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Abstract

Let Σ be a finite alphabet, and let ϕ : Σ∗ → Σ∗ be a

homomorphism, i.e., a mapping satisfying ϕ(xy) = ϕ(x)ϕ(y)

for all x, y ∈ Σ∗. Let a ∈ Σ, and let i ≥ 1, n ≥ 0 be integers.

We give the first efficient algorithm for computing the ith

letter of ϕn(a). Our algorithm runs in time polynomial in

the size of the input, i.e., polynomial in logn, log i, and the

description size of ϕ. Our algorithm can be easily modified

to give the distribution of letters in the prefix of length i of

ϕn(a). There are applications of our algorithm to computer

graphics and biological modelling. If we consider finite-state

transducers instead of homomorphisms, the corresponding

problem is EXPTIME-hard.

1 Introduction

Let Σ be a finite alphabet. A homomorphism is a map
ϕ from Σ∗ to Σ∗ such that ϕ(xy) = ϕ(x)ϕ(y) for all
x, y ∈ Σ∗. Let a ∈ Σ; we define ϕ0(a) = a, and
ϕi(a) = ϕ(ϕi−1(a)) for i ≥ 1.

For x ∈ Σ∗, and a ∈ Σ, let |x| denote the length
of x, and let |x|a denote the number of occurrences
of the letter a in x. We define the the depth d of a
homomorphism ϕ to be the cardinality of its domain
Σ, and the width w of a homomorphism ϕ to be the
maximum value of |ϕ(a)| over all a ∈ Σ.

Consider the following problem:

Given a homomorphism ϕ : Σ∗ → Σ∗, integers
n ≥ 0 and i ≥ 1, and a letter a ∈ Σ,
efficiently calculate the ith letter of ϕn(a).

In this paper, we present the first algorithm which
solves this problem in time bounded by a polynomial in
the size of the input data. More precisely, the running
time of our algorithm is polynomial in log n, log i, w,
and d. Our model of computation is the familiar “naive
bit complexity” model; see, for example, [1]. In this
model, adding together two n-bit integers uses O(n)
bit operations, while multiplying two n-bit integers uses
O(n2) bit operations.
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Let p be the prefix of ϕn(a) of length i. Our
algorithm is easily modified to return the distribution
of the first i letters in ϕn(a) as the Parikh vector
p = (mb)b∈Σ, where mb = |p|b.

Iterated homomorphisms have been studied in the
form of deterministic context-free Lindenmayer systems,
or D0L-systems [16]. A D0L-system is a 3-tuple G =
{Σ, ϕ, z} where Σ is a finite alphabet, ϕ is a set of
production rules, and z ∈ Σ∗ is the initial word or
axiom. The language of a D0L-system G is defined as
L(G) = {ϕn(z) : n ≥ 0}.

A word of a D0L-language can be interpreted as
instructions in a “turtle language” to draw an image
[15]. Many have used D0L-systems to generate fractals
and to model biological systems such as the branching
structure of a tree [4, 10, 11]; see Figure 1. In this
context, our new algorithm allows us to efficiently
calculate the structure of small twigs, without having to
calculate the structure of the entire tree.

Another application of our algorithm is the efficient
computation of the ith letter of a fixed point of a
homomorphism, which was stated as an open problem
in [13]. A letter a is mortal if ϕn(a) = ε for some n > 0.
We say a is immortal if it is not mortal. Let a be a letter
such that ϕ(a) = ax, where x is a string containing at
least one immortal letter. Then ϕ has a unique fixed
point starting with a, of the form

ϕω(a) = a xϕ(x)ϕ2(x)ϕ3(x) · · · .

We can efficiently compute the ith letter of such a fixed
point by using binary search to determine which factor
the ith letter lies in, and then using our algorithm to find
the appropriate letter within a factor. Such a binary
search uses the subroutine GenericLength described
below in Section 5.

This paper is based on results in the second author’s
M.Math. thesis [14].

2 Previous Work

While much attention has been paid to the applications
of D0L-systems, a significant amount of study has also
been devoted to their theoretical properties. Vitányi
[16] provided a comprehensive collection of theoretical
results up to 1980. For example, he discussed D0L-
languages and how they relate to the Chomsky hierar-
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Figure 1: Geometric interpretations of strings produced by D0L-systems [10].

chy; other types of L-systems; and the behavior of the
growth functions of D0L-systems.

The growth function fG of a D0L-system G is
defined by

fG(n) = |ϕn(w)|.

Doucet [6] and Salomaa [12] devised methods to obtain
an explicit formula for the growth function and showed
that the growth function of any D0L-system is either
polynomial or exponential. With respect to a homo-
morphism ϕ, we say a string x ∈ Σ∗ grows polynomially
if |ϕn(x)| = O(nc) for some constant c. Otherwise, we
say x grows exponentially. There is an efficient algo-
rithm to determine if a letter grows exponentially [16].

Other authors have also discussed the complexity of
decision problems involving D0L-systems. For example,
a famous open problem in L-systems was the D0L-
language equivalence problem: given D0L-systems, G1

and G2, does L(G1) = L(G2)? Culik and Fris [3] showed
the decidability of this problem by giving an explicit
algorithm.

Jones and Skyum [7] gave a polynomial time algo-
rithm for solving the D0L membership problem: given
G and x, is x ∈ G? Their result is somewhat orthogonal
to ours, for in their situation the input is x, z, and ϕ,
and they want to decide if there exists n with x = ϕn(z).
Note that |x| could be as large as wn|z|, where w is the
width of ϕ. This quantity is doubly exponential in log n.
Later, Jones and Skyum [8] gave a DSPACE(log2 n) al-
gorithm to solve the D0L membership problem.

3 The BasicTreeDescent Subroutine

We first discuss a simple method to calculate the ith
letter of ϕn(a), called BasicTreeDescent. This

algorithm is similar to one found by Jones and Skyum
[8]. While its running time is not necessarily polynomial
in log n, log i, w, and d, we use BasicTreeDescent to
calculate the ith letter of ϕn(a) for the cases in which
n is polynomial in log i, w, and d.

For an integer n and a letter a ∈ Σ, we view
the sequence of words a, ϕ(a), ϕ2(a), · · ·, ϕn(a) as
labels of the levels of an ordered tree. More precisely,
the derivation tree of ϕn(a) is the ordered tree of
height n, with a as its root, such that every non-leaf
node b has children labeled with the letters of ϕ(b).
Instead of computing ϕn(a) by repeatedly applying ϕ
to each successive string, we calculate the ith letter of
ϕn(a) by descending n levels down the derivation tree
to the appropriate letter. The only difficulty lies in
determining which subtree to descend.

Let Length(ϕ, n, a, i) be a procedure which re-
turns the value |ϕn(a)| and denote ϕ(a) by the string
z = z1z2 · · · z|ϕ(a)|. BasicTreeDescent uses Length
to compute |ϕn−1(z1)|, |ϕn−1(z2)|, · · · and by adding,
computes |ϕn−1(z1)|, |ϕn−1(z1z2)|, · · · until a value t is
determined such that

|ϕn−1(z1z2 · · · zt−1)| < i ≤ |ϕn−1(z1z2 · · · zt)|.

Once t has been calculated, the algorithm adjusts
the values of n, a, and i to n − 1, zt, and i −
|ϕn−1(z1z2 · · · zt−1)| respectively and thus descends one
level in the derivation tree. Of course, if n = 0, the
algorithm simply returns a.

4 Our Improved Algorithm

The idea behind our new algorithm is to avoid descend-
ing n levels in the derivation tree for the cases where n
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is not bounded by a polynomial in log i, w, and d, by
exploiting the recursive nature of the homomorphism.
Basically, we descend the derivation tree until we en-
counter a letter for the second time and then shortcut
to the node where this repeated letter occurs last. We
continue descending, taking shortcuts whenever possible
until we reach the ith letter of the bottom level.

4.1 Finding a Repeated Letter We discuss some
notation concerning the path taken down the deriva-
tion tree. Let a0 be the root of the derivation tree. Let
aj be the letter encountered after descending j levels
and set xj , yj such that ϕ(aj−1) = xjajyj . Therefore,
after descending l levels, the sequence of letters encoun-
tered during the tree descent is a0, a1, · · · , al and the
sequences of strings x1, x2, · · · , xl and y1, y2, · · · , yl de-
scribe the branches of the tree which were not followed.

We begin our algorithm by descending the deriva-
tion tree until we encounter some letter al for the second
time, where l is the number of levels we have descended
thus far. Let l − q be the level containing the previous
occurrence of al. We need only descend d levels be-
fore encountering such a letter al since |Σ| = d. More
precisely, al = al−q for some l ≤ d.

By descending l levels, we have calculated new
values for n, a, and i, which yield the same re-
sults, namely i−|ϕn−1(x1)ϕn−2(x2) · · ·ϕn−l(xl)|, n− l,
and al. We have also discovered strings x and y
and an integer q such that ϕq(a) = xay. Specif-
ically, x and y are ϕq−1(xl−q+1) · · ·ϕ(xl−1)xl, and
ylϕ(yl−1) · · ·ϕq−1(yl−q+1) respectively.

4.2 Jumping Ahead Once a repeated letter a is
found, the remainder of the algorithm calculates the
last occurrence of the letter a in the tree descent and
then either invokes the BasicTreeDescent algorithm
or restarts our algorithm with new values of n and i.

Setting s and r such that n = sq + r and r < q,
we use the strings x, y, and the integers q, r, and s to
describe ϕn(a). We know ϕq(a) = x a y and ϕ2q(a) =
ϕq(x)x a y ϕq(y). Continuing this way, we see that

ϕsq(a) = ϕ(s−1)q(x) · · ·ϕq(x)x a y ϕq(y) · · ·ϕ(s−1)q(y).

Finally, applying ϕr to both sides yields

ϕn(a) = ϕ(s−1)q+r(x) · · ·ϕq+r(x)ϕr(x)︸ ︷︷ ︸
X1

·

ϕr(a)︸ ︷︷ ︸
X2

·

ϕr(y)ϕq+r(y) · · ·ϕ(s−1)q+r(y)︸ ︷︷ ︸
X3

Let GenericLength(ϕ,x, q, r, s, t, i) be a proce-
dure which returns

∑
t≤j<s |ϕqj+r(x)|. Rather than us-

ing the word x itself as input, we use the Parikh vector
x to indicate the distribution of letters in x, that is,
x = (mj)1≤j≤d, where mj = |x|aj

.
We use GenericLength and Length to deter-

mine which of X1, X2, or X3 the ith letter falls in and
we handle these three cases separately.

Case 1: If x contains an exponentially growing
letter, then Lemma 6.2 below states that n = O(d log i)
and therefore, we can safely call BasicTreeDescent.

Otherwise, x grows polynomially. Using Generic-
Length, we do a binary search for a value of t such
that the ith letter lies in the subword ϕtq+r(x), more
precisely,

|ϕ(s−1)q+r(x) · · ·ϕ(t+1)q+r(x)| < i

and
i ≤ |ϕ(s−1)q+r(x) · · ·ϕtq+r(x)|.

Once t is found, we set n ← (t + 1)q + r and i ← i −
|ϕ(s−1)q+r(x) · · ·ϕ(t+1)q+r(x)|. As we prove in Lemma
6.3 below, adjusting the values of i and n this way lets
us descend to the point in the derivation tree where the
letter a occurs last.

Case 2: Since we have already calculated the
length of X1, we need only set i ← i − |X1|, set
n ← r, and then call BasicTreeDescent. We call
BasicTreeDescent, since now n = r < q ≤ d.

Case 3: Similarly to Case 1, we use Generic-
Length to do a binary search for a value t, such that
the ith letter lies in the the subword ϕtq+r(y), that is,

|ϕr(y)ϕq+r(y) · · ·ϕ(t−1)q+r(y)| < i− |X1X2|

and

i− |X1X2| ≤ |ϕr(y)ϕq+r(y) · · ·ϕtq+r(y)|.

Once the value of t is found, we set n ← (t + 1)q + r.
Since we wish to reduce i by the number of letters
to the left of the substring ϕ(t+1)q+r(a), we set i ←
i− |ϕ(s−1)q+r(x) · · ·ϕ(t+1)q+r(x)|.

If y is polynomially growing, then Lemma 6.3 below
shows that the letter a is not encountered again. Hence,
we continue descending the tree until the next shortcut
is taken or until the bottom is reached.

Otherwise, y grows exponentially. By Lemma 6.2
below, n = O(d log i) and therefore we call Basic-
TreeDescent.

Figure 4.2 contains the pseudocode for the proce-
dure Find which finds the ith letter of ϕn(a). The al-
gorithm assumes that 1 ≤ i ≤ |ϕn(a)|.
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procedure Find(ϕ, n, a, i); // returns the ith letter of ϕn(a) assuming 1 ≤ i ≤ |ϕn(a)|.
a0 ← a;

for (l← 1 to ∞) //executes for ≤ d iterations
z ← ϕ(a) = z1z2 · · · z|ϕ(a)|;
find smallest index t such that i > |ϕn−1(z1z2 · · · zt−1)|;
i← i− |ϕn−1(z1z2 · · · zt−1)|; n← n− 1; a← zt;
xl ← z1 · · · zt−1; al ← zt; yl ← zt+1 · · · z|ϕ(a)|;

if (n ≤ d) then return BasicTreeDescent(ϕ, n, a, i);
else if (aj = al for some j < l) then

q ← l − j; s← bn/qc; r ← n− sq;
x← Parikh vector of ϕq−1(xl−q+1) · · ·ϕ(xl−1)xl;
y← Parikh vector of ylϕ(yl−1) · · ·ϕq−1(yl−q+1);
S1 ← GenericLength(ϕ,x, q, r, s, 0, i); //Length of X1.
S2 ← Length(ϕ, r, a, i− S1); //Length of X2.

if (i ≤ S1) then //Case 1
if (x grows exponentially) then return BasicTreeDescent(ϕ, n, a, i);
use GenericLength to do a binary search for t such that
|ϕ(s−1)q+r(x) · · ·ϕ(t+1)q+r(x)| < i ≤ |ϕ(s−1)q+r(x) · · ·ϕtq+r(x)|

i← i− GenericLength(ϕ,x, q, r, s, t+ 1, i);
n← (t+ 1)q + r;
return Find(ϕ, n, a, i);

else if (i ≤ S1 + S2) then //Case 2
return BasicTreeDescent(ϕ, r, a, i− S1);

else // Case 3
use GenericLength to do a binary search for t such that
|ϕr(y)ϕq+r(y) · · ·ϕ(t−1)q+r(y)| < i− S1 − S2 ≤ |ϕr(y)ϕq+r(y) · · ·ϕtq+r(y)|

i← i− GenericLength(ϕ,x, q, r, s, t+ 1, i);
n← (t+ 1)q + r;
if (y grows exponentially) then return BasicTreeDescent(ϕ, n, a, i);
else return Find(ϕ, n, a, i);

Figure 2: The procedure Find
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5 Length and GenericLength

Before moving on to the analysis of Find, we dis-
cuss details concerning the subroutines it calls. In
particular, we show how GenericLength computes∑

t≤j<s |ϕjq+r(a)|, how Length computes |ϕn(a)|, as
well as providing a run-time estimate for these routines.

Let Σ = {a1, a2, · · · ad}. We define the incidence
matrix of ϕ as M(ϕ) = (mij)1≤i,j≤d, where mij =
|ϕ(aj)|ai . By multiplying the incidence matrix of ϕ by
itself k times, we get a matrix whose mij entry equals
the number of ai’s in ϕk(aj), that is, M(ϕ)k = M(ϕk)
for k ≥ 0. Hence, Length calculates M(ϕ)n and then
sums the values of the column corresponding to a to
yield |ϕn(a)|.

The well-known binary method of exponentiation
(e.g., [1]) provides a method for raising a matrix to the
nth power with O(log n) matrix multiplications.

We take some measures to avoid unnecessary calcu-
lations which may impede the performance of Length.
For our purposes, it suffices to report |ϕn(a)| ≥ i with-
out having to actually calculate |ϕn(a)|. Accordingly, af-
ter every matrix M(ϕk) is calculated, we check whether
the number of immortal letters in ϕk(a) is less than
i. If not, Length stops the calculation and reports
that |ϕn(a)| ≥ i. A letter b is accessible from a if
ϕn(a) = w1bw2 for some strings w1, w2 ∈ Σ∗ and for
some n ≥ 0. We restrict the alphabet Σ to only the
letters accessible from a.

To summarize, when Length is executed, it con-
structs the incidence matrix M(ϕ), and then uses the
binary method of exponentiation to calculate M(ϕn)
while taking the precautions noted above. If M(ϕn) is
finally calculated, then Length returns the sum of the
entries in the column corresponding to a.

Now we discuss how GenericLength returns the
value of

∑
t≤j<s |ϕqj+r(x)|. An instrumental idea used

in GenericLength is the ability to calculate matrices
of the form Cn = I + A + · · · + An−1 efficiently. An
inductive argument shows that if

B =

[
A

I

O

I

]
,

then

Bn =

[
An

Cn

O

I

]
.

Using the binary method of exponentiation again, we
can compute Bn in log n matrix multiplications.

GenericLength begins by constructing M(ϕ).
Using the binary method of exponentiation, it calculates
Y = M(ϕtq+r), and A = M(ϕq). The technique
mentioned above is used with A to compute the matrix
Cn = M(ϕ0)+M(ϕq)+ · · ·+M(ϕ(s−t−1)q). Finally, we

sum the entries in the column vector YCnx to obtain
the value

∑
t≤j<s |ϕjq+r(x)|.

As in Length, GenericLength takes precautions
to avoid unnecessary calculations. As before, we restrict
the alphabet Σ to only the letters accessible from x, and
we perform checks similar to the ones done in Length
in order to stop the calculation when necessary and
report that

∑
t≤j<s |ϕjq+r(x)| ≥ i.

The following lemma states the running time of
Length and GenericLength.

Lemma 5.1. The number of bit operations used by
Length is

O((log n)d3(d logw + log i)2)

and the number of bit operations used by Generic-
Length is

O((log n)d3(d2 logw + log i)2).

Proof. Omitted due to space considerations.

6 Correctness and Analysis

We first prove the correctness of Find, and then discuss
its running time.

Theorem 6.1. Find(ϕ, n, a, i) returns the ith letter of
ϕn(a).

Proof. We proceed by induction on n. When n < d,
the algorithm calls BasicTreeDescent thus returning
the correct answer. Otherwise, we assume that our
algorithm works for values less than n. It remains to
show that every time the value of n is reduced that a
and i are modified in such a way that the ith letter of
ϕn(a) is the same.

The first part of the procedure descends the deriva-
tion tree one level at a time. Each time n is de-
creased by 1, the values for a, and i are zt and i −
|ϕn−1(z1z2 · · · zt−1)| respectively, since the ith letter of
ϕn(a) lies in the subtree of zt.

When a repeated letter a is found, we calculate the
values for q, r, s, x and y such that for any t < s,

ϕn(a) = ϕ(s−1)q+r(x) · · ·ϕtq+r(x)·
ϕtq+r(a)·
ϕtq+r(y) · · ·ϕ(s−1)q+r(y).

Accordingly, for both Case 1 and Case 3, n is set
to (t + 1)q + r, and |ϕ(s−1)q+r(x) · · ·ϕ(t+1)q+r(x)| is
subtracted from i.

Therefore, each time n is reduced, the values for a
and i are also modified correctly. Hence Find returns
the ith letter of ϕn(a).
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Lemma 5.1 already tells us the running time of the
subroutines Length and GenericLength.

Lemma 6.1. The procedure BasicTreeDescent uses
O(nw(log n)d3(d logw + log i)2) bit operations.

Proof. We obtain the result by multiplying the running
time of Length by nw.

We need to show that whenever BasicTreeDes-
cent is called, n is polynomial in log i, w, or d. In our
algorithm, we call BasicTreeDescent when n ≤ d,
when n = r < q ≤ d, or when x or y grows exponen-
tially. The following lemma shows that when x or y
grows exponentially, then n is a polynomial in d and
log i.

Lemma 6.2. Let a ∈ Σ, and u, v ∈ Σ∗ such that
ϕq(a) = uv for some q < d. If the ith letter of
ϕn(a) lies in the substring ϕn−q(v), and u contains an
exponentially growing letter b, then n = O(d log i).

Proof. If ϕd(b) contains less than 2 exponentially grow-
ing letters, then ϕj(b) contains at most one exponen-
tially growing letter for all j ≥ 0, which is impossible.
Hence there are at least 2 exponentially growing letters
in ϕd(u). Therefore |ϕn(u)| grows at least as fast as cn

where c = 21/d.
Since, cn−q ≤ |ϕn−q(u)| < i, then we know

(n − q) log c < log i. Hence n ≤ (log i)/(log c) + q.
But 1/ log c = O(d) and q < d. Consequently, n =
O(d log i).

We apply Lemma 6.2 to Case 1 by setting u = x
and v = ay. For Case 3, we know a grows exponentially
whenever y does, Hence, we apply Lemma 6.2 with
u = xa and v = y.

We have running times for the subroutines that
Find calls, but Find also calls itself. The following
shows that Find recursively calls itself at most d times
by showing that each of the d letters can be the repeated
letter of our algorithm at most one time.

Lemma 6.3. Let q, r, and t be integers such that r < q,
and ϕq(a) = xay for some x, y ∈ Σ∗ and a ∈ Σ.
If x grows polynomially and i ≤ |ϕtq+r(x)|, or if y
grows polynomially and i > |ϕtq+r(xa)|, then descending
the derivation tree of ϕ(t+1)q+r(a) to the ith letter
encounters the letter a exactly once at the root.

Proof. Consider the case where x grows polynomially
and i ≤ |ϕtq+r(x)|. Descending q levels takes us into the
subword x. Hence, our descent takes an earlier branch
than the path to the letter a in xay at level q.

Since no a is encountered before the tree descent
leaves the path to the a at level q, a second a can

only be encountered after leaving this path. But
encountering another a would imply that a and hence x
is exponentially growing, a contradiction.

Otherwise we have that y grows polynomially and
i > |ϕtq+r(xa)|. Similarly, we descend q levels into the
subword y. If our descent encounters an a after leaving
the path to the letter a in xay at level q, then we know
y grows exponentially, another contradiction.

Finally, we state our main result: the running time
of Find is polynomial.

Theorem 6.2. The number of bit operations used by
Find is

O( (d+ log i)w(log n) d4(d logw + log i)2+
(log n)2d4(d2logw + log i)2 ).

Proof. Let L be the running time of Length, and G,
the running time of GenericLength.

At worst case, the “for” loop of Find executes d
times, calculating the length of the strings of subtrees w
times, before one of the three cases is reached. Handling
the cases takes at worst case O(log nG+ L) time. This
gives one instantiation of Find a running time of

O(wdL+ (log n)G).

We know Find recursively calls itself at most d
times before reaching the base case and calling Basic-
TreeDescent with n < d log i. The running time of
BasicTreeDescent then is

O(nwL) = O(wd(log i)L).

Hence the total running time of Find is

O(d(wdL+ (log n)G) + wd(log i)L).

Rearranging and substituting for G and L gives us the
final running time.

The most significant difference between the running
times of Find and BasicTreeDescent is that there
is only a (log n)2 term in the running time of Find
whereas there is a factor of n in the running time of
BasicTreeDescent.

The upper bound we obtained in Theorem 6.2
overstates the actual running time obtained in practice.
For most typical input data, Find is rarely called more
than once. It makes sense, then, to implement these
procedures and analyze the actual running time of Find
for varying n, i, d, and w.

Table 1 reports the performance of Find with
n = 1000, and n = 1000000. The running times of
BasicTreeDescent with n = 1000 are included for



7

Find n = 1000 Find n = 1000000 BTD n = 1000
Σ d w i=100 104 106 i=100 104 106 i=100 104 106

exp 5 2 0.17 0.25 0.33 0.19 0.27 0.41 3.87 4.40 4.71
10 0.47 0.75 1.17 0.42 0.59 0.86 9.90 10.35 10.65

30 2 7.67 16.58 19.27 7.59 16.83 19.93 164.97 214.80 263.64
10 7.24 10.89 14.13 7.19 10.78 14.09 151.58 200.73 211.40

poly 5 2 0.11 0.22 0.36 0.17 0.19 0.27 4.31 4.15 3.93
10 0.26 0.30 0.53 0.40 0.41 0.46 9.75 18.19 42.05

30 2 5.08 5.76 6.32 5.45 6.04 6.35 20.24 23.65 25.47
10 4.79 4.96 6.27 5.33 5.62 5.68 59.30 116.15 76.08

mix 5 2 0.08 0.12 0.19 0.14 0.15 0.03 4.68 3.11 3.17
10 0.18 0.23 0.26 0.24 0.33 0.34 7.82 8.34 7.54

30 2 2.67 3.09 3.36 3.34 3.70 4.04 45.52 47.97 49.54
10 6.67 9.39 11.98 6.78 9.53 12.10 151.26 161.09 159.70

Table 1: Performance of Find and BasicTreeDescent in seconds

comparison. Each row of the table corresponds to a
homomorphism with varying values of w and d and with
alphabets of exponentially growing letters, polynomially
growing letters, or both. For each homomorphism, we
calculated the 100th, the 10000th, and the 1000000th
letter of each string.

These results show a number of details concerning
the performance of Find on various inputs. The running
times of both Find and BasicTreeDescent have a
high dependence on d. In practice however, d is not
very large (typically less than 10 letters).

Notice that BasicTreeDescent does not perform
as well as Find does when n = 1000. For even larger
n, the BasicTreeDescent would have an even worse
performance compared with Find. For example, obtain-
ing the ith letter of ϕ1000000(a) using BasicTreeDes-
cent would have taken about a day for each calcula-
tion. This shows that our new algorithm enables us
to calculate letters of strings produced by homomor-
phisms which were not obtainable before, particularly
those produced with large values of n.

7 Extensions

Our algorithm may be easily extended to calculate how
many times each letter in Σ occurs in the prefix of ϕn(a)
of length i. The procedures Length and Generic-
Length compute the lengths of strings which precede
the ith letter of ϕn(a). In the process of calculating
these lengths, we already compute the Parikh vector of
these strings. Computing the total distribution of the
letters which precede the ith letter entails only summing
the corresponding Parikh vectors each time we reduce
i. By subtracting two Parikh vectors for prefixes of
different lengths, we can also efficiently compute the
letter distributions of subwords.

8 Finite-state Transducers

We turn our attention from homomorphisms to the
iterated application of a finite-state transducer; see,
for example, [2]. A finite-state transducer, or just
transducer is a machine T = (Q,Σ, δ, q0,∆, λ) where
Q is a finite set of states, Σ is the input alphabet,
δ : Q×Σ→ Q is the transition function, q0 is the initial
state, ∆ is the output alphabet, and λ : Q×Σ→ ∆∗ is
the output function. Given input x = x1x2x3 · · ·xn ∈
Σ∗, a finite-state transducer starts at state q0 and at the
ith step, it enters the state qi = δ(qi−1, xi) and appends
λ(qi−1, xi) to the output. Hence on input x1x2x3 · · ·xn,
a finite-state transducer outputs

λ(q0, x1)λ(q1, x2) · · ·λ(qn−1, xn).

Formally, we define Transducer to be the follow-
ing decision problem.

Instance: A finite-state transducer T which
implements a function f : Σ∗→Σ∗;
integers n, i in binary; and letters
a, b.

Question: Does the i’th letter of fn(a) equal
b?

Unlike the case with homomorphisms, which can
be computed in polynomial time, Transducer is
EXPTIME-hard as we will see in Theorem 8.1.

We define a configuration string as the non-blank
tape contents of a Turing machine, where the current
state and the square being scanned are combined into
a special symbol and the symbol . is appended to the
end to signify the infinite amount of trailing blanks. For
example, the string (q0, 1) 0 1 0 0 1 . represents the
first configuration of a Turing machine on input 101001.
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Lemma 8.1. For any Turing machine M , we can create
a transducer T which simulates one step of M by
mapping a configuration string x to the configuration
string which follows x in M ’s computation.

Proof. We give an outline for the construction of T ;
the details are left to the reader. Essentially, by using
the states of T to delay the output of each square by
one step, we can determine whether the output should
become an ordered pair as a result of the tape head
moving left. Once the tape head has been handled, the
remainder of T ’s computation simply outputs the rest
of the string as it is received. The symbol . is used to
add more blanks to the right when necessary.

We now give a reduction from an EXPTIME-
complete problem to Transducer

Theorem 8.1. Transducer is EXPTIME-hard.

Proof. LetME be a Turing machine which recognizes an

EXPTIME-complete language E in less than 2n
k

steps
and finishes by writing a “yes” or a “no” symbol in the
first square. Further, let x be an arbitrary input string
for ME . We specify an instance of Transducer as fol-
lows: let a be a new symbol; let T be a transducer which,
on input a, outputs ME ’s first configuration string, and
which simulates one step of ME ’s computation other-

wise; let b = “yes”; let i = 1; and let n = 2|x|
k

. Only
|x|k digits are needed to specify n, and the specification
of T depends only linearly on |x|. Further, fn(a) is the
“yes” symbol if and only if ME accepts x. Therefore, we
have a polynomial reduction from E to Transducer
and the result follows.

A well-known sequence produced by transducers is
the Kolakoski sequence [9]:

K = 12211212212211211221211 · · ·

which has the property that the sequence of run-lengths
of K is the same as K itself. The long range distribution
of many of these sequences are unknown despite a great
deal of attention [5]. Our result suggests an inherent
difficulty in computing the digits of such sequences.
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