Some Predictable Pierce Expansions

J. O. Shallit
Department of Mathematics
University of California
Berkeley, CA 94720

I. Introduction.

In 1929, T. A. Pierce discussed an algorithm for expanding real numbers $x \varepsilon(0,1)$ in the form

$$
\begin{equation*}
x=\frac{1}{a_{1}}-\frac{1}{a_{1} a_{2}}+\frac{1}{a_{1} a_{2} a_{3}} \cdots \tag{1}
\end{equation*}
$$

where the a_{i} form a strictly increasing sequence of positive integers.
He showed that these expansions (which we call Pierce expansions) are essentially unique. The Pierce expansion for x terminates if and only if x is rational. See [Pie] or [Sha] for details.

In this note, we give formulas for the a_{i} in the case where

$$
x=\frac{c-\sqrt{c^{2}-4}}{2}
$$

and $c \geq 3$ is an integer. For these numbers, Pierce expansions provide extremely rapidly converging series.

II. Finding Real Roots of Polynomials.

To save space, we will sometimes write the equation (1) in the form

$$
x=\left\{a_{1}, a_{2}, a_{3}, \cdots\right\}
$$

where the curly brackets denote a Pierce expansion.

Let

$$
p_{1}(x)=b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{1} x+b_{0}
$$

be a polynomial with integers coefficients and a single real zero α in the interval $(0,1)$. We want to find the first term in the Pierce expansion of α. From equation (1) it is easy to see that $a_{1}=\lfloor 1 / \alpha\rfloor$. Consider the polynomial $q_{1}(x)=x^{n} p_{1}(1 / x)$; this is a polynomial with integer co-efficients that has $1 / \alpha$ as a zero. Through a simple binary search procedure, it is easy to find d_{1} such that

$$
\operatorname{sign}\left(q\left(d_{1}\right)\right) \neq \operatorname{sign}\left(q\left(d_{1}+1\right)\right) ;
$$

this shows that $d_{1}=\lfloor 1 / \alpha\rfloor$ and so we can take $\alpha_{1}=d_{1}$.
Now consider the polynomial

$$
p_{2}(x)=a_{1}^{n} p_{1}\left(\frac{1-x}{a_{1}}\right)
$$

This again is a polynomial with integer coefficients. It is easily verified that if β is a zero of $p_{2}(x)$ then

$$
\alpha=\frac{1}{a_{1}}-\frac{1}{a_{1}} \beta
$$

so

$$
\beta=\frac{1}{a_{2}}-\frac{1}{a_{2} a_{3}}+\cdots
$$

By repeating this procedure on the polynomial $p_{2}(x)$, we generate the co-efficient a_{2} in the Pierce expansion of α. And by continuing in the same fashion, we can generate as many terms of the Pierce expansion for α as desired:

$$
\alpha=\frac{1}{a_{1}}-\frac{1}{a_{1} a_{2}}+\cdots
$$

Now let us specify our polynomial to be

$$
p_{1}(x)=x^{2}-c x+1
$$

where $c \geq 3$ is an integer. Let α be the smaller positive zero, so

$$
\begin{equation*}
\alpha=\frac{c-\sqrt{c^{2}-4}}{2} . \tag{2}
\end{equation*}
$$

Now $q_{1}(x)=x^{2} p_{1}(1 / x)=x^{2}-c x+1$. We find $q_{1}(c-1)=2-c$, which is negative, and $q_{1}(c)=1$ which is positive. Hence we see that $a_{1}=c-1$.

Now $p_{2}(x)=(c-1)^{2} p_{1}\left(\frac{1-x}{c-1}\right)$; hence

$$
p_{2}(x)=x^{2}+\left(c^{2}-c-2\right) x+2-c
$$

We find

$$
q_{2}(x)=x^{2} p_{2}(1 / x)=(2-c) x^{2}+\left(c^{2}-c-2\right) x+1
$$

Now $q_{2}(c+1)=1$ which is positive; but $q_{2}(c+2)=5-c^{2}$ which is negative. Hence we see that $a_{2}=c+1$.

Now $p_{3}(x)=x^{2} p_{2}\left(\frac{1-x}{c+1}\right)$ so we see

$$
p_{3}(x)=x^{2}-\left(c^{3}-3 c\right) x+1
$$

So far we have been following the algorithm. But now we notice that $p_{3}(x)$ is essentially just $p_{1}(x)$ with $c^{3}-3 c$ playing the role of c. We have found

$$
\alpha=\frac{1}{c-1}-\frac{1}{(c-1)(c+1)}+\frac{1}{(c-1)(c+1)} \gamma
$$

where γ is the root of $x^{2}-\left(c^{3}-3 c\right) x+1=0$. By continuing this process, we get

Theorem.

Let α be as in equation (2). Then

$$
\alpha=\left\{c_{0}-1, c_{0}+1, c_{1}-1, c_{1}+1, c_{2}-1, c_{2}+1, \cdots\right\}
$$

where $c_{0}=c, c_{k+1}=c_{k}^{3}-3 c_{k}$.

For example, let $c=3$. Then we find

$$
\frac{3-\sqrt{5}}{2}\{2,4,17,19,5777,5779, \cdots\}
$$

Another example: let $c=6$. Then, after some manipulation, we find:

$$
\sqrt{2}-1=\{2,5,7,197,199,7761797,7761799, \cdots\}
$$

Ironically, both Pierce and Salzer [Sal] gave the first four terms of this expansion, but apparently neither detected the general pattern!

III. The Coefficients c_{k}.

The recurrence $c_{k+1}=c_{k}^{3}-3 c_{k}$ is an interesting one which has been previously studied [AhSl], [Esc]. Some brief comments are in order.

If we let α and β be the roots of the quadratic

$$
x^{2}-c x+1=0
$$

and define

$$
V(n)=\alpha^{n}+\beta^{n} ; U(n)=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}
$$

then it is easy to show by induction that

$$
V(n)=c V(n-1)-V(n-2) ; \quad U(n)=c U(n-1)-U(n-2)
$$

where

$$
V(0)=2, V(1)=c ; \quad U(0)=0, U(1)=1
$$

We can also show that $V(3 k)=V(k)^{3}-3 V(k)$; hence by induction $c_{k}=V\left(3^{k}\right)$. This gives the following closed form for the c_{k} :

$$
c_{k}=\left(\frac{c+\sqrt{c^{2}-4}}{2}\right)^{3^{k}}+\left(\frac{c-\sqrt{c^{2}-4}}{2}\right)^{3^{k}}
$$

Similarly, it is easy to show by induction that

$$
\frac{U\left(3^{k}-1\right)}{U\left(3^{k}\right)}=\left\{c_{0}-1, c_{0}+1, c_{1}-1, c_{1}+1, \cdots, c_{k-1}-1, c_{k-1}+1\right\}
$$

which gives an alternative proof of our Theorem.

References

[AhSl] A. V. Aho and N. J. A. Sloane, Some Doubly Exponential Sequences, Fib. Quart. 15 (1973) 429-437.
[Esc] E. B. Escott, Rapid Method for Extracting a Square Root, Am. Math. Monthly 44 (1937) 644-646.
[Pie] T. A. Pierce, On an algorithm and its use in approximating roots of polynomials, Am. Math. Monthly 36 (1929) 523-525.
[Sal] H. E. Salzer, The Approximation of Numbers as Sums of Reciprocals, Am. Math. Monthly 54 (1947) 135-142.
[Sha] J. O. Shallit, Metric Theory of Pierce Expansions, to appear.

