 9y 2 L

2

suh that xy 2 L

1

g:
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3 The Main Result

We now de�ne a funtion to ount the number of times the map x ! 3x + 1 is used in the

trajetory of n. More preisely, if the trajetory of n is onvergent, we de�ne

g(n) =

8

>

<

>

:

g(3n+ 1) + 1; if n > 1 is odd;

g(n=2); if n is even;

0; if n = 1.

If the trajetory is non-trivial yli, or divergent, we de�ne g(n) =1.

We let

S

i

= g

�1

[i℄ = fk � 1 j g(k) = ig:

Thus S

i

is the set of integers n whose trajetories (up to f

j

(n) = 1) ontain i instanes of

the map x! 3x+ 1. For example,

S

0

= f1; 2; 4; 8; 16; : : :g

and

S

1

= f5; 10; 20; 21; 40; 42 : : :g:

Remark.

It is easy to see that eah S

i

is in�nite. For de�ne a

1

= 5 and a

i+1

as follows. If a

i

� 1

(mod 3), then

a

i+1

=

�

(4a

i

� 1)=3; if 4a

i

6� 1 (mod 9);

(16a

i

� 1)=3; if 4a

i

� 1 (mod 9).

If a

i

� 2 (mod 3), then

a

i+1

=

�

(8a

i

� 1)=3; if 8a

i

6� 1 (mod 9);

(32a

i

� 1)=3; if 8a

i

� 1 (mod 9).

Then we leave it to the reader to show that a

i+1

> a

i

, a

i

2 S

i

, and hene a

i

2

j

2 S

i

for

all j � 0.

We now state the main result of this note.

Theorem 3.1 S

i

is 2{automati for all i � 0.

We prove the result by indution on i. The result is learly true for i = 0, sine S

0

= P ,

the set of powers of 2.

Now we assume the theorem is true for i, and we prove it for i+ 1.

First, we introdue some notation: if S and T are sets of integers, we de�ne

ST = fst j s 2 S; t 2 Tg

and

S + T = fs+ t j s 2 S; t 2 Tg:
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We also introdue the following funtion, inspired by the programming language APL: if

w = w

1

w

2

� � �w

k

is a string and n is a non-negative integer, then

take(n;w) =

�

w

1

w

2

� � �w

n

; if n � k;

w

1

w

2

� � �w

k

0

n�k

; if n > k.

Now it is easy to see that, for i � 0, we have

S

i+1

= (A

i

\B)P;

where

B = f3; 5; 7; 9; 11; : : :g;

the odd numbers � 3, and

A

i

= fx j 3x+ 1 2 S

i

g:

Thus r(S

i+1

) = (r(A

i

) \ r(B))0

�

; sine r(B) = 1(0 + 1)

�

1, it suÆes to see that r(A

i

) is

regular.

The idea of the onstrution is very simple, although the details are a bit messy. Sine

r(S

i

) is regular, it is aepted by some �nite automaton. On input w with [w℄ = n, we would

like to simulate that automaton on (3n + 1)

(2)

. There are two minor problems, however.

The �rst is that we annot easily ompute 3n+1 digit-by-digit unless we start with the least

signi�ant digit �rst. The seond is that the representation for 3n+1 may be up to two bits

longer than the representation for n.

Eah problem is easy to handle, however. For the �rst, we work with the reversed rep-

resentation, where the least signi�ant digit appears �rst. For the seond, we use represen-

tations in whih leading zeros (atually, trailing zeros, sine the representation is reversed!)

are allowed. Here are the details:

By indution, r(S

i

) is regular, and therefore the set T = r(S

i

)

R

0

�

is also regular. Let

M = (Q;�; Æ; q

0

; F ) be a deterministi �nite automaton for T . (We use the onventions

from Hoproft and Ullman [1979℄.) We now onstrut a �nite automaton M

0

that, on input

x 2 (0 + 1)

�

, simulates M on input w, where

w = take(jxj; (3[x

R

℄ + 1)

R

(2)

):

For example, on input 11100, M

0

simulates M on input 01101. M

0

aepts x i� M aepts

w and [w

R

℄ = 3[x

R

℄ + 1.

More formally, let M

0

= (Q

0

;�; Æ

0

; q

0

0

; F

0

). Eah element of Q

0

is a pair [s; ℄, where s

represents a state of Q in the simulated omputation, and  denotes the \arry" left over

from the omputation of 3x+ 1 digit-by-digit. Then q

0

0

= [q

0

; 1℄,

Æ

0

([s; ℄; a) = [Æ(s; (3a+ ) mod 2); b(3a+ )=2℄;

and F

0

= f[s; 0℄ j s 2 Fg:

Let L be the language aepted by M

0

. We leave it to the reader to show that that

A

i

= f[x℄ j x 2 L

R

g. Hene by the trik at the end of Setion 2, A

i

is 2-automati.

This ompletes the proof.

Remark.

The same tehnique an be used to prove that if S and T are 2{automati sets, then

so is S + T . Note, however, that there exist 2{automati sets S, T suh that ST is not

2{automati; there is a simple ounterexample, whih the reader may enjoy �nding.
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