
On the iteration of ertain quadrati maps

over GF (p)

Troy Vasiga,Je�rey Shallit

1

Shool of Computer Siene, University of Waterloo, Waterloo, ON, N2L 3G1,

Canada

Abstrat
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1 Introdution

Let S be a �nite set, and let f : S ! S be a funtion. We an iterate f as

follows: de�ne f

0

(x) = x and f

i

(x) = f(f

i�1

(x)) for i � 1. We now de�ne a

direted graph G

f

= (V; E) whose verties are given by the elements of S and

whose direted edges are (x; f(x)) for eah x 2 S. (The graph G

f

is sometimes

alled a funtional digraph.) A natural question is the following: what is the

topology of G

f

?

We may also pik a partiular x 2 S and fous on the orbit of x (the direted

path in G

f

beginning at x). Sine S is �nite, for eah x there exists a least

positive integer s = s(x) suh that f

s

(x) 2 ff

0

(x); f

1

(x); : : : ; f

s�1

(x)g. Let

t = t(x) be the least non-negative integer suh that f

s

(x) = f

t

(x). Setting

 = (x) = s(x) � t(x), we have f

t

(x) = f

t+

(x). We all the list of elements

x; f(x); f

2

(x); : : : ; f

t�1

(x) the tail and f

t

(x); : : : ; f

t+�1

(x) the yle. See Fig-

ure 1.
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Fig. 1. The tail and yle of an iteration

Other natural questions are as follows: what are the average values of t(x) and

(x) over all elements x 2 S? How many distint yles are there? What is

their average size? What is the average tail length?

In this paper, we disuss these questions where p is an odd prime number,

S = GF (p) (the �nite �eld with p elements), and f is a quadrati map of the

form x ! x

2

+ a, a 2 f0;�2g. Motivation for studying this ase omes, in

part, from four areas of algorithmi number theory.

First, the properties of the iteration h : x ! x

2

� 2 form the basis for the

Luas-Lehmer test for primality of Mersenne numbers, that is, numbers of the

form M

q

:= 2

q

� 1, where q is a prime [17,14℄. As is well known, if q is an odd

prime then 2

q

� 1 is prime if and only if h

q�2

(4) � 0 (mod 2

q

� 1). Similarly,

the properties of the iteration g : x ! x

2

form the basis of Pepin's test for

primality of Fermat numbers (numbers of the form F

k

:= 2

2

k

+ 1) [21℄: F

k

is

a prime i� g

2

k

�1

(5) � �1 (mod F

k

). (Atually, any non-residue, suh as 3,

would work in plae of 5.)

Seond, Pollard's integer fatoring algorithm is based on the iteration f : x!

x

2

+ a for a randomly-hosen a [22,6℄. Pollard autions \x

2

and x

2

� 2 should

not be used (whatever the starting value x

0

), the latter for reasons onneted

with its appearane in the Luas-Lehmer test for primality of the Mersenne

numbers". Our analysis gives a quantitative interpretation of Pollard's warn-

ing; see Setion 4.

Third, the topology of the funtional digraph of quadrati maps is related to

Shanks' hains of primes, as reently investigated by Teske and Williams [24℄.

Finally, the iteration x ! x

2

modulo omposite numbers is an integral part

of modern pseudo-random bit generation, as disussed, for example, in Blum,

Blum, and Shub [4℄.
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2 The iteration x! x

2

(mod p)

Although our main results onern the iteration x ! x

2

� 2 (mod p), we

start by reviewing the somewhat simpler ase x! x

2

(mod p). Although our

tehniques are not new, the results of Theorems 6 (e), 9 and 10, for example,

do appear to be new.

We use the following notation. If H is a multipliative group and x 2 H,

then by ord

H

x we mean the least positive integer i suh that x

i

= 1. In the

ase that H = (Z=(n))

�

, the group of invertible elements modulo n, we write

ord

n

x.

If p is a prime, and n is an integer, then by �

p

(n) we mean the exponent of the

largest power of p whih divides n. We de�ne �

p

(0) = +1. One identity we

will make use of frequently is

P

d jn

'(d) = n, where ' is the Euler-' funtion.

We will be dealing with ertain direted graphs. A omplete binary tree of

height h, denoted B

h

, is a direted graph with 2

i

nodes at depth i, for 0 � i �

h, with the property that every non-leaf node has exatly two hildren. The

graph B

h

ontains 2

h+1

� 1 nodes in total. If G = (V; E) is a direted graph,

then by G

R

we mean the graph (V; E

R

), where

E

R

:= f(x; y) : (y; x) 2 Eg:

We all G

R

the reversed graph.

Theorem 1 Let p be an odd prime, and let S = GF (p)

�

and g : x ! x

2

. If

t(x) is the length of the tail for the element x, and (x) is the length of the

yle for x, as de�ned above, then t(x) = �

2

(ord

p

x) and (x) = ord

l

2, where

ord

p

x = 2

e

� l and e; l are non-negative integers with l odd.

Proof. If g

t

(x) = g

t+

(x), then we have x

2

t

� x

2

t+

(mod p). Hene for x 6= 0

we have x

2

t

(2



�1)

� 1 (mod p). Suppose ord

p

x = 2

e

� l, where e; l are non-

negative integers with l odd. Then we have 2

e

� l j 2

t

(2



� 1). By the de�nition

of  and t it now follows that e = t = �

2

(ord

p

x), and furthermore that  is

the least positive integer suh that 2



� 1 (mod l). In other words,  = ord

l

2.

We an haraterize the tails of elements in terms of primitive roots, as follows:

Theorem 2 Let p be an odd prime, and let  be a primitive root mod p. Then

(a) fa 2 GF (p)

�

: t(a) = 0g = f

i

: 0 � i < p and �

2

(i) � �

2

(p � 1)g;

3



(b) For 1 � k � �

2

(p� 1) we have

fa 2 GF (p)

�

: t(a) = kg = f

i

: 0 � i < p and �

2

(i) = �

2

(p � 1)� kg:

Proof. Suppose a = 

i

and p� 1 = 2

�

� �, where � is odd.

(a) We have t(a) = 0 i� there exists l > 0 suh that a = a

2

l

. But a = a

2

l

i�

a

2

l

�1

= 1, i� 

i(2

l

�1)

= 1, i� p�1 j i(2

l

�1), i� �

2

(i) � � and � j i(2

l

�1). Thus

t(a) = 0 i� �

2

(i) � �

2

(p� 1) and there exists l � 1 suh that � j i(2

l

� 1). But

for all odd � � 1 there exists an l � 1 with � j 2

l

� 1: we may take l = ord

p

2.

Sine � = �

2

(p� 1), the result follows.

(b) We have t(a) = k, k � 1, i� there exists l > 0 suh that a

2

k

= a

2

k+l

and a

2

k�1

6= a

2

k+l�1

. As above, the last two relations hold i� 

i2

k

(2

l

�1)

= 1 and



i2

k�1

(2

l

�1)

6= 1, i� p�1 j i2

k

(2

l

�1) and p�1j=i2

k�1

(2

l

�1), i� 2

�

j i2

k

, 2

�

j=i2

k�1

,

and � j i(2

l

� 1). It follows that t(a) = k i� �

2

(� ) = �

2

(i2

k

), and the desired

result follows.

It follows that, in general, the topology of the funtional digraph G

x!x

2
an

be desribed as follows:

Corollary 3 Let p be an odd prime with p�1 = 2

�

��, � odd. For eah positive

integer divisor d of �, G

x!x

2
ontains '(d)=(ord

d

2) yles of length ord

d

2.

There are � elements in all these yles, and o� eah element in these yles

there hang reversed omplete binary trees of height � � 1 ontaining 2

�

� 1

elements.

Proof. Let  be a primitive root, mod p. The elements x in the yles are

preisely those for whih t(x) = 0, and by Theorem 2 they are of the form



j�2

�

, 0 � j < �. Hene there are � elements in all yles. These elements

form a yli group of order �, and hene there are '(d) elements of order

d for eah divisor d of �. The elements of order d are given by 

j2

�

�=d

for

0 � j < d, gd(j; d) = 1. The length of the yle for 

j2

�

�=d

is the least  for

whih

j

d

(2



� 1) is an integer; in other words, ord

d

2. It follows that there are

'(d)=(ord

d

2) yles orresponding to these elements.

Finally, the elements with tail size 1 whose square gives 

j�2

�

are those of

the form 

j�2

��1

. In general, if 

i

is an element with tail size 1 � t < � , the

orresponding elements with tail size t + 1 are 

i=2

and 

(i+p�1)=2

. These are

distint sine 

(p�1)=2

= �1.

As an example, let us onsider the ase p = 29, where � = 2 and � = 7. See

Figure 2.
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Fig. 2. The topology of G

x!x

2
for p = 29

We an enumerate the number of elements in GF (p)

�

that have a given yle

struture, as follows: for eah divisor d of p�1 there are exatly '(d) elements

of GF (p)

�

of order d. From above, the tail length for eah suh element is

t = �

2

(d) and the yle length is of size ord

d=2

�

2

(d)
2. For example, for p = 29

we have the data in Table 1.

d '(d) elements of order d t = �

2

(d) l = d=2

t

 = ord

l

2

1 1 f1g 0 1 1

2 1 f28g 1 1 1

4 2 f12; 17g 2 1 1

7 6 f7; 16; 20; 23; 24; 25g 0 7 3

14 6 f4; 5; 6; 9; 13; 22g 1 7 3

28 12 f2; 3; 8; 10; 11; 14; 15; 18; 19; 21; 26; 27g 2 7 3

Table 1: The struture of G

x!x

2
for p = 29.

There are two speial ases where we an give more details about the struture

and properties of G

x!x

2
. The �rst is when p = 2

2

k

+ 1, a Fermat prime.

Theorem 4 The struture of the digraph G

x!x

2
for prime p when p = 2

2

k

+1,

a Fermat prime, is a reversed omplete binary tree of height 2

k

� 1 with root

�1, attahed to a yle of length 1 on the integer 1. The elements x with

t(x) = a for 0 � a � 2

k

are given by 3

e�2

2

k

�a

, 0 � e < 2

a

, e odd.

Proof. We use Theorem 2 and Corollary 3. The only odd divisor of p�1 is 1,

and it is well-known and easily proved that 3 is a primitive root of p = 2

2

k

+1

when p is prime and k � 1.
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Figure 3 illustrates this onstrution when k = 2, p = 17.
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Fig. 3. The topology of G

x!x

2
for p = 17

The seond ase where we an give a more omplete desription is when p =

2

q

� 1, a Mersenne prime.

Theorem 5 When p = 2

q

�1, a Mersenne prime, the digraph G

x!x

2
onsists

of yles whose length divides q � 1. O� eah element in these yles there

hangs a single element with tail length 1.

Proof. We have p�1 = 2(2

q�1

�1), so � = 1 and � = 2

q�1

�1. It follows that

the divisors of p�1 are of the form 2

f

j, where j j 2

q�1

�1 and f 2 f0; 1g. The

yle length for any element is therefore given by ord

j

2 for some j a divisor

of 2

q�1

� 1. Now ord

j

2 j q � 1, and so the yle length for every element is a

divisor of q � 1 � log

2

p.

The result of Theorem 5 an be ontrasted with the average yle length of

�

p

p in the ase of a random map [12℄.

Figure 4 illustrates Theorem 5 in the ase where q = 5, p = 31.
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2 for p = 31

We now onsider some statistis about the tail and yle lengths for a given

prime p. We write t

p

(x) for the length of the tail in the orbit of x under this

iteration, and 

p

(x) for the length of the yle in the orbit of x.

De�nitions.

With respet to the iteration x! x

2

(mod p), we de�ne:

� TC(p) := total number of yles;

� T

0

(p) := total number of elements in all yles, i.e., the number of a 2

GF (p)

�

with t(a) = 0;

� AC(p) := average length of a yle;

� C(p) := average value of 

p

(a) over all a 2 GF (p)

�

;

� T (p) := average value of t

p

(a) over all a 2 GF (p)

�

.

For example, TC(29) = 3, T

0

(29) = 7, AC(29) = 7=3, C(29) = 19=7, and

T (29) = 5=4. The following theorem gives formulas for these quantities.

Theorem 6 Let p � 1 = 2

�

� � with � odd. With respet to the iteration

x! x

2

(mod p) we have

(a) TC(p) =

P

d j�

'(d)

ord

d

2

;

(b) T

0

(p) = �;

() AC(p) =

�

TC(p)

;

(d) C(p) =

1

�

P

d j�

'(d)ord

d

2;

(e) T (p) =

1

p�1

P

d j p�1

'(d)�

2

(d) = � � 1 + 2

��

.

Proof. Parts (a)-(d) follow diretly from Corollary 3. For part (e) we have
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T (p)=

1

p� 1

X

1�a�p�1

t

p

(a)

=

1

p� 1

X

d j p�1

'(d)�

2

(d)

=

1

p� 1

X

d j �

X

0�i��

'(d � 2

i

)�

2

(d � 2

i

)

=

1

p� 1

X

d j �

'(d)

X

1�i��

'(2

i

) � i

=

1

p� 1

X

d j �

'(d)

X

1�i��

i � 2

i�1

=

1

p� 1

X

d j �

'(d)((� � 1)2

�

+ 1)

=

1

p� 1

�((� � 1)2

�

+ 1)

= � � 1 + 2

��

:

We now examine the average behavior of some of these quantities over all odd

primes p � N .

De�nitions.

With respet to the iteration x! x

2

(mod p), we de�ne

� ST

0

(N) :=

P

2<p�N

T

0

(p);

� ST (N) :=

P

2<p�N

P

1�a<p

t

p

(a).

We an obtain good asymptoti estimates for these quantities, assuming the

Extended Riemann Hypothesis (ERH).

First some basi de�nitions. Let �(x; l; k) denote the number of primes � x

whih are ongruent to k (mod l). We de�ne asymptoti bounds on funtions

in the standard way: see, for example Lewis and Denenberg [15℄. Let f; g be

funtions from non-negative real numbers to non-negative real numbers. We

say f = O(g) if there exist onstants  > 0 and n

0

� 0 suh that f(n) � g(n)

for all n � n

0

. For lower bounds, we use the notation f = 
(g) to indiate

that there exist onstants  > 0 and n

0

� 0 suh that f(n) � g(n) for all

n � n

0

. We say that f = �(g) if f = O(g) and f = 
(g).

Next, we need the following lemmas.

Lemma 7 Assume the ERH. Then, if the logarithmi integral li(x) is de�ned

8



by li(x) =

R

x

2

1

log t

dt and if gd(k; l) = 1 then

�(x; l; k) =

li(x)

'(l)

+O(

p

x(log x+ 2 log l)):

Proof. See, for example, [1, pp. 217, 235℄.

It should be noted that without the assumption of the ERH, we would not

have a polynomial bound on the O term. Spei�ally, without the ERH, we

would have (using results from [1, p. 215℄) that there is a onstant  > 0 suh

that if gd(k; l) = 1 then

�(x; l; k) =

li(x)

'(l)

+O(xe

�(logx)

3=5

(log log x)

�1=5

):

This bound is not strong enough for our purposes. Therefore, we assume the

ERH and use the tighter bound in our analysis.

Lemma 8 Assume the ERH. Let k; l be integers with gd(k; l) = 1. Then

X

p�x

p� k (mod l)

p =

1

'(l)

 

x

2

2 log x

! 

1 +O(

1

log x

)

!

+O(x

3=2

(log x+ 2 log l)):

Proof. By Lemma 7 we have

�(x; l; k) =

li(x)

'(l)

+O(

p

x(log x+ 2 log l)):

Now, by Stieltjes integration (see, e.g., [1, pp. 28-29℄), we have

X

p�x

p� k (mod l)

p =

1

'(l)

Z

x

2

t

log t

dt+O(x

3=2

(log x+ 2 log l)): (1)

On the other hand, by asymptoti integration (see, e.g., [1, pp. 27-28℄), we

have

Z

x

2

t

log t

dt =

x

2

2 log x

+O

 

x

2

(log x)

2

!

: (2)

The result omes from ombining Eqs. (1) and (2).
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Now we are ready to estimate ST

0

(N).

Theorem 9 Assume the ERH. Then ST

0

(N) �

N

2

6 logN

.

Proof. We have, using Lemma 8, that

X

p�N

p � 1

2

�

2

(p�1)

=

X

1�i�log

2

N

X

p�N

p�2

i

+1 (mod 2

i+1

)

p � 1

2

i

=

N

2

2 logN

(1 +O(

1

logN

))

X

1�i�log

2

N

1

4

i

=

N

2

2 logN

(1 +O(

1

logN

))

1

3

(1 +O(

1

N

)):

We now turn to ST (N).

Theorem 10 Assume the ERH. Then

ST (N) �

2

3

�

N

2

logN

:

Proof. We have

X

p�N

X

1�x�p�1

t

p

(x)=

X

p�N

(p� 1)(�

2

(p � 1) � 1 + 2

��

2

(p�1)

)

=

X

p�N

�

2

(p� 1)p �

X

p�N

�

2

(p� 1)�

X

p�N

p +

X

p�N

1 +

X

p�N

p � 1

2

�

2

(p�1)

:

We start by evaluating

P

p�N

�

2

(p� 1)p. We have

X

p�N

�

2

(p � 1)p=

X

1�i�log

2

N

X

p�N

p� 1 (mod 2

i

)

p

=

N

2

logN

 

1 +O(

1

logN

)

!

�

1 +O(

1

N

)

�

;

where we have used Lemma 8.

Next we have, using Lemma 7, that

10



X

p�N

�

2

(p � 1)=

X

1�i�log

2

N

�(N; 2

i

; 1)

=

X

1�i�log

2

N

 

li(N)

2

i�1

+O(

p

N logN)

!

= li(N)(2 +O(

1

N

)) +O(

p

N (logN)

2

);

It is well known that

P

p�N

p �

N

2

2 logN

; see, for example, [1, p. 28-29℄.

By the prime number theorem,

P

p�N

1 �

N

logN

.

Putting all these estimates together with Theorem 9, and the well-known

estimate li(x) =

x

logx

(1 +O(

1

log x

)); we obtain the desired result.

We now ompare the estimates in Theorem 9 and 10 with empirial data:

N ST

0

(N) N

2

=(6 logN) ST (N) 2N

2

=(3 logN)

10 5 7.24 9 28.95

10

2

342 361.91 1366 1447.65

10

3

25875 24127.47 99383 96509.88

10

4

1922532 1809560.34 7481452 7238241.36

10

5

151468221 144764827.30 605859857 579059309.20

10

6

12531875547 12063735608.42 49994218943 48254942433.69

Table 2: Comparing ST

0

(N) and ST (N) to asymptoti estimates

It is harder to estimate the average behavior of 

p

(x). A reasonable onjeture

is that there are in�nitely many primes p suh that (a) p

0

:= (p� 1)=2 is also

prime and (b) 2 is a primitive root (mod p

0

). The �rst few suh primes are

7; 11; 23; 59; 107; 167; 263; 347; 359; 587; 839; 887; 983; 1019; 1307; 1319; 2039; 2459;

2903; 2999; 3467; 3803; 3863; 3947; 4139; 4283; 4679; � � �

For these primes p we have

X

1�a<p



p

(a) = 2

X

d j (p�1)=2

'(d)ord

d

2 = 2(1 + (p

0

� 1)(p

0

� 1)) = 
(p

2

):

If p is a Fermat prime, then p�1 = 2

2

k

for some k. Using Theorem 6, we have

11



� = 1 and so

X

1�a<p



p

(a) =

p � 1

�

X

d j �

'(d)ord

d

2 = 2

2

k

= p� 1:

However, few believe there are in�nitely many Fermat primes.

If p is a Mersenne prime, say p = 2

q

� 1, then

X

1�a<p



p

(a) � (q � 1)(2

q�1

� 1) = O(p log p):

Most people believe there are in�nitely many Mersenne primes, but of ourse

no proof urrently exists.

Assuming a onjeture of Wagsta� [25℄ on the distribution of the least prime

in an arithmeti progression, we now show there are in�nitely many primes p

for whih

X

1�a<p



p

(a) = O(p(log p)

2

):

To observe this, for eah integer � � 1 onsider the least prime p with p � 1

(mod 2

�

). Now write

p � 1 = 2

�+

� � (3)

for some non-negative integer  and odd integer �. Then '(p) = p � 1 =

2

�+

��. Wagsta�'s onjeture states that the least prime p � a (mod n), when

gd(a; n) = 1, is O('(n)(log n)(log '(n))). Letting n = 2

�

, we �nd

p=O('(2

�

)(log 2

�

)(log '(2

�

)))

=O(2

��1

� (log 2)(� � 1)(log 2))

=O(�

2

2

�

):

Dividing this last result by (3), we get � = O(�

2

). Also, p = O(�

2

2

�

) gives

� = �(log p).

Using Theorem 6, we have

X

1�a<p



p

(a)=

p� 1

�

X

d j�

'(d)ord

d

2

= 2

�+

X

d j�

'(d)ord

d

2

� 2

�+

� �

X

d j �

'(d)

= 2

�+

� �

2

=O(�p):

12



Combining this result with the previous fat that � = O(�

2

) = O((log p)

2

), we

have

X

1�a<p



p

(a) = O(p(log p)

2

);

as desired.

The properties of the iteration x ! x

2

(mod p) have reeived some previous

attention. Chass�e [7{9℄ proved some basi results regarding the yle length

of iterations of the form x! x

2

+ d. Blanton, Hurd, and MCranie [2,3℄ also

investigated this iteration. They proved our Theorem 1, Corollary 3, and The-

orem 6 (a). Rogers [23℄ independently disussed this iteration and obtained

Corollary 3 and Theorem 6 (a). Flores [10℄, in a brief expository paper, ob-

served Theorem 4.

Luheta, Miller, and Reiter [18℄ performed a similar analysis for the iteration

x! x

k

modulo a prime, and Wilson [26℄ and Brennan and Geist [5℄ disussed

this iteration modulo an arbitrary integer. The iteration x ! x

k

over the

p-adi numbers was disussed by Khrennikov and Nilsson [13℄.

3 The iteration x! x

2

� 2 (mod p)

Rogers [23℄ stated,

\The family of nonlinear maps given by f(x) = x

2

+ ;  2 F

p

, for nonzero

values of the parameter  2 F

p

, produes graphs whose tree struture

(graphially, the transients leading down to the yles) seems beyond de-

sription; in general the trees attahed to the yles are of variable height,

and even those trees attahed to the same yle vary."

However, as we will see in this setion, Rogers' statement is not true for  = �2,

whose speial harater was previously reognized by Pollard [22℄.

In this setion we determine the properties of the iteration h : x ! x

2

� 2

(mod p).

It is worth noting that Dikson polynomials (see Lidl, Mullen and Turn-

wald [16℄) an be used to desribe this iteration. In partiular, Dikson poly-

nomials (of the �rst kind) an be de�ned reursively as follows:

D

0

(x; a)= 2;

D

1

(x; a)=x;

D

n

(x; a)=xD

n�1

(x; a)� aD

n�2

(x; a); for n � 2:

13



where x is an indeterminate and a is an element from a ommutative ring. From

this, one an derive that h

n

(x) = D

2

n

(x; 1). Moreover, Dikson polynomials

with a = 1 have been studied to some depth [19℄, but, as Lidl, Mullen and

Turnwald [16, p. 90℄ point out,

The omputations and arguments for determining the �xed point formulas

for the ases a = 1 and a = �1 are quite detailed and lengthy (some twenty

pages for eah ase)...

Our tehniques an be used to obtain these results for the ase of primemoduli.

Furthermore, we obtain muh more detailed results (e.g., Theorem 14 and

Corollary 15).

More reently, Peinado, Montoya, Mun~oz and Yuste [20℄ have proven upper

bounds on the yle lengths for x! x

2

+  over F

q

, where q is a prime power.

Additionally, Gilbert, Kolesar, Reiter, and Storey [11℄ obtained similar results,

but in an ad ho manner. One of our ontributions is a general algebrai

framework for understanding the iteration x! x

2

� 2, whih shows that it is

quite analogous to the (well-understood) map x! x

2

.

Given a 2 GF (p), let us de�ne the polynomial u(X) = X

2

� aX + 1. Let �

and � be the roots of u in GF (p

2

). Note that � + � = a and �� = 1.

Proposition 11 We have h

n

(a) = �

2

n

+ �

2

n

for n � 0.

Proof. By indution on n. For n = 0 we have h

0

(a) = a = � + �. Now

assume the result is true for n; we prove it for n+ 1. We have

�

2

n+1

+ �

2

n+1

= (�

2

n

+ �

2

n

)

2

� 2�

2

n

�

2

n

= h

n

(a)

2

� 2:

Theorem 12 Let a 2 GF (p), and suppose that iterating h, starting with a,

results in a tail of length t = t(a) and a yle of length  = (a). Then t and 

an be omputed as follows. Let � and � be the roots of u(X) = X

2

� aX + 1

over GF (p

2

). Let ord

GF (p

2

)

�
� = 2

e

� l, where l is odd. Then e = t and  is the

least integer i � 1 suh that 2

i

� �1 (mod l).

Proof. We have h

t+

(a) = h

t

(a) and t � 0,  � 1 are as small as possible.

Then by Proposition 11 this is equivalent to

�

2

t+

+ �

�2

t+

= �

2

t

+ �

�2

t

:

This holds i�

�

2

t++1

+ 1 = �

2

t+

+2

t

+ �

2

t+

�2

t

i�

(�

2

t+

� �

2

t

)(�

2

t+

� �

�2

t

) = 0

14



i� �

2

t+

= �

2

t

or �

2

t+

= �

�2

t

i� �

2

t

(2



�1)

= 1 or �

2

t

(2



+1)

= 1. If ord

GF (p

2

)

�
� =

2

e

� l, where l is odd, then 2

e

� l j 2

t

(2



�1) or 2

e

� l j 2

t

(2



+1). The desired result

now follows.

It follows that  = ord

l

2 or (ord

l

2)=2.

From the previous result we see that t(a) and (a) depend on ord

GF (p

2

)

�
�,

where �; � are the roots of X

2

� aX + 1 = 0. (Note that ord

GF (p

2

)

�
� =

ord

GF (p

2

)

�

�.) The following theorem haraterizes these orders.

Theorem 13(a) For eah divisor d of p�1, d 6= 1; 2 there are '(d)=2 elements

a 2 GF (p) for whih the orresponding � has ord

GF (p

2

)

�
� = d;

(b) For eah divisor d

0

of p+1, d

0

6= 1; 2 there are '(d

0

)=2 elements a 2 GF (p)

for whih the orresponding � has ord

GF (p

2

)

�
� = d

0

;

() For a = 2 we have � = � = 1 and ord

GF (p

2

)

�

� = 1;

(d) For a = �2 we have � = � = �1 and ord

GF (p

2

)

�
� = 2.

Proof. Consider the polynomial u(X) = X

2

� aX + 1 over GF (p). This

polynomial is reduible if and only if it an be written in the form (X �

b)(X� b

�1

) where a = b+ b

�1

. By symmetry, this ours for (p+1)=2 distint

values of a. The roots b; b

�1

are idential i� b

2

= 1, that is, if b = �1. For the

remaining (p � 3)=2 values of a the roots are distint. This proves parts (a),

(), and (d).

Otherwise the polynomial u(X) is irreduible over GF (p) with distint zeroes

�, �. We laim that the equation

�

p+1

= 1 (4)

has p + 1 roots in GF (p

2

): namely 1, �1, and the p � 1 roots �; � of the

irreduible u(X). To see this, note that �

p+1

= � � �

p

= �� = 1. Sine the

roots of Eq. (4) form a yli group, for eah d

0

j p+ 1 there are '(d

0

) roots of

order d

0

. Now eah a orresponding to an irreduible u has two roots, so there

are '(d

0

)=2 di�erent a's orresponding to � of order d

0

.

We now prove the analogue of Theorem 2.

Theorem 14 Let p be an odd prime. Let Æ be a generator for GF (p

2

)

�

and

de�ne � = Æ

p�1

, so that � is a generator of the subgroup of (p + 1)'th roots of

unity in GF (p

2

). Let  = Æ

p+1

, so that  generates GF (p)

�

.

If p � 1 (mod 4) then
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(a)

fa 2 GF (p) : t(a) = 0g = f�

i

+�

�i

: 1 � i � (p�1)=2 and �

2

(i) � �

2

(p+1)g [

f

j

+ 

�j

: 0 � j � (p � 1)=2 and �

2

(j) � �

2

(p� 1)g; (5)

(b) For 1 � k � �

2

(p� 1) we have

fa 2 GF (p) : t(a) = kg = f�

i

+�

�i

: 1 � i � (p�1)=2 and �

2

(i) = �

2

(p+1)�kg [

f

j

+ 

�j

: 0 � j � (p � 1)=2 and �

2

(j) = �

2

(p� 1) � kg: (6)

If p � 3 (mod 4) then

()

fa 2 GF (p) : t(a) = 0g = f�

i

+�

�i

: 0 � i � (p+1)=2 and �

2

(i) � �

2

(p+1)g [

f

j

+ 

�j

: 1 � j � (p � 3)=2 and �

2

(j) � �

2

(p� 1)g; (7)

(d) For 1 � k � �

2

(p+ 1) we have

fa 2 GF (p) : t(a) = kg = f�

i

+�

�i

: 0 � i � (p+1)=2 and �

2

(i) = �

2

(p+1)�kg [

f

j

+ 

�j

: 1 � j � (p � 3)=2 and �

2

(j) = �

2

(p� 1) � kg: (8)

Furthermore, all these unions are distint.

Proof. We begin by proving ase (a) and (b). For ase (a), assume p �

1 (mod 4). Write p + 1 = 2

�

0

� �

0

, where �

0

is odd. Note that �

0

= 1 sine

p + 1 � 2 (mod 4).

By Theorem 12 we have that

t(a) = 0 i� there exists  � 1 suh that �

2



�1

= 1 or �

2



+1

= 1; (9)

where � is a zero of u(X) = X

2

� aX +1. (Note: a = �+�

�1

.) There are two

ases to onsider: (i) u is irreduible over GF (p) or (ii) u is reduible.

(i) If u is irreduible, then � = �

i

for some i with 1 � i � p, i 6= (p + 1)=2.

(Note that �

0

= �

p+1

= 1 and therefore �

(p+1)=2

= �1.) Restating (9), we have

t(a) = 0 i� there exists  � 1 suh that �

i(2



�1)

= 1 or �

i(2



+1)

= 1, i� there

exists  � 1 with p + 1 j i(2



� 1) or p + 1 j i(2



+ 1), i� there exists  � 1

with �

2

(i) � �

0

and �

0

j 2



� 1, or �

2

(i) � �

0

and �

0

j 2



+ 1. We know there

does exist a  whih satis�es the ondition �

0

j 2



� 1: that is, pik  = ord

�

0

2.

Therefore, t(a) = 0 i� a = �

i

+ �

�i

for some i with 1 � i � p, i 6= (p + 1)=2,

�

2

(i) � �

0

. But �

p+1

= 1, so �

i

+ �

�i

= �

p+1�i

+ �

�(p+1�i)

, so we may eliminate

dupliates by dividing our range for i by one-half. To summarize this ase, we

have t(a) = 0 i� a = �

i

+ �

�i

with 1 � i � (p � 1)=2 and �

2

(i) � �

2

(p+ 1).
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(ii) If u is reduible, then � = 

j

for some j with 0 � j � p � 2. Write

p� 1 = 2

�

� �. From the proof of Theorem 12 we have t(a) = 0 i� there exists

a  � 1 suh that �

2



�1

= 1 or �

2



+1

= 1, i� 

j(2



�1)

= 1 or 

j(2



+1)

= 1, i�

2

�

� � j j(2



� 1) or 2

�

� � j j(2



+ 1). That is, t(a) = 0 i� � � �

2

(j) and either

� j j(2



� 1) or � j j(2



+1). Again, as in the earlier ase, we piking  = ord

�

2

yields � j (2



�1). As well, notie that 

p�1

= 1, so 

j

+

�j

= 

p�1�j

+

�(p�1�j)

,

so we need only onsider one-half of the range of possible values for j. Thus,

t(a) = 0 i� a = 

j

+ 

�j

with 0 � j � (p� 1)=2 and �

2

(j) � �

2

(p � 1).

We now show that the quantities �

i

+ �

�i

, 1 � i � (p � 1)=2 and 

j

+ 

�j

,

0 � j � (p � 1)=2 are all distint.

If �

i

+ �

�i

= �

i

0

+ �

�i

0

for 1 � i; i

0

� (p � 1)=2 then it follows by simple

algebra that (�

i+i

0

� 1)(�

i�i

0

� 1) = 0. Hene �

i+i

0

= 1 or �

i�i

0

= 1. Sine

ord

GF (p

2

)

�
� = p + 1, it follows that p + 1 j (i + i

0

) or p + 1 j (i � i

0

). But

2 � i+ i

0

� p � 1, so the �rst is impossible, while the seond implies i = i

0

.

A similar argument applies if 

j

+ 

�j

= 

j

0

+ 

�j

0

.

Finally, suppose �

i

+ �

�i

= 

j

+ 

�j

where 1 � i � (p � 1)=2 and 0 � j �

(p � 1)=2. Now � = Æ

p�1

and  = Æ

p+1

, where Æ is a generator for GF (p

2

)

�

.

Hene it follows that

Æ

(p�1)i

+ Æ

�(p�1)i

= Æ

(p+1)j

+ Æ

�(p+1)j

:

Hene by simple algebra (Æ

(p�1)i+(p+1)j

� 1)(Æ

(p�1)i�(p+1)j

� 1) = 0. Hene

Æ

(p�1)i+(p+1)j

= 1 or Æ

(p�1)i�(p+1)j

= 1. Sine ord

GF (p

2

)

�
Æ = p

2

� 1, it follows

that p

2

� 1 j (p� 1)i+ (p+1)j or p

2

� 1 j (p� 1)i� (p+ 1)j. Hene, sine p is

odd, we get that there exists k suh that either

p � 1

2

i = �

p + 1

2

j + k

p

2

� 1

2

(10)

or

p� 1

2

i =

p+ 1

2

j + k

p

2

� 1

2

: (11)

In both ases,

p+1

2

divides both terms of the right-hand side, and hene must

divide the left-hand side. But gd(

p�1

2

;

p+1

2

) = 1, so

p+1

2

j i, a ontradition.

This onludes the proof of ase (a).

Now let us look at ase (b). By Theorem 12 we have

t(a) = k i� ord

GF (p

2

)

� = 2

k

� l, (12)

where l is odd and � is a zero of u(X) = X

2

� aX + 1. One again we break

up the argument into two ases: (i) u is irreduible and (ii) u is reduible.
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(i) If u is irreduible, then � = �

i

, for some i with 1 � i � p, i 6= (p + 1)=k.

Restating (12), we have t(a) = k i� �

i2

k

l

= 1 and �

i2

k�1

l

6= 1, i� p+1 j i2

k

l and

p + 1j=i2

k�1

l, i� �

2

(p+ 1) = �

2

(i) + k.

Case (ii) is similar and is left to the reader.

We now indiate the minor hanges needed to prove () and (d). We need only

remark that the di�erent ranges for the exponents arise beause of two reasons:

�rst, the polynomial X

2

+ 1 is irreduible if p � 3 (mod 4) and reduible if

p � 1 (mod 4). Seond, t(�2) = 1 and must be treated as a speial ase

depending on p (mod 4).

For l odd de�ne ord

0

l

2 to be the least e suh that 2

e

� �1 (mod l).

Corollary 15 Let p be an odd prime with p� 1 = 2

�

� �, p+ 1 = 2

�

0

� �

0

, and

�; �

0

odd. For eah divisor d > 1 of �, G = G

x!x

2

�2

ontains '(d)=(2 ord

0

d

2)

yles of length ord

0

d

2. There are � elements in all these yles, and o� eah

element in these yles there hang reversed omplete binary trees of height

� � 1 ontaining 2

�

� 1 elements.

Similarly, for eah divisor d

0

> 1 of �

0

there exists '(d

0

)=(2 ord

0

d

0

2) yles

of length ord

0

d

0

2, and o� eah element in these yles there hang reversed

omplete binary trees of height �

0

� 1 ontaining 2

�

0

� 1 elements.

Finally, the element 0 is the root of a omplete binary tree of height � � 2

(respetively �

0

� 2) when p � 1 (mod 4) (respetively p � 3 (mod 4)), and G

also ontains the direted edges (0;�2), (�2; 2), (2; 2).

Proof. Exatly like that in Corollary 3.

For p = 29 we have the struture in Figure 5 and the data in Table 3.
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28

1

2

27

0

5

6

23

24

4

8

14

25

20

15

21

9

3 7 18

11 26 22

10 19 12 17 13 16

Fig. 5. The topology of G

x!x

2

�2

for p = 29

d '(d) a with � of order d t = �

2

(d) l = d=2

t

 = ord

0

l

2

1 1 f2g 0 1 1

2 1 f27g 1 1 1

4 2 f0g 2 1 1

7 6 f3; 7; 18g 0 7 3

14 6 f11; 22; 26g 1 7 3

28 12 f10; 12; 13; 16; 17; 19g 2 7 3

3 2 f28g 0 3 1

5 4 f5; 23g 0 5 2

6 2 f1g 1 3 1

10 4 f6; 24g 1 5 2

15 8 f4; 14; 20; 21g 0 15 4

30 8 f8; 9; 15; 25g 1 15 4

Table 3: The struture of G

x!x

2

�2

for p = 29

There are two speial ases where we an give more detailed information about

G

x!x

2

�2

. The �rst is when p = 2

2

k

+ 1, a Fermat prime.
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Theorem 16 The struture of the digraph G

x!x

2

�2

when p = 2

2

k

+ 1, a

Fermat prime is as follows:

(i) A reversed omplete binary tree of height 2

k

� 2 with root 0, attahed to the

node �2, attahed to the node 2 with a yle of length 1 on this node. The

elements in this omponent are of the form 3

j

+ 3

�j

for 0 � j � 2

2

k

�1

.

(ii) A set of yles of length dividing 2

k

� 1. O� eah element in these yles

there hangs a single element with tail length 1.

Proof. Part (i) follows immediately from Theorem 14 and the fat that 3 is

a primitive root (mod p).

Part (ii) follows from the fat that p+ 1 = 2(2

2

k

�1

+ 1).

For p = 2

2

2

+ 1 = 17 we have the struture in Figure 6.

8 9 5 12

11 6

0

2

1 3

1315 16 7 14

10 4

Fig. 6. The topology of G

x!x

2

�2

for p = 17

The seond ase where we an desribe G

x!x

2

�2

more preisely is when p =

2

q

� 1, a Mersenne prime. Here q is an odd prime.

Theorem 17 When p = 2

q

� 1, a Mersenne prime, the digraph G

x!x

2

�2

onsists of

(i) A reversed omplete binary tree of height q � 1 with root 0, attahed to the

node �2, whih is attahed to the node 2 with a yle of length 1 on this

node. The nodes in this tree are given by �

n

+ �

�n

, 0 � n � 2

q�1

, where �

is a zero of X

2

� 4X + 1.

(ii) A set of yles of length dividing q � 1. O� eah element in these yles

there hangs a single element with tail length 1. The nodes in these yles

are given by 3

n

+ 3

�n

, 1 � n � 2

q�1

� 2.
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Proof. Use Corollary 15.

For p = 2

5

� 1 = 31 we have the struture in Figure 7.

22 10 21 11 20

26

8

0

2

29

14

23

517

4 27 9

30

1

12 18

13 19

3 7 16 6

25 28 24 15

Fig. 7. The topology of G

x!x

2

�2

for p = 31

We now de�ne quantities similar to that given in Setion 2.

De�nitions.

With respet to the iteration x! x

2

� 2 (mod p), we de�ne:

� TC

0

(p) := total number of yles;

� T

0

0

(p) := total number of elements in all yles, i.e., the number of a 2 GF (p)

with t(a) = 0;

� AC

0

(p) := average length of a yle;

� C

0

(p) := average value of 

p

(a) over all a 2 GF (p);

� T

0

(p) := average value of t

p

(a) over all a 2 GF (p).

Corollary 18 Let p be prime. Let p� 1 = 2

�

� � and p+ 1 = 2

�

0

� �

0

with �; �

0

odd. With respet to the iteration x! x

2

� 2 (mod p), we have

(a) TC

0

(p) =

1

2

�

P

d j�

'(d)

ord

0

d

2

+

P

d

0

j �

0

'(d

0

)

ord

0

d

0

2

�

;

(b) T

0

0

(p) = (�+ �

0

)=2;

() AC

0

(p) = T

0

0

(p)=TC

0

(p);

(d) C

0

(p) =

1

2p

�

2

�

P

d j�

'(d)ord

0

d

2 + 2

�

0

P

d

0

j �

0
'(d

0

)ord

0

d

0

2

�

;
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(e) T

0

(p) =

1

2p

�

P

d j p�1

'(d)�

2

(d) +

P

d

0

j p+1

'(d

0

)�

2

(d

0

)

�

=

�+�

0

2

+

�

0

��+�+�

0

2p

�1.

Proof. Again, only (e) requires explanation. We have

T

0

(p)=

1

2p

0

�

X

d j p�1

'(d)�

2

(d) +

X

d

0

j p+1

'(d

0

)�

2

(d

0

)

1

A

=

1

2p

0

�

X

d j �

'(d)((� � 1)2

�

+ 1) +

X

d

0

j�

0

'(d

0

)((�

0

� 1)2

�

0

+ 1)

1

A

=

1

2p

�

�((� � 1)2

�

+ 1) + �

0

((�

0

� 1)2

�

0

+ 1)

�

=

1

2p

((� � 1)(p � 1) + � + (�

0

� 1)(p + 1) + �

0

)

=

� + �

0

2

+

�

0

� � + �+ �

0

2p

� 1:

De�nitions.

With respet to the iteration x! x

2

� 2 (mod p), we de�ne

� ST

0

0

(N) :=

P

2<p�N

T

0

0

(p);

� ST

0

(N) :=

P

2<p�N

P

0�a<p

t

p

(a).

For example, we have TC

0

(29) = 5; T

0

0

(29) = 11; AC

0

(29) = 11=5; C

0

(29) =

81=29; and T

0

(29) = 25=29.

We now give a result analogous to Theorem 9.

Theorem 19 Assume the ERH. Then, with respet to the iteration x! x

2

�2

(mod p) we have ST

0

0

(N) �

N

2

6 logN

.

Proof. Exatly like that for Theorem 9.

It is interesting to note that we an obtain a slightly weaker result without

any unproved hypotheses. Indeed, sine

p + 1

2

� �+ �

0

�

3p + 1

4

we immediately obtain T

0

0

(p) = �(p) and hene ST

0

0

(N) = �(N

2

=(logN)).

Next, we prove a result analogous to Theorem 10.
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Theorem 20 Assume the ERH. Then, with respet to the iteration x! x

2

�2

(mod p) we have ST

0

(N) �

2

3

�

N

2

logN

.

Proof. By Theorem 18 (e) we have

ST

0

(N) =

X

2<p�N

p

 

�

2

(p� 1) + �

2

(p + 1)

2

+

�

0

� � + � + �

0

2p

� 1

!

=

1

2

X

2<p�N

�

2

(p� 1)(p� 1) +

1

2

X

2<p�N

�

2

(p+ 1)(p + 1) +

1

2

X

2<p�N

p � 1

�

2

(p � 1)

+

1

2

X

2<p�N

p+ 1

�

2

(p+ 1)

�

X

2<p�N

p:

Using exatly the same tehniques as in the proof of Theorem 10, we obtain

the desired result.

Table 4 ompares the asymptoti estimates to empirial data.

N ST

0

0

(N) N

2

=(6 logN) ST

0

(N) 2N

2

=(3 logN)

10 5 7.24 17 28.95

10

2

350 361.91 1368 1447.65

10

3

25484 24127.47 98718 96509.88

10

4

1918051 1809560.34 7548493 7238241.36

10

5

151494654 144764827.30 605787238 579059309.20

10

6

12516198017 12063735608.42 50108219545 48254942433.69

Table 4: Comparing ST

0

0

(N) and ST

0

(N) to asymptoti estimates

4 Pollard's fatoring method

Pollard's fatoring method is based on the fat that iterating a random quadrati

map, modulo p, seems to produe tails and yles that average O(

p

p) in size.

Is this true for the iteration x! x

2

� 2? As we have seen in Theorem 20,

X

2<p�N

X

0�a<p

t

p

(a) �

2

3

�

N

2

logN

;
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while

X

2<p�N

X

0�a<p

1 �

N

2

2 logN

:

One way to interpret this is to say that, on average, iterating the map x !

x

2

� 2 produes a tail of size 4=3 | whih is quite short.

However, we do not know any good asymptoti estimate for

SC

0

(N) :=

X

2<p�N

X

0�a<p



p

(a):

If p is a Mersenne prime, say p = 2

q

� 1, then

X

0�a<p



p

(a)=

2

�

P

d j�

'(d)ord

0

d

2 + 2

�

0

P

d

0

j �

0
'(d

0

)ord

0

d

0

2

2

�

2(2

q�1

� 1)(q � 1) + 2

q

2

= O(p log p):

However, for ertain primes p, suh as those for whih (a) p

0

:= (p � 1)=2 is

prime and (b) 2 is a primitive root (mod p

0

), we have

X

0�a<p



p

(a)=

2

�

P

d j�

'(d)ord

0

d

2 + 2

�

0

P

d

0

j �

0
'(d

0

)ord

0

d

0

2

2

� (p

0

� 1)

p

0

� 1

2

= 
(p

2

):

We expet there to be in�nitely many suh primes; indeed, heuristis suh

as Artin's onjeture on primitive roots suggest there are about N=(logN)

2

suh primes � N . This suggests that SC

0

(N) might well be 
(N

3

=(logN)

2

)

and hene the \average" element will have yle length at least 

0

N=(logN)

2

.

This suggests it is indeed wise to avoid the iteration x ! x

2

� 2, as Pollard

suggested.

We did some omputations on this question, whih are summarized in Table

5.
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N SC

0

(N)

10 15

10

2

6106

10

3

3292717

10

4

1896148462

10

5

1269905340415

10

6

902615197142485

Table 5: Some seleted values of SC

0

(N)

These omputations suggest that perhaps SC

0

(N) � 

00
N

3

(logN)

2

, where 

00

:

= :17.
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