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Abstract

Let f(2) =32+ 1if 2 odd, and z/2 if z even. The “3z + 1”7 conjecture states that
for all integers n > 1, there exists an 7 > 0 such that f*(n) = 1. In this note we give a
relationship between this famous conjecture and finite automata.

1 Introduction.

Let f be a function from the positive integers to the positive integers, defined as follows:
3z 4+ 1, if x odd;
)= {:1;/2, if x even.
The Collatz, or “3x + 17 conjecture states that for all integers n > 1, there exists an
i > 0 such that f'(n) = 1. By f'(n) we mean f iterated i times with itself, evaluated at n,

l.e.
:

UGG Fn) ).

The sequence of iterates (z, f(z), f*(x),...) is called the trajectory of x. Following La-
garias [1985], we classify the possible trajectories as follows:
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(i) convergent: there exists i > 0 such that f'(z) = 1;

(ii) non-trivial cyclic: the sequence f(z) is eventually periodic, and f'(z) # 1 for all 7 > 0;
(iii) divergent: lim,; ., f'(z) = oo.

Thus, we can rephrase the “3z + 1”7 conjecture as follows: every trajectory is convergent.

Although the “3z + 17 problem has been studied since at least 1952, little progress has
been made. For a detailed survey, see the article of Lagarias [1985].

In this note we give a connection between the “3z 41”7 problem and finite automata, first
noticed by the second author.

2 Representations and k-automatic Sets

Let w = wywy -+ -wg € (04 1)* be a string. If

k .
Z w; 28 = n,
=1

we say that w is a representation for n, and we write [w] = n. For example, [0101] = 5.

If w = e, the empty string, or if & > 1 and w; # 0, we say that w is the canonical
representation for n, and we write n(;) = w. For example, 53y = 101. Note that [¢] = 0, and
O = €. The set of all canonical representations is C = e 4+ 1(0 4 1)*.

Let S be a set of non-negative integers. Then we say S is 2-automatic (or 2-recognizable)
if the set r(S) of canonical representations for elements of S is regular. Formally,

T(S) = {n(z) | n & S}

For example, the set

P=1{1,2,4,816,...}

of powers of 2 is 2-regular; its set of canonical representations r(P) is 10*. For more on these
concepts, see Perrin [1990].

The following is a useful trick: to show that a set of integers S is 2—automatic, it suffices
to show that any set whatsoever of representations for members of S is regular, not just the
set of canonical representations. More precisely, if L C (0 + 1)* is a language such that

§ = {lw] [we L},
then r(.S) is regular if L is regular. This is easy to see, since
r(S) = (L?/0)% N C.

Here w! denotes the reversal of the word w, LT denotes the language whose words are
reversals of the words in L, and L;/L, denotes the language-theoretic quotient, i.e.

Li/Ly = {« | y € Ly such that xy € L,}.



3 The Main Result

We now define a function to count the number of times the map ¥ — 3x + 1 is used in the
trajectory of n. More precisely, if the trajectory of n is convergent, we define

gBn+1)+1, ifn>1is odd;
g(n) =< g(n/2), if n is even;
0 ifn=1.

Y

If the trajectory is non-trivial cyclic, or divergent, we define g(n) = co.
We let
Si=g ' [i]={k=1]g(k) =1}

Thus S; is the set of integers n whose trajectories (up to f7(n) = 1) contain i instances of
the map * — 3z + 1. For example,

So = {1,2,4,8,16,...}

and

Sy = {5,10,20,21,40,42 .. .}.

Remark.
It is easy to see that each S; is infinite. For define a; = 5 and a;1 as follows. If a; = 1
(mod 3), then
[ (4a; —1)/3, if4a; #1 (mod 9);
ikt = {(16@,» ~1)/3, if4a; =1 (mod 9).

If a; = 2 (mod 3), then

o { (8a; —1)/3, if 8a; #1 (mod 9);
Gip1 = (32a; —1)/3, if 8a; =1 (mod 9).

Then we leave it to the reader to show that a;1, > a;, a; € S;, and hence ;2 € S; for
all 3 > 0.

We now state the main result of this note.
Theorem 3.1 5, is 2—automatic for all v > 0.

We prove the result by induction on 2. The result is clearly true for ¢« = 0, since Sy = P,
the set of powers of 2.

Now we assume the theorem is true for 7, and we prove it for 7 4+ 1.

First, we introduce some notation: if S and T are sets of integers, we define

ST={st|seS teT}

and

S+T={s+t|seS, teT}.
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We also introduce the following function, inspired by the programming language APL: if
w = wywy - - - wg 18 a string and n is a non-negative integer, then
WiwWs * - - Wy, ifn <k
tak = ' e
ake(n, w) { wiws - wp0" 7 ifn > k.
Now 1t is easy to see that, for ¢ > 0, we have

Si-l-l — (A, N B)P,

where
B =1{3,5,7,9,11,...},
the odd numbers > 3, and
A;={z|3z+1€ S5}
Thus r(Sit1) = (r(A;) N r(B))0*; since r(B) = 1(0 4+ 1)*1, it suffices to see that r(A4,) is
regular.

The idea of the construction is very simple, although the details are a bit messy. Since
r(S;) is regular, it is accepted by some finite automaton. On input w with [w] = n, we would
like to simulate that automaton on (3n 4 1)z). There are two minor problems, however.
The first is that we cannot easily compute 3n 4+ 1 digit-by-digit unless we start with the least
significant digit first. The second is that the representation for 3n 4+ 1 may be up to two bits
longer than the representation for n.

Each problem is easy to handle, however. For the first, we work with the reversed rep-
resentation, where the least significant digit appears first. For the second, we use represen-
tations in which leading zeros (actually, trailing zeros, since the representation is reversed!)
are allowed. Here are the details:

By induction, r(5;) is regular, and therefore the set T = r(9;)"0" is also regular. Let
M = (Q,%,9,q, F) be a deterministic finite automaton for T. (We use the conventions
from Hopcroft and Ullman [1979].) We now construct a finite automaton M’ that, on input
x € (04 1)*, simulates M on input w, where

w = take(|z|, (3[z] + 1){%)).
For example, on input 11100, M’ simulates M on input 01101. M’ accepts = iff M accepts
w and [wf] = 3[z8] + 1.
More formally, let M’ = (Q', 2,0, ¢, F'). Each element of Q' is a pair [s,c], where s

represents a state of () in the simulated computation, and ¢ denotes the “carry” left over
from the computation of 3z + 1 digit-by-digit. Then ¢} = [qo, 1],

§'([s,¢],a) = [4(s,(3a+ ¢) mod 2), [(3a + ¢)/2]],

and F' = {[s,0] | s € F}.

Let L be the language accepted by M’. We leave it to the reader to show that that
A; = {[z] | = € L®}. Hence by the trick at the end of Section 2, A; is 2-automatic.

This completes the proof. ™

Remark.

The same technique can be used to prove that if S and T are 2—automatic sets, then
so i1s S + T. Note, however, that there exist 2—automatic sets S, T such that ST is not
2—automatic; there is a simple counterexample, which the reader may enjoy finding.
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