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I. Introduction.

In 1929, T. A. Pierce discussed an algorithm for expanding real numbers x ε (0, 1) in the form

(1)x =
1

a1

−
1

a1a2

+
1

a1a2a3

. . .

where the ai form a strictly increasing sequence of positive integers.

He showed that these expansions (which we call Pierce expansions) are essentially unique. The Pierce

expansion for x terminates if and only if x is rational. See [Pie] or [Sha] for details.

In this note, we give formulas for the ai in the case where

x =
c − √ c2 − 4

2

and c ≥ 3 is an integer. For these numbers, Pierce expansions provide extremely rapidly converging series.

II. Finding Real Roots of Polynomials.

To sav e space, we will sometimes write the equation (1) in the form

x = { a1, a2, a3, . . . }

where the curly brackets denote a Pierce expansion.

Let

p1(x) = bn xn + bn−1 xn−1 + . . . + b1 x + b0

be a polynomial with integers coefficients and a single real zero α in the interval (0, 1). We want to find the

first term in the Pierce expansion of α . From equation (1) it is easy to see that a1 =  1/α . Consider the

polynomial q1(x) = xn p1(1/x); this is a polynomial with integer co-efficients that has 1/α as a zero.

Through a simple binary search procedure, it is easy to find d1 such that

sign(q(d1)) ≠ sign(q(d1 + 1));

this shows that d1 =  1/α  and so we can take α1 = d1.

Now consider the polynomial



p2(x) = an
1 p1(

1 − x

a1

)

This again is a polynomial with integer coefficients. It is easily verified that if β is a zero of p2(x) then

α =
1

a1

−
1

a1

β

so

β =
1

a2

−
1

a2a3

+ . . .

By repeating this procedure on the polynomial p2(x), we generate the co-efficient a2 in the Pierce

expansion of α . And by continuing in the same fashion, we can generate as many terms of the Pierce

expansion for α as desired:

α =
1

a1

−
1

a1a2

+ . . .

Now let us specify our polynomial to be

p1(x) = x2 − cx + 1

where c ≥ 3 is an integer. Let α be the smaller positive zero, so

(2)α =
c − √ c2 − 4

2
.

Now q1(x) = x2 p1(1/x) = x2 − cx + 1. We find q1(c − 1) = 2 − c, which is negative, and q1(c) = 1

which is positive. Hence we see that a1 = c − 1.

Now p2(x) = (c − 1)2 p1(
1 − x

c − 1
); hence

p2(x) = x2 + (c2 − c − 2)x + 2 − c.

We find

q2(x) = x2 p2(1/x) = (2 − c)x2 + (c2 − c − 2)x + 1

Now q2(c + 1) = 1 which is positive; but q2(c + 2) = 5 − c2 which is negative. Hence we see that

a2 = c + 1.

Now p3(x) = x2 p2(
1 − x

c + 1
) so we see

p3(x) = x2 − (c3 − 3c)x + 1.

So far we have been following the algorithm. But now we notice that p3(x) is essentially just p1(x)

with c3 − 3c playing the role of c. We hav e found

α =
1

c − 1
−

1

(c − 1)(c + 1)
+

1

(c − 1)(c + 1)
γ

where γ is the root of x2 − (c3 − 3c)x + 1 = 0. By continuing this process, we get

Theorem.



Let α be as in equation (2). Then

α = { c0 − 1, c0 + 1, c1 − 1, c1 + 1, c2 − 1, c2 + 1, . . . }

where c0 = c, ck+1 = c3
k − 3ck .

For example, let c = 3. Then we find

3 − √5

2
{ 2, 4, 17, 19, 5777, 5779, . . . }

Another example: let c = 6. Then, after some manipulation, we find:

√2 − 1 = { 2, 5, 7, 197, 199, 7761797, 7761799, . . . }

Ironically, both Pierce and Salzer [Sal] gav e the first four terms of this expansion, but apparently neither

detected the general pattern!

III. The Coefficients ck .

The recurrence ck+1 = c3
k − 3ck is an interesting one which has been previously studied [AhSl], [Esc].

Some brief comments are in order.

If we let α and β be the roots of the quadratic

x2 − cx + 1 = 0

and define

V (n) = α n + β n; U(n) =
α n − β n

α − β

then it is easy to show by induction that

V (n) = cV (n − 1) − V (n − 2); U(n) = cU(n − 1) − U(n − 2)

where

V (0) = 2, V (1) = c; U(0) = 0, U(1) = 1

We can also show that V (3k) = V (k)3 − 3V (k); hence by induction ck = V (3k). This gives the following

closed form for the ck :

ck = (
c + √ c2 − 4

2
)3k

+ (
c − √ c2 − 4

2
)3k

Similarly, it is easy to show by induction that

U(3k − 1)

U(3k)
= { c0 − 1, c0 + 1, c1 − 1, c1 + 1, . . . , ck−1 − 1, ck−1 + 1 }

which gives an alternative proof of our Theorem.
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