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1 Introdu
tion

Let S be a �nite set, and let f : S ! S be a fun
tion. We 
an iterate f as

follows: de�ne f

0

(x) = x and f

i

(x) = f(f

i�1

(x)) for i � 1. We now de�ne a

dire
ted graph G

f

= (V; E) whose verti
es are given by the elements of S and

whose dire
ted edges are (x; f(x)) for ea
h x 2 S. (The graph G

f

is sometimes


alled a fun
tional digraph.) A natural question is the following: what is the

topology of G

f

?

We may also pi
k a parti
ular x 2 S and fo
us on the orbit of x (the dire
ted

path in G

f

beginning at x). Sin
e S is �nite, for ea
h x there exists a least

positive integer s = s(x) su
h that f

s

(x) 2 ff

0

(x); f

1

(x); : : : ; f

s�1

(x)g. Let

t = t(x) be the least non-negative integer su
h that f

s

(x) = f

t

(x). Setting


 = 
(x) = s(x) � t(x), we have f

t

(x) = f

t+


(x). We 
all the list of elements

x; f(x); f

2

(x); : : : ; f

t�1

(x) the tail and f

t

(x); : : : ; f

t+
�1

(x) the 
y
le. See Fig-

ure 1.

Email addresses: tmjvasiga�
s.uwaterloo.
a (Troy Vasiga),

shallit�gra
eland.uwaterloo.
a (Je�rey Shallit).

URLs: http://www.
s.uwaterloo.
a/~tmjvasiga (Troy Vasiga),

http://www.math.uwaterloo.
a/~shallit (Je�rey Shallit).

1

Resear
h supported in part by a grant from NSERC.

Preprint submitted to Elsevier S
ien
e 10 April 2003



����

���� ����
��

�
�
�
�

������

��

��

��

��

����

. . .

. .

x

f(x)

f  (x)

f     (x) f  (x)
f     (x)

f     (x)

t- 1 t
t+

t+

1

2
2 f        (x)t+c- 1

Fig. 1. The tail and 
y
le of an iteration

Other natural questions are as follows: what are the average values of t(x) and


(x) over all elements x 2 S? How many distin
t 
y
les are there? What is

their average size? What is the average tail length?

In this paper, we dis
uss these questions where p is an odd prime number,

S = GF (p) (the �nite �eld with p elements), and f is a quadrati
 map of the

form x ! x

2

+ a, a 2 f0;�2g. Motivation for studying this 
ase 
omes, in

part, from four areas of algorithmi
 number theory.

First, the properties of the iteration h : x ! x

2

� 2 form the basis for the

Lu
as-Lehmer test for primality of Mersenne numbers, that is, numbers of the

form M

q

:= 2

q

� 1, where q is a prime [17,14℄. As is well known, if q is an odd

prime then 2

q

� 1 is prime if and only if h

q�2

(4) � 0 (mod 2

q

� 1). Similarly,

the properties of the iteration g : x ! x

2

form the basis of Pepin's test for

primality of Fermat numbers (numbers of the form F

k

:= 2

2

k

+ 1) [21℄: F

k

is

a prime i� g

2

k

�1

(5) � �1 (mod F

k

). (A
tually, any non-residue, su
h as 3,

would work in pla
e of 5.)

Se
ond, Pollard's integer fa
toring algorithm is based on the iteration f : x!

x

2

+ a for a randomly-
hosen a [22,6℄. Pollard 
autions \x

2

and x

2

� 2 should

not be used (whatever the starting value x

0

), the latter for reasons 
onne
ted

with its appearan
e in the Lu
as-Lehmer test for primality of the Mersenne

numbers". Our analysis gives a quantitative interpretation of Pollard's warn-

ing; see Se
tion 4.

Third, the topology of the fun
tional digraph of quadrati
 maps is related to

Shanks' 
hains of primes, as re
ently investigated by Teske and Williams [24℄.

Finally, the iteration x ! x

2

modulo 
omposite numbers is an integral part

of modern pseudo-random bit generation, as dis
ussed, for example, in Blum,

Blum, and Shub [4℄.
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2 The iteration x! x

2

(mod p)

Although our main results 
on
ern the iteration x ! x

2

� 2 (mod p), we

start by reviewing the somewhat simpler 
ase x! x

2

(mod p). Although our

te
hniques are not new, the results of Theorems 6 (e), 9 and 10, for example,

do appear to be new.

We use the following notation. If H is a multipli
ative group and x 2 H,

then by ord

H

x we mean the least positive integer i su
h that x

i

= 1. In the


ase that H = (Z=(n))

�

, the group of invertible elements modulo n, we write

ord

n

x.

If p is a prime, and n is an integer, then by �

p

(n) we mean the exponent of the

largest power of p whi
h divides n. We de�ne �

p

(0) = +1. One identity we

will make use of frequently is

P

d jn

'(d) = n, where ' is the Euler-' fun
tion.

We will be dealing with 
ertain dire
ted graphs. A 
omplete binary tree of

height h, denoted B

h

, is a dire
ted graph with 2

i

nodes at depth i, for 0 � i �

h, with the property that every non-leaf node has exa
tly two 
hildren. The

graph B

h


ontains 2

h+1

� 1 nodes in total. If G = (V; E) is a dire
ted graph,

then by G

R

we mean the graph (V; E

R

), where

E

R

:= f(x; y) : (y; x) 2 Eg:

We 
all G

R

the reversed graph.

Theorem 1 Let p be an odd prime, and let S = GF (p)

�

and g : x ! x

2

. If

t(x) is the length of the tail for the element x, and 
(x) is the length of the


y
le for x, as de�ned above, then t(x) = �

2

(ord

p

x) and 
(x) = ord

l

2, where

ord

p

x = 2

e

� l and e; l are non-negative integers with l odd.

Proof. If g

t

(x) = g

t+


(x), then we have x

2

t

� x

2

t+


(mod p). Hen
e for x 6= 0

we have x

2

t

(2




�1)

� 1 (mod p). Suppose ord

p

x = 2

e

� l, where e; l are non-

negative integers with l odd. Then we have 2

e

� l j 2

t

(2




� 1). By the de�nition

of 
 and t it now follows that e = t = �

2

(ord

p

x), and furthermore that 
 is

the least positive integer su
h that 2




� 1 (mod l). In other words, 
 = ord

l

2.

We 
an 
hara
terize the tails of elements in terms of primitive roots, as follows:

Theorem 2 Let p be an odd prime, and let 
 be a primitive root mod p. Then

(a) fa 2 GF (p)

�

: t(a) = 0g = f


i

: 0 � i < p and �

2

(i) � �

2

(p � 1)g;
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(b) For 1 � k � �

2

(p� 1) we have

fa 2 GF (p)

�

: t(a) = kg = f


i

: 0 � i < p and �

2

(i) = �

2

(p � 1)� kg:

Proof. Suppose a = 


i

and p� 1 = 2

�

� �, where � is odd.

(a) We have t(a) = 0 i� there exists l > 0 su
h that a = a

2

l

. But a = a

2

l

i�

a

2

l

�1

= 1, i� 


i(2

l

�1)

= 1, i� p�1 j i(2

l

�1), i� �

2

(i) � � and � j i(2

l

�1). Thus

t(a) = 0 i� �

2

(i) � �

2

(p� 1) and there exists l � 1 su
h that � j i(2

l

� 1). But

for all odd � � 1 there exists an l � 1 with � j 2

l

� 1: we may take l = ord

p

2.

Sin
e � = �

2

(p� 1), the result follows.

(b) We have t(a) = k, k � 1, i� there exists l > 0 su
h that a

2

k

= a

2

k+l

and a

2

k�1

6= a

2

k+l�1

. As above, the last two relations hold i� 


i2

k

(2

l

�1)

= 1 and




i2

k�1

(2

l

�1)

6= 1, i� p�1 j i2

k

(2

l

�1) and p�1j=i2

k�1

(2

l

�1), i� 2

�

j i2

k

, 2

�

j=i2

k�1

,

and � j i(2

l

� 1). It follows that t(a) = k i� �

2

(� ) = �

2

(i2

k

), and the desired

result follows.

It follows that, in general, the topology of the fun
tional digraph G

x!x

2

an

be des
ribed as follows:

Corollary 3 Let p be an odd prime with p�1 = 2

�

��, � odd. For ea
h positive

integer divisor d of �, G

x!x

2

ontains '(d)=(ord

d

2) 
y
les of length ord

d

2.

There are � elements in all these 
y
les, and o� ea
h element in these 
y
les

there hang reversed 
omplete binary trees of height � � 1 
ontaining 2

�

� 1

elements.

Proof. Let 
 be a primitive root, mod p. The elements x in the 
y
les are

pre
isely those for whi
h t(x) = 0, and by Theorem 2 they are of the form




j�2

�

, 0 � j < �. Hen
e there are � elements in all 
y
les. These elements

form a 
y
li
 group of order �, and hen
e there are '(d) elements of order

d for ea
h divisor d of �. The elements of order d are given by 


j2

�

�=d

for

0 � j < d, g
d(j; d) = 1. The length of the 
y
le for 


j2

�

�=d

is the least 
 for

whi
h

j

d

(2




� 1) is an integer; in other words, ord

d

2. It follows that there are

'(d)=(ord

d

2) 
y
les 
orresponding to these elements.

Finally, the elements with tail size 1 whose square gives 


j�2

�

are those of

the form 


j�2

��1

. In general, if 


i

is an element with tail size 1 � t < � , the


orresponding elements with tail size t + 1 are 


i=2

and 


(i+p�1)=2

. These are

distin
t sin
e 


(p�1)=2

= �1.

As an example, let us 
onsider the 
ase p = 29, where � = 2 and � = 7. See

Figure 2.
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Fig. 2. The topology of G

x!x

2
for p = 29

We 
an enumerate the number of elements in GF (p)

�

that have a given 
y
le

stru
ture, as follows: for ea
h divisor d of p�1 there are exa
tly '(d) elements

of GF (p)

�

of order d. From above, the tail length for ea
h su
h element is

t = �

2

(d) and the 
y
le length is of size ord

d=2

�

2

(d)
2. For example, for p = 29

we have the data in Table 1.

d '(d) elements of order d t = �

2

(d) l = d=2

t


 = ord

l

2

1 1 f1g 0 1 1

2 1 f28g 1 1 1

4 2 f12; 17g 2 1 1

7 6 f7; 16; 20; 23; 24; 25g 0 7 3

14 6 f4; 5; 6; 9; 13; 22g 1 7 3

28 12 f2; 3; 8; 10; 11; 14; 15; 18; 19; 21; 26; 27g 2 7 3

Table 1: The stru
ture of G

x!x

2
for p = 29.

There are two spe
ial 
ases where we 
an give more details about the stru
ture

and properties of G

x!x

2
. The �rst is when p = 2

2

k

+ 1, a Fermat prime.

Theorem 4 The stru
ture of the digraph G

x!x

2
for prime p when p = 2

2

k

+1,

a Fermat prime, is a reversed 
omplete binary tree of height 2

k

� 1 with root

�1, atta
hed to a 
y
le of length 1 on the integer 1. The elements x with

t(x) = a for 0 � a � 2

k

are given by 3

e�2

2

k

�a

, 0 � e < 2

a

, e odd.

Proof. We use Theorem 2 and Corollary 3. The only odd divisor of p�1 is 1,

and it is well-known and easily proved that 3 is a primitive root of p = 2

2

k

+1

when p is prime and k � 1.
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Figure 3 illustrates this 
onstru
tion when k = 2, p = 17.

10 7

1

16

13 4

9 8 15 2

3 14 5 12 11 6

Fig. 3. The topology of G

x!x

2
for p = 17

The se
ond 
ase where we 
an give a more 
omplete des
ription is when p =

2

q

� 1, a Mersenne prime.

Theorem 5 When p = 2

q

�1, a Mersenne prime, the digraph G

x!x

2

onsists

of 
y
les whose length divides q � 1. O� ea
h element in these 
y
les there

hangs a single element with tail length 1.

Proof. We have p�1 = 2(2

q�1

�1), so � = 1 and � = 2

q�1

�1. It follows that

the divisors of p�1 are of the form 2

f

j, where j j 2

q�1

�1 and f 2 f0; 1g. The


y
le length for any element is therefore given by ord

j

2 for some j a divisor

of 2

q�1

� 1. Now ord

j

2 j q � 1, and so the 
y
le length for every element is a

divisor of q � 1 � log

2

p.

The result of Theorem 5 
an be 
ontrasted with the average 
y
le length of

�

p

p in the 
ase of a random map [12℄.

Figure 4 illustrates Theorem 5 in the 
ase where q = 5, p = 31.
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2 for p = 31

We now 
onsider some statisti
s about the tail and 
y
le lengths for a given

prime p. We write t

p

(x) for the length of the tail in the orbit of x under this

iteration, and 


p

(x) for the length of the 
y
le in the orbit of x.

De�nitions.

With respe
t to the iteration x! x

2

(mod p), we de�ne:

� TC(p) := total number of 
y
les;

� T

0

(p) := total number of elements in all 
y
les, i.e., the number of a 2

GF (p)

�

with t(a) = 0;

� AC(p) := average length of a 
y
le;

� C(p) := average value of 


p

(a) over all a 2 GF (p)

�

;

� T (p) := average value of t

p

(a) over all a 2 GF (p)

�

.

For example, TC(29) = 3, T

0

(29) = 7, AC(29) = 7=3, C(29) = 19=7, and

T (29) = 5=4. The following theorem gives formulas for these quantities.

Theorem 6 Let p � 1 = 2

�

� � with � odd. With respe
t to the iteration

x! x

2

(mod p) we have

(a) TC(p) =

P

d j�

'(d)

ord

d

2

;

(b) T

0

(p) = �;

(
) AC(p) =

�

TC(p)

;

(d) C(p) =

1

�

P

d j�

'(d)ord

d

2;

(e) T (p) =

1

p�1

P

d j p�1

'(d)�

2

(d) = � � 1 + 2

��

.

Proof. Parts (a)-(d) follow dire
tly from Corollary 3. For part (e) we have
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T (p)=

1

p� 1

X

1�a�p�1

t

p

(a)

=

1

p� 1

X

d j p�1

'(d)�

2

(d)

=

1

p� 1

X

d j �

X

0�i��

'(d � 2

i

)�

2

(d � 2

i

)

=

1

p� 1

X

d j �

'(d)

X

1�i��

'(2

i

) � i

=

1

p� 1

X

d j �

'(d)

X

1�i��

i � 2

i�1

=

1

p� 1

X

d j �

'(d)((� � 1)2

�

+ 1)

=

1

p� 1

�((� � 1)2

�

+ 1)

= � � 1 + 2

��

:

We now examine the average behavior of some of these quantities over all odd

primes p � N .

De�nitions.

With respe
t to the iteration x! x

2

(mod p), we de�ne

� ST

0

(N) :=

P

2<p�N

T

0

(p);

� ST (N) :=

P

2<p�N

P

1�a<p

t

p

(a).

We 
an obtain good asymptoti
 estimates for these quantities, assuming the

Extended Riemann Hypothesis (ERH).

First some basi
 de�nitions. Let �(x; l; k) denote the number of primes � x

whi
h are 
ongruent to k (mod l). We de�ne asymptoti
 bounds on fun
tions

in the standard way: see, for example Lewis and Denenberg [15℄. Let f; g be

fun
tions from non-negative real numbers to non-negative real numbers. We

say f = O(g) if there exist 
onstants 
 > 0 and n

0

� 0 su
h that f(n) � 
g(n)

for all n � n

0

. For lower bounds, we use the notation f = 
(g) to indi
ate

that there exist 
onstants 
 > 0 and n

0

� 0 su
h that f(n) � 
g(n) for all

n � n

0

. We say that f = �(g) if f = O(g) and f = 
(g).

Next, we need the following lemmas.

Lemma 7 Assume the ERH. Then, if the logarithmi
 integral li(x) is de�ned

8



by li(x) =

R

x

2

1

log t

dt and if g
d(k; l) = 1 then

�(x; l; k) =

li(x)

'(l)

+O(

p

x(log x+ 2 log l)):

Proof. See, for example, [1, pp. 217, 235℄.

It should be noted that without the assumption of the ERH, we would not

have a polynomial bound on the O term. Spe
i�
ally, without the ERH, we

would have (using results from [1, p. 215℄) that there is a 
onstant 
 > 0 su
h

that if g
d(k; l) = 1 then

�(x; l; k) =

li(x)

'(l)

+O(xe

�
(logx)

3=5

(log log x)

�1=5

):

This bound is not strong enough for our purposes. Therefore, we assume the

ERH and use the tighter bound in our analysis.

Lemma 8 Assume the ERH. Let k; l be integers with g
d(k; l) = 1. Then

X

p�x

p� k (mod l)

p =

1

'(l)

 

x

2

2 log x

! 

1 +O(

1

log x

)

!

+O(x

3=2

(log x+ 2 log l)):

Proof. By Lemma 7 we have

�(x; l; k) =

li(x)

'(l)

+O(

p

x(log x+ 2 log l)):

Now, by Stieltjes integration (see, e.g., [1, pp. 28-29℄), we have

X

p�x

p� k (mod l)

p =

1

'(l)

Z

x

2

t

log t

dt+O(x

3=2

(log x+ 2 log l)): (1)

On the other hand, by asymptoti
 integration (see, e.g., [1, pp. 27-28℄), we

have

Z

x

2

t

log t

dt =

x

2

2 log x

+O

 

x

2

(log x)

2

!

: (2)

The result 
omes from 
ombining Eqs. (1) and (2).
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Now we are ready to estimate ST

0

(N).

Theorem 9 Assume the ERH. Then ST

0

(N) �

N

2

6 logN

.

Proof. We have, using Lemma 8, that

X

p�N

p � 1

2

�

2

(p�1)

=

X

1�i�log

2

N

X

p�N

p�2

i

+1 (mod 2

i+1

)

p � 1

2

i

=

N

2

2 logN

(1 +O(

1

logN

))

X

1�i�log

2

N

1

4

i

=

N

2

2 logN

(1 +O(

1

logN

))

1

3

(1 +O(

1

N

)):

We now turn to ST (N).

Theorem 10 Assume the ERH. Then

ST (N) �

2

3

�

N

2

logN

:

Proof. We have

X

p�N

X

1�x�p�1

t

p

(x)=

X

p�N

(p� 1)(�

2

(p � 1) � 1 + 2

��

2

(p�1)

)

=

X

p�N

�

2

(p� 1)p �

X

p�N

�

2

(p� 1)�

X

p�N

p +

X

p�N

1 +

X

p�N

p � 1

2

�

2

(p�1)

:

We start by evaluating

P

p�N

�

2

(p� 1)p. We have

X

p�N

�

2

(p � 1)p=

X

1�i�log

2

N

X

p�N

p� 1 (mod 2

i

)

p

=

N

2

logN

 

1 +O(

1

logN

)

!

�

1 +O(

1

N

)

�

;

where we have used Lemma 8.

Next we have, using Lemma 7, that

10



X

p�N

�

2

(p � 1)=

X

1�i�log

2

N

�(N; 2

i

; 1)

=

X

1�i�log

2

N

 

li(N)

2

i�1

+O(

p

N logN)

!

= li(N)(2 +O(

1

N

)) +O(

p

N (logN)

2

);

It is well known that

P

p�N

p �

N

2

2 logN

; see, for example, [1, p. 28-29℄.

By the prime number theorem,

P

p�N

1 �

N

logN

.

Putting all these estimates together with Theorem 9, and the well-known

estimate li(x) =

x

logx

(1 +O(

1

log x

)); we obtain the desired result.

We now 
ompare the estimates in Theorem 9 and 10 with empiri
al data:

N ST

0

(N) N

2

=(6 logN) ST (N) 2N

2

=(3 logN)

10 5 7.24 9 28.95

10

2

342 361.91 1366 1447.65

10

3

25875 24127.47 99383 96509.88

10

4

1922532 1809560.34 7481452 7238241.36

10

5

151468221 144764827.30 605859857 579059309.20

10

6

12531875547 12063735608.42 49994218943 48254942433.69

Table 2: Comparing ST

0

(N) and ST (N) to asymptoti
 estimates

It is harder to estimate the average behavior of 


p

(x). A reasonable 
onje
ture

is that there are in�nitely many primes p su
h that (a) p

0

:= (p� 1)=2 is also

prime and (b) 2 is a primitive root (mod p

0

). The �rst few su
h primes are

7; 11; 23; 59; 107; 167; 263; 347; 359; 587; 839; 887; 983; 1019; 1307; 1319; 2039; 2459;

2903; 2999; 3467; 3803; 3863; 3947; 4139; 4283; 4679; � � �

For these primes p we have

X

1�a<p




p

(a) = 2

X

d j (p�1)=2

'(d)ord

d

2 = 2(1 + (p

0

� 1)(p

0

� 1)) = 
(p

2

):

If p is a Fermat prime, then p�1 = 2

2

k

for some k. Using Theorem 6, we have

11



� = 1 and so

X

1�a<p




p

(a) =

p � 1

�

X

d j �

'(d)ord

d

2 = 2

2

k

= p� 1:

However, few believe there are in�nitely many Fermat primes.

If p is a Mersenne prime, say p = 2

q

� 1, then

X

1�a<p




p

(a) � (q � 1)(2

q�1

� 1) = O(p log p):

Most people believe there are in�nitely many Mersenne primes, but of 
ourse

no proof 
urrently exists.

Assuming a 
onje
ture of Wagsta� [25℄ on the distribution of the least prime

in an arithmeti
 progression, we now show there are in�nitely many primes p

for whi
h

X

1�a<p




p

(a) = O(p(log p)

2

):

To observe this, for ea
h integer � � 1 
onsider the least prime p with p � 1

(mod 2

�

). Now write

p � 1 = 2

�+


� � (3)

for some non-negative integer 
 and odd integer �. Then '(p) = p � 1 =

2

�+


��. Wagsta�'s 
onje
ture states that the least prime p � a (mod n), when

g
d(a; n) = 1, is O('(n)(log n)(log '(n))). Letting n = 2

�

, we �nd

p=O('(2

�

)(log 2

�

)(log '(2

�

)))

=O(2

��1

� (log 2)(� � 1)(log 2))

=O(�

2

2

�

):

Dividing this last result by (3), we get � = O(�

2

). Also, p = O(�

2

2

�

) gives

� = �(log p).

Using Theorem 6, we have

X

1�a<p




p

(a)=

p� 1

�

X

d j�

'(d)ord

d

2

= 2

�+


X

d j�

'(d)ord

d

2

� 2

�+


� �

X

d j �

'(d)

= 2

�+


� �

2

=O(�p):

12



Combining this result with the previous fa
t that � = O(�

2

) = O((log p)

2

), we

have

X

1�a<p




p

(a) = O(p(log p)

2

);

as desired.

The properties of the iteration x ! x

2

(mod p) have re
eived some previous

attention. Chass�e [7{9℄ proved some basi
 results regarding the 
y
le length

of iterations of the form x! x

2

+ d. Blanton, Hurd, and M
Cranie [2,3℄ also

investigated this iteration. They proved our Theorem 1, Corollary 3, and The-

orem 6 (a). Rogers [23℄ independently dis
ussed this iteration and obtained

Corollary 3 and Theorem 6 (a). Flores [10℄, in a brief expository paper, ob-

served Theorem 4.

Lu
heta, Miller, and Reiter [18℄ performed a similar analysis for the iteration

x! x

k

modulo a prime, and Wilson [26℄ and Brennan and Geist [5℄ dis
ussed

this iteration modulo an arbitrary integer. The iteration x ! x

k

over the

p-adi
 numbers was dis
ussed by Khrennikov and Nilsson [13℄.

3 The iteration x! x

2

� 2 (mod p)

Rogers [23℄ stated,

\The family of nonlinear maps given by f(x) = x

2

+ 
; 
 2 F

p

, for nonzero

values of the parameter 
 2 F

p

, produ
es graphs whose tree stru
ture

(graphi
ally, the transients leading down to the 
y
les) seems beyond de-

s
ription; in general the trees atta
hed to the 
y
les are of variable height,

and even those trees atta
hed to the same 
y
le vary."

However, as we will see in this se
tion, Rogers' statement is not true for 
 = �2,

whose spe
ial 
hara
ter was previously re
ognized by Pollard [22℄.

In this se
tion we determine the properties of the iteration h : x ! x

2

� 2

(mod p).

It is worth noting that Di
kson polynomials (see Lidl, Mullen and Turn-

wald [16℄) 
an be used to des
ribe this iteration. In parti
ular, Di
kson poly-

nomials (of the �rst kind) 
an be de�ned re
ursively as follows:

D

0

(x; a)= 2;

D

1

(x; a)=x;

D

n

(x; a)=xD

n�1

(x; a)� aD

n�2

(x; a); for n � 2:

13



where x is an indeterminate and a is an element from a 
ommutative ring. From

this, one 
an derive that h

n

(x) = D

2

n

(x; 1). Moreover, Di
kson polynomials

with a = 1 have been studied to some depth [19℄, but, as Lidl, Mullen and

Turnwald [16, p. 90℄ point out,

The 
omputations and arguments for determining the �xed point formulas

for the 
ases a = 1 and a = �1 are quite detailed and lengthy (some twenty

pages for ea
h 
ase)...

Our te
hniques 
an be used to obtain these results for the 
ase of primemoduli.

Furthermore, we obtain mu
h more detailed results (e.g., Theorem 14 and

Corollary 15).

More re
ently, Peinado, Montoya, Mun~oz and Yuste [20℄ have proven upper

bounds on the 
y
le lengths for x! x

2

+ 
 over F

q

, where q is a prime power.

Additionally, Gilbert, Kolesar, Reiter, and Storey [11℄ obtained similar results,

but in an ad ho
 manner. One of our 
ontributions is a general algebrai


framework for understanding the iteration x! x

2

� 2, whi
h shows that it is

quite analogous to the (well-understood) map x! x

2

.

Given a 2 GF (p), let us de�ne the polynomial u(X) = X

2

� aX + 1. Let �

and � be the roots of u in GF (p

2

). Note that � + � = a and �� = 1.

Proposition 11 We have h

n

(a) = �

2

n

+ �

2

n

for n � 0.

Proof. By indu
tion on n. For n = 0 we have h

0

(a) = a = � + �. Now

assume the result is true for n; we prove it for n+ 1. We have

�

2

n+1

+ �

2

n+1

= (�

2

n

+ �

2

n

)

2

� 2�

2

n

�

2

n

= h

n

(a)

2

� 2:

Theorem 12 Let a 2 GF (p), and suppose that iterating h, starting with a,

results in a tail of length t = t(a) and a 
y
le of length 
 = 
(a). Then t and 



an be 
omputed as follows. Let � and � be the roots of u(X) = X

2

� aX + 1

over GF (p

2

). Let ord

GF (p

2

)

�
� = 2

e

� l, where l is odd. Then e = t and 
 is the

least integer i � 1 su
h that 2

i

� �1 (mod l).

Proof. We have h

t+


(a) = h

t

(a) and t � 0, 
 � 1 are as small as possible.

Then by Proposition 11 this is equivalent to

�

2

t+


+ �

�2

t+


= �

2

t

+ �

�2

t

:

This holds i�

�

2

t+
+1

+ 1 = �

2

t+


+2

t

+ �

2

t+


�2

t

i�

(�

2

t+


� �

2

t

)(�

2

t+


� �

�2

t

) = 0

14



i� �

2

t+


= �

2

t

or �

2

t+


= �

�2

t

i� �

2

t

(2




�1)

= 1 or �

2

t

(2




+1)

= 1. If ord

GF (p

2

)

�
� =

2

e

� l, where l is odd, then 2

e

� l j 2

t

(2




�1) or 2

e

� l j 2

t

(2




+1). The desired result

now follows.

It follows that 
 = ord

l

2 or (ord

l

2)=2.

From the previous result we see that t(a) and 
(a) depend on ord

GF (p

2

)

�
�,

where �; � are the roots of X

2

� aX + 1 = 0. (Note that ord

GF (p

2

)

�
� =

ord

GF (p

2

)

�

�.) The following theorem 
hara
terizes these orders.

Theorem 13(a) For ea
h divisor d of p�1, d 6= 1; 2 there are '(d)=2 elements

a 2 GF (p) for whi
h the 
orresponding � has ord

GF (p

2

)

�
� = d;

(b) For ea
h divisor d

0

of p+1, d

0

6= 1; 2 there are '(d

0

)=2 elements a 2 GF (p)

for whi
h the 
orresponding � has ord

GF (p

2

)

�
� = d

0

;

(
) For a = 2 we have � = � = 1 and ord

GF (p

2

)

�

� = 1;

(d) For a = �2 we have � = � = �1 and ord

GF (p

2

)

�
� = 2.

Proof. Consider the polynomial u(X) = X

2

� aX + 1 over GF (p). This

polynomial is redu
ible if and only if it 
an be written in the form (X �

b)(X� b

�1

) where a = b+ b

�1

. By symmetry, this o

urs for (p+1)=2 distin
t

values of a. The roots b; b

�1

are identi
al i� b

2

= 1, that is, if b = �1. For the

remaining (p � 3)=2 values of a the roots are distin
t. This proves parts (a),

(
), and (d).

Otherwise the polynomial u(X) is irredu
ible over GF (p) with distin
t zeroes

�, �. We 
laim that the equation

�

p+1

= 1 (4)

has p + 1 roots in GF (p

2

): namely 1, �1, and the p � 1 roots �; � of the

irredu
ible u(X). To see this, note that �

p+1

= � � �

p

= �� = 1. Sin
e the

roots of Eq. (4) form a 
y
li
 group, for ea
h d

0

j p+ 1 there are '(d

0

) roots of

order d

0

. Now ea
h a 
orresponding to an irredu
ible u has two roots, so there

are '(d

0

)=2 di�erent a's 
orresponding to � of order d

0

.

We now prove the analogue of Theorem 2.

Theorem 14 Let p be an odd prime. Let Æ be a generator for GF (p

2

)

�

and

de�ne � = Æ

p�1

, so that � is a generator of the subgroup of (p + 1)'th roots of

unity in GF (p

2

). Let 
 = Æ

p+1

, so that 
 generates GF (p)

�

.

If p � 1 (mod 4) then
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(a)

fa 2 GF (p) : t(a) = 0g = f�

i

+�

�i

: 1 � i � (p�1)=2 and �

2

(i) � �

2

(p+1)g [

f


j

+ 


�j

: 0 � j � (p � 1)=2 and �

2

(j) � �

2

(p� 1)g; (5)

(b) For 1 � k � �

2

(p� 1) we have

fa 2 GF (p) : t(a) = kg = f�

i

+�

�i

: 1 � i � (p�1)=2 and �

2

(i) = �

2

(p+1)�kg [

f


j

+ 


�j

: 0 � j � (p � 1)=2 and �

2

(j) = �

2

(p� 1) � kg: (6)

If p � 3 (mod 4) then

(
)

fa 2 GF (p) : t(a) = 0g = f�

i

+�

�i

: 0 � i � (p+1)=2 and �

2

(i) � �

2

(p+1)g [

f


j

+ 


�j

: 1 � j � (p � 3)=2 and �

2

(j) � �

2

(p� 1)g; (7)

(d) For 1 � k � �

2

(p+ 1) we have

fa 2 GF (p) : t(a) = kg = f�

i

+�

�i

: 0 � i � (p+1)=2 and �

2

(i) = �

2

(p+1)�kg [

f


j

+ 


�j

: 1 � j � (p � 3)=2 and �

2

(j) = �

2

(p� 1) � kg: (8)

Furthermore, all these unions are distin
t.

Proof. We begin by proving 
ase (a) and (b). For 
ase (a), assume p �

1 (mod 4). Write p + 1 = 2

�

0

� �

0

, where �

0

is odd. Note that �

0

= 1 sin
e

p + 1 � 2 (mod 4).

By Theorem 12 we have that

t(a) = 0 i� there exists 
 � 1 su
h that �

2




�1

= 1 or �

2




+1

= 1; (9)

where � is a zero of u(X) = X

2

� aX +1. (Note: a = �+�

�1

.) There are two


ases to 
onsider: (i) u is irredu
ible over GF (p) or (ii) u is redu
ible.

(i) If u is irredu
ible, then � = �

i

for some i with 1 � i � p, i 6= (p + 1)=2.

(Note that �

0

= �

p+1

= 1 and therefore �

(p+1)=2

= �1.) Restating (9), we have

t(a) = 0 i� there exists 
 � 1 su
h that �

i(2




�1)

= 1 or �

i(2




+1)

= 1, i� there

exists 
 � 1 with p + 1 j i(2




� 1) or p + 1 j i(2




+ 1), i� there exists 
 � 1

with �

2

(i) � �

0

and �

0

j 2




� 1, or �

2

(i) � �

0

and �

0

j 2




+ 1. We know there

does exist a 
 whi
h satis�es the 
ondition �

0

j 2




� 1: that is, pi
k 
 = ord

�

0

2.

Therefore, t(a) = 0 i� a = �

i

+ �

�i

for some i with 1 � i � p, i 6= (p + 1)=2,

�

2

(i) � �

0

. But �

p+1

= 1, so �

i

+ �

�i

= �

p+1�i

+ �

�(p+1�i)

, so we may eliminate

dupli
ates by dividing our range for i by one-half. To summarize this 
ase, we

have t(a) = 0 i� a = �

i

+ �

�i

with 1 � i � (p � 1)=2 and �

2

(i) � �

2

(p+ 1).
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(ii) If u is redu
ible, then � = 


j

for some j with 0 � j � p � 2. Write

p� 1 = 2

�

� �. From the proof of Theorem 12 we have t(a) = 0 i� there exists

a 
 � 1 su
h that �

2




�1

= 1 or �

2




+1

= 1, i� 


j(2




�1)

= 1 or 


j(2




+1)

= 1, i�

2

�

� � j j(2




� 1) or 2

�

� � j j(2




+ 1). That is, t(a) = 0 i� � � �

2

(j) and either

� j j(2




� 1) or � j j(2




+1). Again, as in the earlier 
ase, we pi
king 
 = ord

�

2

yields � j (2




�1). As well, noti
e that 


p�1

= 1, so 


j

+


�j

= 


p�1�j

+


�(p�1�j)

,

so we need only 
onsider one-half of the range of possible values for j. Thus,

t(a) = 0 i� a = 


j

+ 


�j

with 0 � j � (p� 1)=2 and �

2

(j) � �

2

(p � 1).

We now show that the quantities �

i

+ �

�i

, 1 � i � (p � 1)=2 and 


j

+ 


�j

,

0 � j � (p � 1)=2 are all distin
t.

If �

i

+ �

�i

= �

i

0

+ �

�i

0

for 1 � i; i

0

� (p � 1)=2 then it follows by simple

algebra that (�

i+i

0

� 1)(�

i�i

0

� 1) = 0. Hen
e �

i+i

0

= 1 or �

i�i

0

= 1. Sin
e

ord

GF (p

2

)

�
� = p + 1, it follows that p + 1 j (i + i

0

) or p + 1 j (i � i

0

). But

2 � i+ i

0

� p � 1, so the �rst is impossible, while the se
ond implies i = i

0

.

A similar argument applies if 


j

+ 


�j

= 


j

0

+ 


�j

0

.

Finally, suppose �

i

+ �

�i

= 


j

+ 


�j

where 1 � i � (p � 1)=2 and 0 � j �

(p � 1)=2. Now � = Æ

p�1

and 
 = Æ

p+1

, where Æ is a generator for GF (p

2

)

�

.

Hen
e it follows that

Æ

(p�1)i

+ Æ

�(p�1)i

= Æ

(p+1)j

+ Æ

�(p+1)j

:

Hen
e by simple algebra (Æ

(p�1)i+(p+1)j

� 1)(Æ

(p�1)i�(p+1)j

� 1) = 0. Hen
e

Æ

(p�1)i+(p+1)j

= 1 or Æ

(p�1)i�(p+1)j

= 1. Sin
e ord

GF (p

2

)

�
Æ = p

2

� 1, it follows

that p

2

� 1 j (p� 1)i+ (p+1)j or p

2

� 1 j (p� 1)i� (p+ 1)j. Hen
e, sin
e p is

odd, we get that there exists k su
h that either

p � 1

2

i = �

p + 1

2

j + k

p

2

� 1

2

(10)

or

p� 1

2

i =

p+ 1

2

j + k

p

2

� 1

2

: (11)

In both 
ases,

p+1

2

divides both terms of the right-hand side, and hen
e must

divide the left-hand side. But g
d(

p�1

2

;

p+1

2

) = 1, so

p+1

2

j i, a 
ontradi
tion.

This 
on
ludes the proof of 
ase (a).

Now let us look at 
ase (b). By Theorem 12 we have

t(a) = k i� ord

GF (p

2

)

� = 2

k

� l, (12)

where l is odd and � is a zero of u(X) = X

2

� aX + 1. On
e again we break

up the argument into two 
ases: (i) u is irredu
ible and (ii) u is redu
ible.
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(i) If u is irredu
ible, then � = �

i

, for some i with 1 � i � p, i 6= (p + 1)=k.

Restating (12), we have t(a) = k i� �

i2

k

l

= 1 and �

i2

k�1

l

6= 1, i� p+1 j i2

k

l and

p + 1j=i2

k�1

l, i� �

2

(p+ 1) = �

2

(i) + k.

Case (ii) is similar and is left to the reader.

We now indi
ate the minor 
hanges needed to prove (
) and (d). We need only

remark that the di�erent ranges for the exponents arise be
ause of two reasons:

�rst, the polynomial X

2

+ 1 is irredu
ible if p � 3 (mod 4) and redu
ible if

p � 1 (mod 4). Se
ond, t(�2) = 1 and must be treated as a spe
ial 
ase

depending on p (mod 4).

For l odd de�ne ord

0

l

2 to be the least e su
h that 2

e

� �1 (mod l).

Corollary 15 Let p be an odd prime with p� 1 = 2

�

� �, p+ 1 = 2

�

0

� �

0

, and

�; �

0

odd. For ea
h divisor d > 1 of �, G = G

x!x

2

�2


ontains '(d)=(2 ord

0

d

2)


y
les of length ord

0

d

2. There are � elements in all these 
y
les, and o� ea
h

element in these 
y
les there hang reversed 
omplete binary trees of height

� � 1 
ontaining 2

�

� 1 elements.

Similarly, for ea
h divisor d

0

> 1 of �

0

there exists '(d

0

)=(2 ord

0

d

0

2) 
y
les

of length ord

0

d

0

2, and o� ea
h element in these 
y
les there hang reversed


omplete binary trees of height �

0

� 1 
ontaining 2

�

0

� 1 elements.

Finally, the element 0 is the root of a 
omplete binary tree of height � � 2

(respe
tively �

0

� 2) when p � 1 (mod 4) (respe
tively p � 3 (mod 4)), and G

also 
ontains the dire
ted edges (0;�2), (�2; 2), (2; 2).

Proof. Exa
tly like that in Corollary 3.

For p = 29 we have the stru
ture in Figure 5 and the data in Table 3.

18



28

1

2

27

0

5

6

23

24

4

8

14

25

20

15

21

9

3 7 18

11 26 22

10 19 12 17 13 16

Fig. 5. The topology of G

x!x

2

�2

for p = 29

d '(d) a with � of order d t = �

2

(d) l = d=2

t


 = ord

0

l

2

1 1 f2g 0 1 1

2 1 f27g 1 1 1

4 2 f0g 2 1 1

7 6 f3; 7; 18g 0 7 3

14 6 f11; 22; 26g 1 7 3

28 12 f10; 12; 13; 16; 17; 19g 2 7 3

3 2 f28g 0 3 1

5 4 f5; 23g 0 5 2

6 2 f1g 1 3 1

10 4 f6; 24g 1 5 2

15 8 f4; 14; 20; 21g 0 15 4

30 8 f8; 9; 15; 25g 1 15 4

Table 3: The stru
ture of G

x!x

2

�2

for p = 29

There are two spe
ial 
ases where we 
an give more detailed information about

G

x!x

2

�2

. The �rst is when p = 2

2

k

+ 1, a Fermat prime.
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Theorem 16 The stru
ture of the digraph G

x!x

2

�2

when p = 2

2

k

+ 1, a

Fermat prime is as follows:

(i) A reversed 
omplete binary tree of height 2

k

� 2 with root 0, atta
hed to the

node �2, atta
hed to the node 2 with a 
y
le of length 1 on this node. The

elements in this 
omponent are of the form 3

j

+ 3

�j

for 0 � j � 2

2

k

�1

.

(ii) A set of 
y
les of length dividing 2

k

� 1. O� ea
h element in these 
y
les

there hangs a single element with tail length 1.

Proof. Part (i) follows immediately from Theorem 14 and the fa
t that 3 is

a primitive root (mod p).

Part (ii) follows from the fa
t that p+ 1 = 2(2

2

k

�1

+ 1).

For p = 2

2

2

+ 1 = 17 we have the stru
ture in Figure 6.

8 9 5 12

11 6

0

2

1 3

1315 16 7 14

10 4

Fig. 6. The topology of G

x!x

2

�2

for p = 17

The se
ond 
ase where we 
an des
ribe G

x!x

2

�2

more pre
isely is when p =

2

q

� 1, a Mersenne prime. Here q is an odd prime.

Theorem 17 When p = 2

q

� 1, a Mersenne prime, the digraph G

x!x

2

�2


onsists of

(i) A reversed 
omplete binary tree of height q � 1 with root 0, atta
hed to the

node �2, whi
h is atta
hed to the node 2 with a 
y
le of length 1 on this

node. The nodes in this tree are given by �

n

+ �

�n

, 0 � n � 2

q�1

, where �

is a zero of X

2

� 4X + 1.

(ii) A set of 
y
les of length dividing q � 1. O� ea
h element in these 
y
les

there hangs a single element with tail length 1. The nodes in these 
y
les

are given by 3

n

+ 3

�n

, 1 � n � 2

q�1

� 2.
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Proof. Use Corollary 15.

For p = 2

5

� 1 = 31 we have the stru
ture in Figure 7.

22 10 21 11 20

26

8

0

2

29

14

23

517

4 27 9

30

1

12 18

13 19

3 7 16 6

25 28 24 15

Fig. 7. The topology of G

x!x

2

�2

for p = 31

We now de�ne quantities similar to that given in Se
tion 2.

De�nitions.

With respe
t to the iteration x! x

2

� 2 (mod p), we de�ne:

� TC

0

(p) := total number of 
y
les;

� T

0

0

(p) := total number of elements in all 
y
les, i.e., the number of a 2 GF (p)

with t(a) = 0;

� AC

0

(p) := average length of a 
y
le;

� C

0

(p) := average value of 


p

(a) over all a 2 GF (p);

� T

0

(p) := average value of t

p

(a) over all a 2 GF (p).

Corollary 18 Let p be prime. Let p� 1 = 2

�

� � and p+ 1 = 2

�

0

� �

0

with �; �

0

odd. With respe
t to the iteration x! x

2

� 2 (mod p), we have

(a) TC

0

(p) =

1

2

�

P

d j�

'(d)

ord

0

d

2

+

P

d

0

j �

0

'(d

0

)

ord

0

d

0

2

�

;

(b) T

0

0

(p) = (�+ �

0

)=2;

(
) AC

0

(p) = T

0

0

(p)=TC

0

(p);

(d) C

0

(p) =

1

2p

�

2

�

P

d j�

'(d)ord

0

d

2 + 2

�

0

P

d

0

j �

0
'(d

0

)ord

0

d

0

2

�

;
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(e) T

0

(p) =

1

2p

�

P

d j p�1

'(d)�

2

(d) +

P

d

0

j p+1

'(d

0

)�

2

(d

0

)

�

=

�+�

0

2

+

�

0

��+�+�

0

2p

�1.

Proof. Again, only (e) requires explanation. We have

T

0

(p)=

1

2p

0

�

X

d j p�1

'(d)�

2

(d) +

X

d

0

j p+1

'(d

0

)�

2

(d

0

)

1

A

=

1

2p

0

�

X

d j �

'(d)((� � 1)2

�

+ 1) +

X

d

0

j�

0

'(d

0

)((�

0

� 1)2

�

0

+ 1)

1

A

=

1

2p

�

�((� � 1)2

�

+ 1) + �

0

((�

0

� 1)2

�

0

+ 1)

�

=

1

2p

((� � 1)(p � 1) + � + (�

0

� 1)(p + 1) + �

0

)

=

� + �

0

2

+

�

0

� � + �+ �

0

2p

� 1:

De�nitions.

With respe
t to the iteration x! x

2

� 2 (mod p), we de�ne

� ST

0

0

(N) :=

P

2<p�N

T

0

0

(p);

� ST

0

(N) :=

P

2<p�N

P

0�a<p

t

p

(a).

For example, we have TC

0

(29) = 5; T

0

0

(29) = 11; AC

0

(29) = 11=5; C

0

(29) =

81=29; and T

0

(29) = 25=29.

We now give a result analogous to Theorem 9.

Theorem 19 Assume the ERH. Then, with respe
t to the iteration x! x

2

�2

(mod p) we have ST

0

0

(N) �

N

2

6 logN

.

Proof. Exa
tly like that for Theorem 9.

It is interesting to note that we 
an obtain a slightly weaker result without

any unproved hypotheses. Indeed, sin
e

p + 1

2

� �+ �

0

�

3p + 1

4

we immediately obtain T

0

0

(p) = �(p) and hen
e ST

0

0

(N) = �(N

2

=(logN)).

Next, we prove a result analogous to Theorem 10.
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Theorem 20 Assume the ERH. Then, with respe
t to the iteration x! x

2

�2

(mod p) we have ST

0

(N) �

2

3

�

N

2

logN

.

Proof. By Theorem 18 (e) we have

ST

0

(N) =

X

2<p�N

p

 

�

2

(p� 1) + �

2

(p + 1)

2

+

�

0

� � + � + �

0

2p

� 1

!

=

1

2

X

2<p�N

�

2

(p� 1)(p� 1) +

1

2

X

2<p�N

�

2

(p+ 1)(p + 1) +

1

2

X

2<p�N

p � 1

�

2

(p � 1)

+

1

2

X

2<p�N

p+ 1

�

2

(p+ 1)

�

X

2<p�N

p:

Using exa
tly the same te
hniques as in the proof of Theorem 10, we obtain

the desired result.

Table 4 
ompares the asymptoti
 estimates to empiri
al data.

N ST

0

0

(N) N

2

=(6 logN) ST

0

(N) 2N

2

=(3 logN)

10 5 7.24 17 28.95

10

2

350 361.91 1368 1447.65

10

3

25484 24127.47 98718 96509.88

10

4

1918051 1809560.34 7548493 7238241.36

10

5

151494654 144764827.30 605787238 579059309.20

10

6

12516198017 12063735608.42 50108219545 48254942433.69

Table 4: Comparing ST

0

0

(N) and ST

0

(N) to asymptoti
 estimates

4 Pollard's fa
toring method

Pollard's fa
toring method is based on the fa
t that iterating a random quadrati


map, modulo p, seems to produ
e tails and 
y
les that average O(

p

p) in size.

Is this true for the iteration x! x

2

� 2? As we have seen in Theorem 20,

X

2<p�N

X

0�a<p

t

p

(a) �

2

3

�

N

2

logN

;
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while

X

2<p�N

X

0�a<p

1 �

N

2

2 logN

:

One way to interpret this is to say that, on average, iterating the map x !

x

2

� 2 produ
es a tail of size 4=3 | whi
h is quite short.

However, we do not know any good asymptoti
 estimate for

SC

0

(N) :=

X

2<p�N

X

0�a<p




p

(a):

If p is a Mersenne prime, say p = 2

q

� 1, then

X

0�a<p




p

(a)=

2

�

P

d j�

'(d)ord

0

d

2 + 2

�

0

P

d

0

j �

0
'(d

0

)ord

0

d

0

2

2

�

2(2

q�1

� 1)(q � 1) + 2

q

2

= O(p log p):

However, for 
ertain primes p, su
h as those for whi
h (a) p

0

:= (p � 1)=2 is

prime and (b) 2 is a primitive root (mod p

0

), we have

X

0�a<p




p

(a)=

2

�

P

d j�

'(d)ord

0

d

2 + 2

�

0

P

d

0

j �

0
'(d

0

)ord

0

d

0

2

2

� (p

0

� 1)

p

0

� 1

2

= 
(p

2

):

We expe
t there to be in�nitely many su
h primes; indeed, heuristi
s su
h

as Artin's 
onje
ture on primitive roots suggest there are about 
N=(logN)

2

su
h primes � N . This suggests that SC

0

(N) might well be 
(N

3

=(logN)

2

)

and hen
e the \average" element will have 
y
le length at least 


0

N=(logN)

2

.

This suggests it is indeed wise to avoid the iteration x ! x

2

� 2, as Pollard

suggested.

We did some 
omputations on this question, whi
h are summarized in Table

5.
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N SC

0

(N)

10 15

10

2

6106

10

3

3292717

10

4

1896148462

10

5

1269905340415

10

6

902615197142485

Table 5: Some sele
ted values of SC

0

(N)

These 
omputations suggest that perhaps SC

0

(N) � 


00
N

3

(logN)

2

, where 


00

:

= :17.
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