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Abstract. We discuss a well-known binary sequence called the Thue-

Morse sequence, or the Prouhet-Thue-Morse sequence. This sequence was

introduced by Thue in 1906 and rediscovered by Morse in 1921. However,

it was already implicit in an 1851 paper of Prouhet. The Prouhet-Thue-

Morse sequence appears to be somewhat ubiquitous, and we describe

many of its apparently unrelated occurrences.

1 Introduction

In his seminal 1906 and 1912 papers [65,66], the Norwegian mathematician Axel

Thue (1863{1922) noted that any binary sequence of length � 4 must contain a

square, i.e., two consecutive identical blocks (the easy proof is left to the reader).

He then asked whether it is possible to �nd an in�nite sequence on three letters

without squares, i.e., without two consecutive identical blocks. He also asked

whether it is possible to �nd an in�nite binary sequence that contains no cube,

i.e., no three consecutive identical blocks, or even no overlap, i.e., no sub-block

of the form awawa, where a 2 f0; 1g and w is a binary block. The answer to all

three questions is positive. Thue used a sequence t whose construction is given

in the next section,

t = 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 � � �

It happens that this sequence t is really ubiquitous in the literature. In this

paper we survey a few of its occurrences in combinatorics on words, di�erential

geometry, number theory, iteration of continuous functions, and mathematical

physics. Note that we do not give all properties of the sequence t, but rather

show how it occurred as a \natural" answer to various apparently unrelated

questions.

2 De�nition

We �rst give a formal de�nition of the Prouhet-Thue-Morse sequence.



De�nition 1. We denote by t = (t

n

)

n�0

the Prouhet-Thue-Morse sequence

over f0; 1g, de�ned recursively by t

0

= 0 and t

2n

= t

n

, t

2n+1

= t

n

for all n � 0,

where, for x 2 f0; 1g, we de�ne x = 1� x.

Denote by s

k

(n) the sum of the digits in the base-k representation of the

integer n. Since we clearly have s

2

(2n) = s

2

(n) and s

2

(2n + 1) = s

2

(n) + 1 for

every n � 0, we easily obtain the following equivalent de�nition:

Proposition 1. The Prouhet-Thue-Morse sequence t is equal to the sequence

(s

2

(n) mod 2)

n�0

.

Yet another de�nition, easily seen to be equivalent to the previous two, is

the following:

Proposition 2. Let X be an indeterminate. Then we have

Y

i�0

(1�X

2

i

) = (1�X)(1 �X

2

)(1�X

4

) � � �

= 1�X �X

2

+X

3

+ � � �

=

X

j�0

(�1)

t

j

X

j

:

3 Combinatorics on words

3.1 The pioneering work of Thue

Our �rst theorem is the one we mentioned in the introduction. It is due to Thue

[65,66].

Theorem 1 (Thue). The Prouhet-Thue-Morse sequence t is overlap-free.

For n � 1 let v

n

be the number of 1's between the n'th and (n+1)'st occurrence

of 0 in the sequence t. Let v = (v

n

)

n�1

. Hence

v = 2 1 0 2 0 1 2 1 0 1 2 � � �

Thue proved, as a corollary of Theorem 1 above, the following:

Corollary 1. The sequence v = (v

n

)

n�1

is square-free.

This work of Thue (see also Berstel [20] and references therein) was the

starting point of an important branch of combinatorics, now called combinatorics

on words. It is worth noting that Thue explained he had no particular application

in mind, but he thought the problem was interesting enough in itself to deserve

attention.

Thue's papers appeared in an obscure Norwegian journal, and for a long time

were not widely known or appreciated. His original results were rediscovered by

several di�erent authors, including Marston Morse; see [38, 19].



Although there are uncountably many overlap-free sequences on two sym-

bols, the Prouhet-Thue-Morse sequence is, roughly speaking, the \canonical"

example. For example, if in addition to being overlap-free we add some extra

requirement, then we often �nd that the only such sequence is the Prouhet-

Thue-Morse sequence or a simple variant. For example, consider the following

theorem of Berstel [20].

Theorem 2. The lexicographically largest overlap-free binary sequence begin-

ning with 0 is t, the Prouhet-Thue-Morse sequence.

Recently, together with J. Currie [10], we generalized this theorem, proving in

particular the following result:

Theorem 3. The lexicographically largest overlap-free binary sequence is the

sequence 110110t.

3.2 The problem of in�nite play in chess

In a little-known 1929 paper, the Dutch chess grandmaster Machgielis (Max)

Euwe (1901{1981, world champion 1935{1937) independently discovered the

Prouhet-Thue-Morse sequence t and applied it to an interesting problem in chess

[35].

The so-called German rule states that a draw occurs if the same sequence

of moves occurs three times in succession. Euwe proved, using the cube-free

property of t, that under such a rule in�nite games of chess are possible.

For example, one can take the Prouhet-Thue-Morse sequence t = t

0

t

1

t

2

� � �

and map each 0 to the sequence of four moves (Ng1-f3, Ng8-f6, Nf3-g1, Nf6-g8)

and each 1 to the sequence of four moves (Nb1-c3, Nb8-c6, Nc3-b1, Nc6-b8).

The resulting sequence of moves represents a legal in�nite game of chess, and no

draw occurs under the German rule.

Later, Morse rediscovered the same technique [49, 51].

3.3 Morphisms of the free monoid

Let A be an alphabet, i.e., a �nite set of symbols. The set of words over A

(i.e., blocks | or strings | of symbols of A) equipped with the operation of

concatenation is denoted by A

�

: this is the free monoid generated by A.

De�nition 2. Let A be an alphabet. Let A

�

be the free monoid generated by A.

A map � : A

�

! A

�

is called a morphism if for all words x and y in A

�

we have

�(xy) = �(x)�(y). Such a map is called a uniform morphism if all the images

by � of elements of the set A have the same number of letters.

Note that a morphism is de�ned by its values on the elements of A. Note also

that the morphism � can be extended to in�nite sequences by continuity (the

set of �nite and in�nite sequences being equipped with the topology of simple

convergence). This means that, for an in�nite sequence z = (z

n

)

n�0

, the sequence

�(z) is de�ned by �(z) = �(z

0

)�(z

1

)�(z

2

) � � �



Proposition 3. De�ne the morphism � on the alphabet f0; 1g by �(0) = 01,

�(1) = 10. Then the Prouhet-Thue-Morse sequence t is the unique �xed point of

� that begins with 0.

Proof. We �rst note that if an in�nite sequence is a �xed point of �, and begins

with 0, it must begin with �(0). Since �(0) = 01, the sequence must begin with

�(01) = �(0)�(1), hence with �

2

(0). Iterating, this means that the sequence must

begin with �

k

(0) for every k � 0. This proves uniqueness. Since �(0) begins with

0, we have that �

k+1

(0) begins with �

k

(0) for every k. Hence the sequence of

words (�

k

(0))

k�0

converges towards an in�nite sequence, say z = (z

n

)

n�0

, that

clearly is a �xed point of �.

Now, for x 2 f0; 1g, we have �(x) = xx, where, as previously, x = 1 � x.

Since z is a �xed point of �, we thus have for every n � 0, that z

2n

= z

n

and

z

2n+1

= z

n

. Hence the sequence z is equal to the Prouhet-Thue-Morse sequence.

ut

Is it possible to build another binary sequence that is both overlap-free and

generated by a morphism? The next theorem, due to S�e�ebold [62], answers this

question negatively. Another proof of this result was given by Berstel and S�e�ebold

in [21].

Theorem 4 (S�e�ebold). If an overlap-free binary sequence is a �xed point of

a non-trivial morphism, then it is either equal to t, the Prouhet-Thue-Morse

sequence, or its complement t = (t

n

)

n�0

= 1001011001101001 � � �.

The Thue-Morse sequence is the prototype of a class of sequences called 2-

automatic sequences. Roughly speaking, a sequence is k-automatic if its n'th

term is generated by a �nite-state machine which takes as input the base-k

expansion of n. For more about this class of sequences, see, for example, [29,33,

4]. For the general subject of combinatorics on words, see [43].

4 Di�erential geometry

The Prouhet-Thue-Morse sequence has the nice property that it exhibits regu-

larity without being ultimately periodic. Morse rediscovered the sequence t in

1921 in connection with di�erential geometry [48]. He proved the following:

Theorem 5 (Morse). On a surface of negative curvature, having at least two

di�erent normal segments, there exists a set of geodesics that are recurrent with-

out being periodic, and this set has the power of the continuum.

To prove this result, one of the steps was the following proposition, given as a

lemma in [48, p. 95]. We say a sequence a = a

0

a

1

a

2

� � � is uniformly recurrent if

for each �nite block of symbols w occurring in a there exists an integer n such

that for all i, the sub-block a

i+1

� � �a

i+n

contains an occurrence of w. We say a

sequence a = a

0

a

1

a

2

� � � is ultimately periodic if there exist integers p � 1, N � 0

such that a

i

= a

i+p

for all i � N .



Proposition 4. There exists an in�nite sequence over f1; 2g which is uniformly

recurrent but not ultimately periodic.

The sequence that Morse gives is exactly t, where 0's have been replaced by 1's

and 1's by 2's.

5 Number theory

5.1 The Prouhet-Tarry-Escott problem

As already noted by Adler and Li [2], the sequence t appears implicitly in an

1851 paper of Prouhet [55]. Prouhet was interested in a problem that was also

studied more than �fty years later by Tarry and Escott, and which is now known

as the \Prouhet-Tarry-Escott" or \multigrades" problem.

Prouhet addressed the following question: is it possible to �nd a partition of

the set f0; 1; 2; : : : ; 2

N

� 1g into two disjoint sets I and J , such that

P

i2I

i

k

=

P

j2J

j

k

for k = 0; 1; 2; : : : ; t? Of course we take 0

0

= 1, so that in particular the

case k = 0 shows that I and J must have the same number of elements. Prouhet

proved that such a partition is possible if N = t+ 1.

Theorem 6 (Prouhet). The Prouhet-Thue-Morse sequence t = (t

n

)

n�0

has

the following property. De�ne

I = fi 2 f0; 1; 2; 3; : : :; 2

N

� 1g : t

i

= 0g;

J = fj 2 f0; 1; 2; 3; : : : ; 2

N

� 1g : t

j

= 1g:

Then for 0 � k � N � 1 we have

X

i2I

i

k

=

X

j2J

j

k

:

For example, we have

0

k

+3

k

+5

k

+6

k

+9

k

+10

k

+12

k

+15

k

= 1

k

+2

k

+4

k

+7

k

+8

k

+11

k

+13

k

+14

k

for k = 0; 1; 2; 3.

Prouhet actually studied the more general problem of �nding a partition of

[0; q

N

� 1] into q sets I

1

; I

2

; : : : ; I

q

such that the q sums

P

i2I

j

i

k

(with j =

1; 2; : : :; q and k = 0; 1; : : : ; N � 1) do not depend on j. He gave the following

solution (for a proof see e.g., [42]): for each q � 2 de�ne the sequence T

q

=

(T

q

(n))

n�0

by T

q

(n) = s

q

(n) mod q. Then let I

j

= f0 � i � q

N

�1 : T

q

(i) = jg.

For an occurrence of related sequences, see [59]. A very nice relationship

between magic cubes, Prouhet sequences, and the Prouhet-Tarry-Escott problem

was given by Adler and Li [2]. For the state of art about the Prouhet-Tarry-Escott

problem the reader can look at one of the surveys [24, 60].



5.2 Curious in�nite products

Woods asked [68], what is the limit of the sequence

1=2;

1

2

=

3

4

;

1

2

3

4

=

5

6

7

8

; : : : ?

Robbins [58] proved that this limit is

p

2

2

. More precisely, we have the following:

Proposition 5. Let "

n

= (�1)

t

n

, where (t

n

)

n�0

is the Prouhet-Thue-Morse

sequence. Then

�

1

2

�

"

0

�

3

4

�

"

1

�

5

6

�

"

2

� � � =

1

Y

n=0

�

2n+ 1

2n+ 2

�

"

n

=

p

2

2

: (1)

Proof. We give a simple proof, discovered by the �rst author in 1987. Let P and

Q be the in�nite products de�ned by

P =

1

Y

n=0

�

2n+ 1

2n+ 2

�

"

n

; Q =

1

Y

n=1

�

2n

2n+ 1

�

"

n

:

Then

PQ =

1

2

1

Y

n=1

�

n

n+ 1

�

"

n

=

1

2

1

Y

n=1

�

2n

2n+ 1

�

"

2n

1

Y

n=0

�

2n+ 1

2n+ 2

�

"

2n+1

:

Of course all products are convergent by Abel's theorem. Now, since "

2n

= "

n

,

and "

2n+1

= �"

n

, we get

PQ =

1

2

1

Y

n=1

�

2n

2n+ 1

�

"

n

 

1

Y

n=0

�

2n+ 1

2n+ 2

�

"

n

!

�1

=

1

2

Q

P

:

Since Q 6= 0, this gives P

2

= 1=2, and the result follows since P is positive. ut

Note that the mysterious number Q does not appear in the �nal result! No

expression for Q in terms of known constants is currently known, nor is it known

if Q is transcendental or even irrational. This number �rst occurred in a paper of

Flajolet and Martin [36], who studied a class of probabilistic counting algorithms

for estimating the number of distinct elements in a large collection of data. Their

asymptotic analysis involves the constant ' = :77351 � � � given by

' = 2

�1=2

e



2

3

1

Y

n=1

�

(4n+ 1)(4n+ 2)

4n(4n+ 3)

�

(�1)

t

n

where  is Euler's constant [36, Theorem 3.A]. It is clear that

Q = 2

�1=2

e



'

�1

:



It is precisely while he was trying to compute Q (and hence ') that the �rst

author came across the proof above.

The in�nite product (1) suggests trying to obtain the expansion

�

1

2

�

�1

�

3

4

�

�1

�

5

6

�

�1

� � �

of a number � (for instance,

p

2

2

) by a greedy algorithm, where the signs in the

exponent are iteratively chosen so that the product thus far approximates � as

closely as possible at each step. The following conjecture of the second author

[63] was proved by the �rst author and H. Cohen [6].

Theorem 7 (Allouche, Cohen). De�ne a sequence of signs (�

n

)

n�0

by �

0

=

1, and, if �

0

; �

1

; : : : ; �

n

are known, de�ne �

n+1

by:

�

n+1

=

8

<

:

+1 if

�

1

2

�

�

0

�

3

4

�

�

1

� � �

�

2n+1

2n+2

�

�

n

>

p

2

2

;

�1 if

�

1

2

�

�

0

�

3

4

�

�

1

� � �

�

2n+1

2n+2

�

�

n

<

p

2

2

:

Then the sequence (�

n

)

n�0

is equal to the Prouhet-Thue-Morse sequence on the

alphabet f�1;+1g, i.e., �

n

= (�1)

t

n

for all n � 0.

For generalizations of these results, see [63, 6, 13, 7].

5.3 Partitions of the set of integers

Let A be the (lexicographically) smallest set of integers such that 0 and 1 belong

to A, and for each n � 1 that belongs to A, the number 2n does not belong to

A. Hence the �rst few elements of A are

0 1 3 4 5 7 9 11 12 13 15 16 17 19 20 21 23 � � �

It is not hard to see that A and 2A = f2x : x 2 Ag form a partition of the

set of non-negative integers; see [26, 5, 64]. An unexpected connection with the

Thue-Morse sequence, proved in [5], is given below.

Theorem 8 (Allouche, Arnold, Berstel, Brlek, Jockusch, Plou�e,

Sagan). Let (a

n

)

n�0

= 0 1 3 4 5 7 9 11 12 13 15 16 17 19 20 21 23 � � �

be the increasing sequence of the elements of A. De�ne the sequence z = (z

n

)

n�0

by

z = 0

a

1

�a

0

1

a

2

�a

1

0

a

3

�a

2

� � � 0

a

2n+1

�a

2n

1

a

2n+2

�a

2n+1

� � �

where by c

j

for c 2 f0; 1g, we mean the string

j

z }| {

cc � � � c. In other words, the se-

quence of runs of z is the �rst di�erence of the sequence (a

n

)

n�0

. Then z is equal

to the Prouhet-Thue-Morse sequence.



5.4 Algebraicity of formal power series in positive characteristic

The Prouhet-Thue-Morse real number

P

n�0

t

n

2

�n

was proved transcendental

by Mahler [44, p. 363]; also see Dekking [32]. What can be said about the formal

power series

P

1

n�0

t

n

X

�n

? This series is transcendental over Q(X), as noted,

for example, in [32]. But, considering this series modulo 2, we have the following

proposition:

Proposition 6. Let F (X) =

P

n�0

t

n

X

�n

. Then F , considered as an element

of F

2

[[X

�1

]], is quadratic over F

2

(X). More precisely, we have

(1 +X)

3

F

2

+X(1 +X)

2

F +X

2

= 0: (2)

Proof. This is an easy consequence of the recurrence relations satis�ed by the

sequence t. Namely, all computations being done modulo 2, we have

F =

X

n�0

t

n

X

�n

=

X

n�0

t

2n

X

�2n

+

X

n�0

t

2n+1

X

�2n�1

=

X

n�0

t

n

X

�2n

+X

�1

X

n�0

(1 + t

n

)X

�2n

= F

2

+X

�1

�

X

2

1 +X

2

+ F

2

�

=

�

1 +X

X

�

F

2

+

X

1 +X

2

=

�

1 +X

X

�

F

2

+

X

(1 +X)

2

:

Hence, multiplying through by X(1 +X)

2

, we obtain Eq. (2). The fact that F

is not a rational function is an easy consequence of the overlap-free property of

the sequence t.

More generally, a formal power series with coe�cients in F

p

, where p is a

prime number, is algebraic over the �eld F

p

(X) if and only if the sequence of its

coe�cients is p-automatic. This theorem was proved by Christol [27], and more

details are given in the paper of Christol, Kamae, Mend�es France and Rauzy

[28].

There is a theory of continued fractions for Laurent series with coe�cients in

a �nite �eld [16]. In particular the continued fraction expansion of a quadratic

series is ultimately periodic (see [47]; see [61] for a careful study when the ground

�eld is not �nite). The continued fraction expansion of

P

n�0

t

n

X

�n

is ultimately

periodic with a pleasantly short period. It is given by

X

n�0

t

n

X

�n

= [0; X + 1; X; X; X

3

+X; X ]

where, as usual, the vinculum denotes the repeating portion of the ultimately

periodic continued fraction.



5.5 �-Expansions

Representing real numbers in non-integer bases goes back to R�enyi [56] and

Parry [54]. These expansions | sometimes called �-expansions | di�er in some

respects from the usual base-k expansions where k is an integer. For exam-

ple, some numbers may have multiple representations. However, Komornik and

Loreti recently proved the following theorem [41]:

Theorem 9 (Komornik, Loreti). There exists a smallest real number � in the

interval (1; 2), for which there exists a unique �-expansion of 1 in the form 1 =

P

1

n=1

�

n

�

�n

, with �

n

2 f0; 1g. Furthermore, for this smallest �, the sequence of

\digits" (�

n

)

n�1

satis�es �

n

= t

n

for n � 1, where t = t

0

t

1

t

2

� � � is the Prouhet-

Thue-Morse sequence. The number � is the unique positive root of the equation

1 =

P

1

n=1

t

n

�

�n

, and we have �

:

= 1:787231650.

Komornik and Loreti proved [41] that the above result is a consequence of

the following proposition:

Proposition 7. The lexicographically least binary sequence (w

n

)

n�1

such that

w

n+1

w

n+2

� � � < w

1

w

2

� � � if w

n

= 0;

w

n+1

w

n+2

� � � < w

1

w

2

� � � if w

n

= 1;

(where the order is lexicographical order, and 0 = 1, 1 = 0) satis�es w

n

= t

n

for

n � 1.

The second author observed that this last result was previously stated in a

slightly di�erent form by the �rst author and M. Cosnard in [8]. See [9] and

Section 7.1 below.

6 Semigroup and group theory

The Prouhet-Thue-Morse sequence t (or one of its variants) occurs in the so-

lution of the Burnside problem for groups: Is every group with a �nite number

of generators and satisfying the identity x

n

= 1 �nite? The answer is yes (and

well-known) if n = 2, since the group must be abelian in this case. But the

answer is no for large odd n, since, as Novikov and Adian showed [52], an in�-

nite group � (m;n) on m generators and satisfying x

n

= 1 for all x 2 � (m;n)

exists for all m > 1, and for all odd n with n � 4381. Adian's book [1] gives

more details about the result and its history, and improves the constant 4381

to 665. One of the steps in the proof consists of �nding a cube-free binary se-

quence (see [1, p. 5]). Actually the cube-free binary sequence given there is not

the Prouhet-Thue-Morse sequence, since it is not overlap-free. The author uses

a result of Arshon [15] in order to construct a cube-free binary sequence, but in

that paper Arshon actually gave a cube-free binary sequence that is equal to the

Prouhet-Thue-Morse sequence on the alphabet f1; 2g (see [15, p. 779]).



One may also consider the Burnside problem for semigroups. As remarked

by Morse and Hedlund [50,57], with the aid of v, the square-free sequence over

f0; 1; 2g given above, one can construct an in�nite semigroup S on three gener-

ators such that x

3

= x

2

for all x 2 S. Indeed, this is accomplished by letting

S = f0; 1; 2g

�

[ fzg, where z is the zero element (i.e., wz = zw = z for all

w 2 S) and subject to the relation w

2

= z for all w 2 S. Related questions were

discussed by Brzozowski, Culik, and Gabrielian [25].

There is another occurrence of the Thue-Morse sequence in group theory,

[22], as follows:

Theorem 10 (Bo�a, Point). De�ne the Thue-Morse group identities I

n

by:

I

0

(x; y) if x = y; I

n+1

(x; y) is I

n

(xy; yx). Then a �nite group satis�es a Thue-

Morse identity if and only if it is an extension of a nilpotent group by a 2-group.

The reader will have noticed that

I

0

(x; y) if and only if x = y

I

1

(x; y) if and only if xy = yx

I

2

(x; y) if and only if xyyx = yxxy

I

3

(x; y) if and only if xyyxyxxy = yxxyxyyx

.

.

.

and understood the terminology \Thue-Morse identities". See [23] for a gener-

alization.

7 Real analysis

7.1 Iteration of continuous functions

Iterating a unimodal continuous function from [0; 1] into [0; 1] yields various

behaviors going from convergent orbits to chaos; see the general reference [30].

M. Cosnard and the �rst author proved the following theorem [8] (also see [3,

31,39]). Let f be a continuous map from [0; 1] into [0; 1], that is unimodal, i.e.,

increasing for x between 0 and some c, then decreasing for x between c and 1.

Suppose that f(1) = 0. With the orbit (f

(n)

(1))

n�0

we associate the itinerary

(a

n

)

n�0

, de�ned by a

n

= 0 if 0 � f

(n)

(1) < c and a

n

= 1 if c < f

(n)

(1) � 1.

With the sequence a = (a

n

)

n�0

we associate the sequence
e
a = (fa

n

)

n�1

de�ned

by

fa

n

=

0

@

n�1

X

j=0

a

j

1

A

mod 2:

Note that the sequence a is the �rst di�erence, taken modulo 2, of the sequence

e
a.



Theorem 11 (Allouche, Cosnard). The set of binary sequences
e
a = (fa

n

)

n�1

corresponding to unimodal continuous functions is exactly the set of binary se-

quences � de�ned by

� = fb = (b

n

)

n�1

: b

1

= b

2

= 1; 8k; b � T

k

(b) � bg;

where the order is lexicographical order, where b = (b

n

)

n�0

= (1 � b

n

)

n�0

, and

where the map T is the shift de�ned by T ((w

n

)

n�1

) = ((w

n+1

)

n�1

). The least

non-periodic element of � (which is also the least accumulation point of � ) is

(t

n

)

n�1

where t = t

0

t

1

t

2

� � � is the Prouhet-Thue-Morse sequence.

Note that the classical approach does not use the transformation a !
e
a; only

the itineraries a are considered. The order between sequences is somewhat more

complicated, although it boils down to the lexicographical order after applying

the transformation a !
e
a. The sequence a such that

e
a = (t

n

)

n�1

, i.e., the �rst

di�erence of the Prouhet-Thue-Morse sequence, is

a = 1 0 1 1 1 0 1 0 � � �

This sequence is called the period-doubling sequence. It is not hard to show that

a is a �xed point of the morphism � de�ned by �(1) = 10, �(0) = 11. For

connections with Gray code, see [37].

The link between Theorem 11 and Proposition 7 above is easy [9]. Note also that

Theorem 11 can be reformulated in number-theoretical terms:

Corollary 2. Let �

0

the set of real numbers de�ned by

�

0

= fx 2 [0; 1] : 8k � 0; 1� x � f2

k

xg � xg;

where fyg denotes the fractional part of the real number y. Then the least ir-

rational element of �

0

(which is also the least accumulation point of �

0

) is the

number � =

P

n�1

t

n

2

�n

:

= 0:824908, where t = (t

n

)

n�0

is the Prouhet-Thue-

Morse sequence.

The number � appears in other contexts. For example, let p be the probability

that a randomly-chosen language L over f0; 1g has the property that there is at

least one word of each possible length. (We ip a fair coin for each word w to

decide if it is in L.) Then, as the second author has observed,

p =

Y

i�0

(1 �

1

2

2

i

) =

X

j�0

(�1)

t

j

2

j

= 2� 2�:

7.2 The Knopp function

The Knopp function (see the introduction of [34]) is de�ned, for a 2 (0; 1) and

b 2 N n f0g, by

K

a;b

(x) =

1

X

n=0

a

n

kb

n

xk



where kyk is the distance from y to the nearest integer. In 1990, S. Dubuc and A.

Elqortobi [34] came across the Prouhet-Thue-Morse sequence t = (t

n

)

n�0

while

studying the maximum of the Knopp function. They proved the following.

Theorem 12 (Dubuc, Elqortobi). Let a 2 (0; 1) and let b be an even integer

� 2. Let X

�

(a; b) be the set of points where the function K

a;b

takes its maximum.

Then the limit of the set X

�

(a; b), as a ! (1=b)

�

, is the set fx; 1� xg, where

x = ((b

2

� b)=2)

P

1

n=0

t

n

=b

n+1

.

8 Physics

Since the Prouhet-Thue-Morse sequence is both \easy to generate" and \non-

trivial", it permits to generate a kind of controlled disorder. In particular this

sequence has analogies (but also di�erences) with one-dimensional quasi-crystals:

actually a typical one-dimensional quasicrystal is the Fibonacci sequence, i.e.,

the �xed point of the Fibonacci morphism 0! 01, 1! 0. Hence a large number

of papers in physics study the Prouhet-Thue-Morse sequence. We only mention

[17,18], and the papers given in the bibliography of [12].

9 Generalizations

The alternative de�nitions of the Prouhet-Thue-Morse sequence given in Sec-

tion 2 each suggest possible approaches to generalize the sequence.

For example, Proposition 1 suggests studying the generalized Prouhet-Thue-

Morse sequence t

k;m

= (s

k

(n) modm)

n�0

for integers k � 2 and m � 1. For

example, we have

t

3;4

= 0 1 2 1 2 3 2 3 0 1 2 3 � � � :

Note that the sequence t

2;m

has been studied by J. Tromp and the second

author in [67], and that the sequence t

q;q

is the sequence T

q

of Section 5.1. Very

recently the authors proved the following theorem [14], which generalizes the

work of Thue:

Theorem 13. Let k � 2, m � 1 be integers. The generalized Prouhet-Thue-

Morse sequence t

k;m

is overlap-free if and only if m � k.

Several other generalizations of the Prouhet-Thue-Morse sequence have been

studied, see for example [40,45, 46, 53, 69].

10 Conclusion

The Prouhet-Thue-Morse sequence occurs in various �elds, so that many appar-

ently unrelated de�nitions of this sequence are equivalent. For example, Propo-

sition 1, Theorem 2, Proposition 3, Theorem 4, Theorem 7, Theorem 8, Theo-

rem 9, Proposition 7, Theorem 11, and even Theorem 10 or Corollary 2 can be

turned into de�nitions. Automatic sequences, of which the Prouhet-Thue-Morse



sequence is a simple example, are also useful because they are both \simple to

generate" and \non-trivial": in physics as mentioned above, but also in other

�elds, such as music (see for example [11]). Searching for the many occurrences

of the Prouhet-Thue-Morse sequence in the literature can be used as a pretext

to take a delightful stroll through many fascinating areas of mathematics.
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