
SUMS OF DIVISORS, PERFECT NUMBERS, AND FACTORING

Eric Bach (*)
Computer Sciences Department

University of Wisconsin
Madison, WI 53706

Gary Miller
Department of Computer Science
University of Southern California

Los Angeles, CA 90089

Jeffre y Shallit (*)
Department of Computer Science

University of Chicago
Chicago, IL 60637

ABSTRACT.

Let N be a positive integer, and let σ (N ) denote the sum of the divisors of N (e. g.
σ (6) = 1 + 2 + 3 + 6 = 12). We show computing σ (N ) is equivalent to factoring N in the follow-
ing sense: there is a random polynomial time algorithm that, given σ (N ), produces the prime
factorization of N , and σ (N ) can be computed in polynomial time given the factorization of N .

We show that the same result holds for σ k(N ), the sum of the k −th powers of divisors of N .

We giv e three new examples of problems that are in Gill’s complexity class BPP: perfect
numbers, multiply perfect numbers, and amicable pairs. These are the first ‘‘natural’’ sets in BPP
that are not obviously in RP.

(*) Research sponsored in part by NSF grant MCS 82-04506.
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I. Introduction.

Integer factoring is a well-known difficult problem whose precise computational complexity
is still unknown. Several investigators have found algorithms that are much better than the clas-
sical method of trial division (see [Guy1], [Pol], [Dix], [Len]).

We are interested in the relationship of factoring to other functions in number theory. It is
trivial to show that classical functions like φ (N ) (the number of positive integers less than N and
relatively prime to N ) can be computed in polynomial time if one can factor N ; hence computing
φ (N ) is ‘‘easier’’ than factoring. One would also like to find functions ‘‘harder’’ than factoring.
The first result in this area was given in Gary Miller’s thesis [Mill]. Miller showed that if the
Extended Riemann Hypothesis (ERH) is true, then given φ (N ) one can produce the factorization
of N in polynomial time. Thus computing φ (N ) is ‘‘equivalent’’ to factoring. He also demon-
strated a similar equivalence between factoring and two other number-theoretic functions, λ(N )
and λ ′(N ) (defined below). Long pointed out that if one is willing to use randomization, the
ERH assumption in the above results can be eliminated, and further showed that the calculation
of orders in the multiplicative group of integers (mod N ) is randomly equivalent to factoring
[Long]. (Section II below giv es a slightly more general version of these results.) Using the
results of Miller and Long, a method for composite-modulus discrete logarithm problems implies
a method for factoring [Bach].

In this paper, we demonstrate an equivalence between factoring and computing the function
σ (N ), the sum of the divisors of N . More formally, we prove the following

Theorem 1.

Given the factorization of N , σ (N ) can be computed in polynomial time.

Theorem 2.

Given σ (N ), we can produce the factorization of N in random polynomial time.

Theorem 1 is easy to prove; for if

N = p1
e1 . . . pr

er

then

σ (N ) =
p1

e1+1 − 1

p1 − 1
. . . pr

er+1 − 1

pr − 1

(0)= ( pe1
1 + . . . + 1) . . . ( per

r + . . . + 1).

(e. g. [HW, Thm. 275]). Thus σ (N ) can be computed in polynomial time.

In sections III and IV below, we will prove Theorem 2.
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Section V discusses extensions to σ k(N ), the sum of the k-th powers of the divisors of N .
Section VI discusses some interesting corollaries, including three examples of natural problems
in Gill’s complexity class BPP that are not obviously in RP.

(We assume the reader is familiar with probabilistic complexity classes, as discussed in
[Gill]. Recall that BPP is the class of languages recognized in polynomial time by a probabilistic
Turing machine, with two-sided error probability bounded by a constant away from 1/2. RP is
the class of languages recognized in polynomial time by a probabilistic Turing machine with
one-sided error.)

A few words about notation: we use N to denote a number to be factored, and p and q rep-
resent prime divisors of N . The factorization of N is given by

N = p1
e1 . . . pk

ek

We use pe || N to mean pe | N but pe+1 |/ N , i. e. pe is the highest power of p dividing N .
By ν p(N ) we mean the exponent of the highest power of p dividing N ; e. g. in the example of
the previous sentence, ν p(N ) = e.

If R is a ring, we use R* to denote the group of invertible elements. For example, ZZ N is the
ring of integers (mod N ), and ZZ *

N is the group of elements relatively prime to N . By GF(qk) we
mean the Galois field with qk elements. NE/F (a) is the relative norm of the element a.

By factoring an integer N , we mean producing the complete factorization. By splitting we
mean finding a nontrivial divisor.

λ(N ) denotes Carmichael’s lambda function. λ(N ) is the exponent of the group ZZ *
N , i. e.

the least positive e for which ae ≡ 1 (mod N ) for all a∈ ZZ *
N . It is easy to show that

λ(N ) = lcmi{pei−1
i ( pi − 1)}.

λ ′(N ) is defined similarly:

λ ′(N ) = lcmi{pi − 1}.

II. Splitting N given a multiple of p − 1.

Most of the equivalences between functions discussed in Section I are proved as follows: let
N be composite with prime divisors p and q. By doing computations in ZZ N , and using the Chi-
nese remainder theorem, we get the effect of doing computations in ZZ p and ZZ q. Giv en a ran-
domly chosen a ∈ ZZ N , we construct a number xa ∈ ZZ N such that xa ≡ 0 (mod p), but xa ≡/ 0
(mod q) with high probability. Thus gcd(xa, N ) giv es a nontrivial divisor of N . (This is one of
the few general ideas for factoring integers.)

The first half (xa ≡ 0 (mod p)) is usually proved by exploiting some algebraic structure; the
second half (xa ≡/ 0  (mod q)) by showing that the set of a ∈ ZZ *

N for which xa ≡ 0 (mod q) is a
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proper subgroup of the group ZZ *
N .

As an example, we now show how to split N given a multiple of p − 1. This theorem and
its proof can essentially be found in [Mill] and [Long]. However, we include it here for two rea-
sons: for completeness and to motivate the main ideas.

Theorem 3.

There is an algorithm S(N , M , a) with the following properties:

Let N be odd and divisible by at least two distinct primes. Let p|N . Then given M such that
p − 1 | M , the algorithm S(N , M , a) splits N for at least 50% of the choices for a ∈ ZZ N , and
terminates in time bounded by a polynomial in log M and log N .

Proof.

The body of algorithm S is given below.

Algorithm S(N , M , a):

S1. [Check for nontrivial GCD]. If gcd(a, N ) = r and r ≠ 1, then return r and stop.

S2. [Set exponent]. Set Q ← MN .

S3. [Compute power using modular exponentiation algorithm]. Let b ≡ aQ (mod N ).

S4. [Test]. If b ≡/ ± 1 then return gcd(b − 1, N ) and stop. Else if Q is even and b ≡ 1, set
Q ← Q/2 and return to step S3.

S5. [Q odd or b ≡ − 1]. Failure. Return nothing. Stop.

Lemma A.

For at least 50% of all choices of a, 1 ≤ a < N , algorithm S(N , M , a) terminates after hav-
ing produced a nontrivial divisor of N .

Proof of Lemma A.

If a∈ ZZ N − ZZ *
N then step S1 of the algorithm will always discover a nontrivial factor of N .

Hence we may assume a∈ ZZ *
N .

Let p |  N . By assumption p − 1 | M , so p − 1 | MN . We examine two cases:

Case I: There exists at least one other prime q |  N such that q − 1 |/ MN . Then
aMN ≡ a( p−1)kN ≡ 1 (mod p) but
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{a∈ ZZ *
N |aMN ≡ 1 (mod q)}

is a proper subgroup of ZZ *
N and so aMN ≡/ 1  (mod q) at for at least 50% of all choices of a. For

these choices of a, step S4 produces a nontrivial divisor of N .

Case II: q − 1 | MN for all primes q |  N . Then λ(N ) | MN , so

G0 = {a∈ ZZ *
N |aMN ≡ 1 (mod N )} = ZZ *

N

Now consider the following chain of subgroups:

G1 = {a∈ ZZ *
N |aMN /2 ≡ 1 (mod N )}

G2 = {a∈ ZZ *
N |aMN /4 ≡ 1 (mod N )}

.

.

.

Gk = {a∈ ZZ *
N |aMN /2k

≡ 1 (mod N )}

where k = ν 2(MN ), the largest exponent of 2 dividing MN . Clearly Gk ≠ ZZ *
N since λ(N ) is

ev en, but MN /2k is odd. Hence there exists a subscript j for which G j−1 = ZZ *
N but G j ≠ ZZ *

N .
We claim that H j ≠ ZZ *

N also, where H j is a subgroup of ZZ *
N given by

H j = {a∈ ZZ *
N |aMN /2 j

≡ ± 1 (mod N )}.

We will produce an x ∈ ZZ *
N not in H j . Let qe || N such that

bMN /2 j

≡ − 1 (mod qe)

for some b; such a q must exist, for otherwise G j would equal ZZ *
N . Let x be given by

x ≡ b (mod qe)

x ≡ 1 (mod N /qe);

then

xMN /2 j

≡ − 1 (mod qe)

xMN /2 j

≡ 1 (mod N /qe)

and so x ∈/ H j . Thus H j is a proper subgroup of ZZ *
N .

Now we claim that for each x ∈/ H j , step S4 of the algorithm will produce a nontrivial divi-

sor of N . This is because xMN /2 j−1

≡ 1 (mod N ) but xMN /2 j

≡/ ± 1 (mod N ) implies that xMN /2 j

≡ 1

(mod p f ) for some p |  N and xMN /2 j

≡ − 1 (mod qe) for some q |  N . The conclusion is that at
least 50% of all a∈ ZZ *

N will lead to a splitting of N in step S4.

This completes the proof of Lemma A.

(We remark parenthetically that algorithm S works even if step S2 is replaced by
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S2’. Set Q ← M .

However, with S2’, the second corollary below might not be true, and this corollary is needed
later in the paper.)

To complete the proof of Theorem 3, it suffices to verify that all the steps of algorithm S can
be done in polynomial time. This is left to the reader.

We immediately get the following corollary:

Corollary.

The functions φ (N ), λ(N ), and λ ′(N ) are randomly equivalent to factoring.

The following corollary will be needed in section IV.

Corollary.

Suppose we replace step S1 of Algorithm S with

S1′. If gcd(a, N ) = r and r ≠ 1, then return nothing and stop.

Then if d is a factor of N produced by the new algorithm, there is some prime q |  N such
that q |/ d .

Proof.

Just check the proof of Theorem 3.

III. Splitting N using σ (N ): the square-free case.

In this section we assume that

N = p1 p2
. . . pk

is the product of one or more distinct primes. This case is somewhat easier than the case where
N is divisible by a square, so we give our proofs in detail.

The following procedure will state that N is prime, or with high probability produce a non-
trivial divisor of N .

(By iteration, if necessary, we eventually produce the complete factorization of N .)
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Algorithm A. [Given σ (N ) with N squarefree, try to split N .]

A0. If σ (N ) = N + 1, say ‘‘prime’’ and stop.

A1. If N is even, output the factor 2 and stop.

Repeat until N splits:

A2. Run a single iteration of algorithm S described in section II above, using
an a chosen at random, and M = σ (N ). If a non-trivial divisor of N is pro-
duced, output that divisor and stop.

A3. Choose a random monic quadratic polynomial from ZZ N [X], say,
f (X) = X2 + bX + c.

A4. Choose a random linear polynomial from ZZ N [X], say, r(X) = tX + u such
that t and u are not both 0.

A5. [Ensure that r(X) ≡/ 0  (mod q) for all primes q |  N ]. If gcd(t, N ) splits
N , output that divisor and stop.

A6. Compute dX + e = r(X)σ (N ) (mod ( f (X), N )).

A7. If gcd(d , N ) splits N , output that divisor and stop.

A8. [Failure.] No divisor of N has been produced on this iteration.

In our analysis of Algorithm A, we will find the following group-theoretic lemma useful:

Lemma B.

Let G be a finite cyclic group, |G| = n. Let σ be the homomorphism defined by σ (g) = gr .

Then σ (G) is also a finite cyclic group. We hav e |σ (G)| =
n

gcd(n, r)
and if g′∈ σ (G) then

|σ −1(g′)| = gcd(n, r). Hence σ (G) is the trivial group iff n | r.

Proof.

See, for example, [Alb, Thm. 23, p. 19].

Here are the ideas behind Algorithm A:

Steps A0 and A1 are self-explanatory.

In step A2, if for any pi dividing N we have pi − 1 | σ (N ) then algorithm S will split N in
polynomial time.
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Hence let us assume that for all pi we have pi − 1 |/ σ (N ). Pick a pi and call it p.

Suppose f (X) is a monic quadratic polynomial chosen at random from ZZ N [X]. Then a
simple argument shows that with probability

(1)
1

2
⋅

p − 1

p

f (X) is irreducible (mod p); so assume it is. (In practice, of course, we choose many different f
and perform the algorithm on all of them. With high probability, the algorithm succeeds some-
where.)

Similarly, for a prime q, with probability

(2)
1

2
⋅

q − 1

q

f (X) splits as the product of distinct linear factors (mod q), say
f (X) = (X − β ) (X − γ ) (mod q), so assume it does for some p j ≠ pi ( call it q).

Lemma C.

With probability at least 1/2, gcd(d , N ) splits N .

Proof.

We show that we always have d ≡ 0 (mod p) but d ≡/ 0 (mod q) with probability ≥ 1/2.
From this we conclude that gcd(d , N ) splits N with probability ≥ 1/2.

To see that d ≡ 0 (mod p) it is enough to see that

r(X)p+1 (mod f (X)) ∈ ZZ p.

Now f (X) is irreducible (mod p); hence ZZ p[X]/( f (X)) =∼ GF(p2).

Now the p −th power automorphism gives the conjugate of the element r(X) in GF( p2), so
r(X)p+1 = NGF( p2)/GF( p)(r(X)) lies in the base field GF( p) (see [Mar]). Thus d ≡ 0 (mod p).

Now let us show that d ≡/ 0  with probability ≥ 1/2. By the Chinese Remainder Theorem,
we have the isomorphism

ZZ q[X]/( f (X)) =∼ ZZ q[X]/(X − β ) + ZZ q[X]/(X − γ )

Indeed, we can make this isomorphism explicit. There exist fixed w1 X + w2 and
v1 X + v2 ∈ ZZ q[X] such that every linear r(X) ∈ ZZ q[X] can be written uniquely as

(3)r(X) ≡ c1(w1 X + w2) + c2(v1 X + v2) (mod q)

Here the c1 and c2 are in ZZ q and depend on r(X). If c1 and c2 are both congruent to 0 (mod q),
then step A5 of the algorithm above splits N , so we may assume that c1 and c2 are not both 0
(mod q).

Now
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r(X)σ (N ) ≡ c1
σ (N )(w1 X + w2) + c2

σ (N )(v1 X + v2) (mod q)

so that

d ≡ c1
σ (N )w1 + c2

σ (N )v1 (mod q)

It is easy to see that w1, v1 ≡/ 0 (mod q), so if d ≡ 0 we must have

(4)−c1
σ (N )w1v1

−1 ≡ c2
σ (N ) (mod q)

We count the number of pairs (c1, c2) for which this can happen and show that for each c1 (mod
q) at most 1/2 the values c2 satisfy (4). If c1 ≡ 0, then for (4) to hold we must have c2 ≡ 0. If
c2 ≡/ 0  (mod q) then we may apply Lemma B to see that for any fixed value of c1, the number of

c2 satisfying equation (4) is gcd(q − 1, σ (N )). But since q − 1 |/ σ (N ), this is ≤
q − 1

2
. Hence the

total number of nonzero pairs for which (4) can hold is ≤ (q − 1)2/2. Dividing this by q2 − 1
(total pairs (c1, c2) with c1, c2 not both 0), we get d ≡ 0 (mod q) with probability

≤
1

2

q − 1

q + 1

Hence with probability ≥
1

2
, we hav e d ≡/ 0  (mod q).

This completes the proof of Lemma C.

Theorem 4.

Suppose N is odd, squarefree, and not prime. If σ (N ) is giv en, then with probability at
least 1/15, a single iteration of steps A2 through A7 splits N .

Proof.

We multiply the probabilities given in equations (1) and (2) (using the worst case
p = 5, q = 3) by the likelihood that step A7 splits N to get the worst case probability 1/15.

A brief remark is in order. Algorithm A will work even if we hav e a non-zero multiple of
σ (N ) instead of σ (N ) itself. The only difference is that in step A0 we must use a random poly-
nomial-time prime test on N ; for example, the probabilistic test given in [SS].

IV. Factoring N using σ (N ): the general case.

This section serves two purposes: we generalize the algorithm in section III to the case
when N is not necessarily squarefree, and we show how to obtain the complete factorization of
N , using only the single quantity σ (N ). Roughly speaking, this has the following complexity-
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theoretic import: the function ‘‘prime factorization’’ is many-one polynomial-time reducible to
the function σ , not just Turing-reducible as one would first suppose.

For now, assume that we merely want to split N = p1
e1 . . . pk

ek . The algorithm below does
this, using a guess α for one of the ei’s. Since ei ≤ log2 N , we can try all possible α ’s without
spoiling the polynomial time bound.

Algorithm B. [Try to split N given σ (N ) and α ]:

B0. If N is a prime power, output N = pk and stop.

B1. If N is even, output a relatively prime factorization N = 2k ⋅ M and stop.

Repeat until N splits:

B2. Try to split N using the algorithm S from section II, using M = σ (N ). If a
nontrivial factor is obtained, output that factor and stop.

B3. Choose a random monic polynomial f (X) ∈ ZZ N [X] of degree α + 1.

B4. Choose a random polynomial r(X) ∈ ZZ N [X] of degree ≤ α .

B5. Compute
h(X) = dα Xα + . . . + d1 X + e = r(X)σ (N ) (mod f (X)).

B6. For each i, 1 ≤ i ≤ α , let gi = gcd(di, N ).

B7. If for some i, 1  < gi < N , output gi and stop.

We hope that f (X) is irreducible (mod p), but has at least two distinct irreducible factors
(mod q). If this is the case, we call f (X) suitable, and write

f (X) =
s

i=1
Π fi(X)di

with each fi(X) irreducible, deg( fi) = ki, and s ≥ 2. There is then a surjective ring homomor-
phism

(5)φ : ZZ q[X]/( f (X)) → GF(qk1) + . . . + GF(qks )

(by the Chinese remainder theorem). We let K denote the kernel of φ , and let

φ i: ZZ q[X]/( f (X)) → GF(qki )

denote the ith projection map. The interesting fact about these projections is

Lemma E.
Let h(X) ∈ ZZ q[X]/( f ) hav e degree ≤ α . If for some i < j, φ i(h) ≠ φ j(h), then one of h’s
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non-constant coefficients is relatively prime to q.

Proof.

Assume that all of h’s positive-degree coefficients vanish mod q. Then h is an element of
GF(q), which is unchanged by every φ i. The result follows by contraposition.

We now need two probability estimates:

Lemma F.
A monic polynomial f (X)∈ ZZ N [X] of degree α + 1 is suitable with probability at least

1

α + 1
(1 −

1

√ p
) (1 −

1

q
−

1

α + 1
)

Proof.

First, f (X) is irreducible (mod p) with probability at least (1 − 1/√ p)/(α + 1). Second, f is
irreducible mod q with probability at most 1/(α + 1), and has a repeated factor mod q with prob-
ability exactly 1/q (see [Berl, p. 80] and [Carl]).

Lemma G.

If f (X) is suitable, then r(X) ∈/ K with probability at least 1 − 1/q2.

Proof.

By the rank-nullity theorem, dimGF(q)K + Σ ki = α + 1. Since there are at least two positive
ki’s, the result follows.

The main result on our algorithm is

Theorem 5.
If N is not prime, then for some α ≤ log2 N , a single iteration of steps B0 through B7 splits
N with probability at least

1

32(α + 1)
.

Proof.

If N is a prime power or even, we get a nontrivial factorization. Therefore we can assume
that N is odd, with two distinct prime factors p and q. If q − 1 | σ (N ), then by theorem 2, step
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B2 will split N , so we can assume further that q − 1 |/ σ (N ).

Now let pα || N ; α ≤ log2 N as claimed. Assume for now that f (X) is suitable and that
r(X) ∈/ K ; we will estimate the probability that for some i, gi ≡ 0 (mod p) and gi ≡/ 0 (mod q).

First, since f is suitable, gi ≡ 0 (mod p) for all i, since σ (N ) is a multiple of
pα + . . . + p + 1, the annihilator of GF(pα +1) * /GF(p) *.

Now consider the situation (mod q), and let ci = φ i(r
σ (N )). By the hypothesis that r ∈/ K ,

some ci ≠ 0; if some other c j = 0, then by lemma E we must split N at step B7. Therefore we
may as well assume that all the ci’s are nonzero, or, what is the same thing, r(X) is a unit mod
f (X). Since we have assumed that q − 1 |/ σ (N ), the map r(X) → φ (r(X)σ (N )) does not annihi-
late ZZ q[X]/( f (X)) *. The image of this homomorphism is then a direct product of nontrivial
cyclic groups, say C1 × C2 × . . . × Cs. The probability that a random element (c1, . . . , cs) will
have all components equal is at most 1/lcm#(Ci) ≤ 1/2; by Lemma E, then, the probability that
some gi ≡/ 0 (mod q) is at least 1/2.

Theorem 5 now follows by combining the last two paragraphs, Lemmas F and G, and the
estimates p, q ≥ 3, α ≥ 1.

We now turn to the problem of complete factorization. Our first observation is that σ (N )
can be replaced by any multiple of σ (N ) with no change in the statement of Theorem 5. Since
σ (N1 N2) = σ (N1) σ (N2) for relatively prime N1 and N2, we can use σ (N ) to recursively factor
the pieces produced by Algorithm B, provided they are relatively prime. Therefore we need to
transform the output of Algorithm B into a list of pairwise coprime factors.

Our solution to this problem hinges on the following concept. We say that a factorization
N = N1 N2

. . . Nr segregates p if ν p(Ni) = ν p(N ) for some i. A factorization segregates every
prime if and only if the elements are pairwise relatively prime, and in this case σ (Ni) | σ (N ).
The procedure below produces such a factorization, provided that some prime is segregated to
begin with.

Algorithm R. [Factor refinement procedure]

[At all times we have N = N1
e1 . . . Nr

er , possibly needing further processing.]

R0. Let the initial factorization be N = N1 N2.

While factors remain with gcd(Ni, N j) > 1:

R1. Set D = gcd (Ni, N j).

R2. Replace Ni
ei , N j

e j in the list by Dei + e j , (Ni/D)ei , (N j/D)e j .

R3. If necessary, remove units from the list and combine powers of equal numbers.
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The properties of this procedure are given by

Lemma D.

Algorithm R terminates in at most log2 N iterations, with all the Ni’s relatively prime. If
the initial factorization is nontrivial and segregates some p | N , then on termination there
are at least two factors.

Proof.

Left to the reader.

It remains to show that using a multiple of σ (N ), we can split N and segregate some prime.
This follows from the proof of Theorem 5 (recall that q |/ di, so q is segregated) and the corollary
to Theorem 3.

Thus we have completed the proof of Theorem 2, which we restate here:

Theorem 2.
Given σ (N ), we can produce the complete factorization of N in random polynomial time.

Corollary.
Computing the function r4(N ), the number of ways to write N as the sum of four integer
squares, is (randomly) equivalent to factoring.

Proof.
Suppose

N = 2e1 p2
e2 . . . pk

ek

Then a classical theorem of Lagrange (see [HW, Theorem 386]) says

r4(N ) =







8σ (N )

24
σ (N )

2e1+1 − 1

if e1 = 0, 1

e1 ≥ 2

Since computing σ (N ) is randomly equivalent to factoring, the result follows.

Similar results can be proved for functions like r8(N ).
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V. Generalization to σ k(N ).

A natural generalization of σ (N ) is the sum of the k-th powers of divisors of N , i. e.

σ k(N ) =
d | N
Σ d k

= ( pke1
1 + . . . + pk

1 + 1) ⋅ ⋅ ⋅ ( pker
r + . . . + pk

r + 1)

where N = pe1
1 ⋅ ⋅ ⋅ per

r .

We also have a corresponding generalization regarding its computational complexity.

Theorem 6.

For any fixed integer k ≠ 0, computing σ k(N ) is (randomly) equivalent to factoring.

Proof.

If k is negative then

σ k(N ) =
σ −k(N )

N

so it suffices to consider positive k.

The essential idea is that the map x → xσ k (N ) takes GF( pk(α +1)) into GF(pk), when pα || N .

Algorithm C. [Try to split N given σ k(N )]:

C0. If N is even or a prime power, output a factor and stop.

Set α ← 1, and repeat until N splits:

C1. Try to split N using algorithm S with M = σ k(N ).

C2. [Construct GF(pk).] Pick a random monic polynomial
h(Y ) ∈ ZZ N [Y ] of degree k; let R denote ZZ N [Y ]/(h(Y )).

C3. Pick a random monic f (X) ∈ R[X] of degree α + 1.

C4. Pick a random r(X) ∈ R[X] of degree ≤ α .

C5. Compute h(X) = dα (Y ) Xα + . . . + d1(Y )X + e(Y )
= r(X)σ (N ) (mod f (X)).

C6. For each i, 1 ≤ i ≤ α , and each coefficient t of di(Y ), see if gcd(t, N ) splits N .

C7. [Failure]. If α + 1 < B, where B is a bound on the exponents in the prime fac-
torization of N , set α ← α + 1; else set α ← 1. (We may take B = log3 (N ).)
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There is only one new observation to make here: we want h(Y ) to be irreducible modulo
two distinct divisors of N , and this happens with probability about 1/k2. Since k ≤ log2 σ k(N ),
we only expect to wait a polynomial-bounded time until this happens. In all other respects,
Algorithm C behaves just like algorithm B. The details are left to the reader.

VI. Some classes of numbers that can be factored quickly.

The reduction of factoring to computing σ (N ) discussed in the previous sections allows us
to quickly factor those numbers N for which σ (N ) is easily computable.

Consider the equation σ (N ) = 2N . Numbers satisfying this equation are known as perfect

numbers. The Pythagoreans attributed special properties to such numbers and this led to their
intense study in antiquity, culminating in Euclid’s proof that numbers of the form 2n−1(2n − 1)
are perfect when the second factor is prime. In the 18th century, Euler proved that all even per-
fect numbers must be of this form. No one knows if there are any odd perfect numbers, but if
there are, they must satisfy many stringent conditions (see, e.g., [teR]). We now add one more:
they are all easy to factor!

More precisely, we show that the set {perfect numbers}, defined to be

{x ∈ (0, 1)*: x (interpreted in binary) is perfect },

is recognizable in (two-sided) random polynomial time, i. e. is a member of the complexity class
BPP.

Theorem 7.
{perfect numbers} ∈ BPP.

Proof.

Given N , assume that σ (N ) = 2N . Run the algorithm of sections III-IV with the appropri-
ate polynomial time bound; the result is a (purportedly complete) factorization of N . Now check
to see if N is indeed perfect by using equation (0).

We end up accepting N if N is perfect, or if we accidentally produced an incorrect factor-
ization (i. e. one where our probabilistic prime test said all the factors were prime, but some
really weren’t). But such an accident happens only ε of the time, and we can fix ε ahead of time.

We end up rejecting N if N is not perfect, or if we accidentally produced an incorrect fac-
torization as above, or if the algorithm of sections III-IV failed to produce any factorization at all
in our (pre-fixed) time bound. Again, this happens only ε of the time.

Theorem 7 gives the first ‘‘natural’’ set in BPP which is not known to be in RP. Of course,
it is possible to construct examples like
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L = { x#y : x is prime and y is composite }.

L ∈ BPP, but it is somewhat ‘‘artificial’’, since it may be written as the product of two languages,
one of which is known to be in RP, and one which is known to be in co-RP.

Nevertheless, Theorem 7 is very likely less interesting than it appears at first glance; if there
are no odd perfect numbers (as is widely believed), then the clever Lucas-Lehmer test (see
[Knu]) combined with the Euclid-Euler result for even perfect numbers gives a deterministic
polynomial time algorithm to recognize {perfect numbers}.

However, there are well-studied generalizations of perfect numbers for which no determin-
istic tests are known. For example, numbers such that σ (N ) = 3N are sometimes called sous-

doubles; examples are 120 and 672. It is easy to see that an argument like that in Theorem 7
shows that {sous-doubles} ∈ BPP.

A larger class is the set of multiply perfect numbers; i. e., those numbers N for which
N | σ (N ). To show that {multiply perfect numbers} ∈ BPP, we need the following lemma:

Lemma J.

σ (N ) < 5N ln ln N for N ≥ 3.

Proof.

A well-known theorem (e. g. [HW, Thm. 329]) states that

σ (N )φ (N )

N 2
≤ 1

A result of Rosser and Schoenfeld [RS] is

N

φ (N )
< eC ln ln N +

3

ln ln N

for N ≥ 3. Here C is Euler’s constant, approximately . 5772.

Combining these two inequalities, we get

σ (N )

N
< (eC + 3) ln ln N

for N > ee. From this, the result easily follows.

Lemma J shows that we can determine if N is multiply perfect with fewer than 5 ln ln N
invocations of Algorithm B. This can be done in random polynomial time, so we have proved

Theorem 8.
{multiply perfect numbers} ∈ BPP.
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Carmichael [Carm] found the multiply perfect numbers less than 109:

1, 6, 28, 120, 496, 672, 8128, 30240, 32760, 523776,

2178540, 23569920, 33550336, 45532800, 142990848, 459818240.

(We hav e corrected several mistakes in Carmichael’s original list.) It is not known whether or
not there are infinitely many multiply perfect numbers. However, there are some density results
that give upper bounds; for example, Hornfeck and Wirsing have shown [HoW] that if m(x)
denotes the number of multiply perfect numbers ≤ x, then

m(x) = O(e
c ln x ln ln ln x

ln ln x ) .

To giv e still another example, consider the pairs (M , N ) such that

σ (M) = σ (N ) = M + N

Such numbers are known as amicable pairs; the smallest pair is (220, 284). Jacob gave Esau
220 goats and 220 sheep [God], and some scholars have interpreted this as showing that the
ancient Hebrews knew about σ (N ). There is an enormous literature concerning amicable pairs
(see [LM]). An argument similar to those above giv es

Theorem 9.

{amicable pairs} ∈ BPP.

It is not known whether or not there are infinitely many amicable pairs (M , N ), but Erdos
conjectures that the number of such pairs with M < N < x is at least cx1−ε [Guy2].

Using our methods, it is possible to show that many other types of numbers (for example,
the ‘‘betrothed numbers’’ of Isaacs [Guy2, p. 33]) can be recognized in two-sided random poly-

nomial time.1

In Theorems 7-9 above, we hav e given three sets in BPP. The two-sidedness of these sets is
due to the dependence on primality testing; if we had a deterministic polynomial-time prime test,
we would be able to show that {perfect numbers}, {multiply perfect numbers}, and {amicable
numbers} are in RP. No such prime test is currently known, although there is one due to Adle-
man, Pomerance, and Rumely [APR] which runs in time O((log N )c log log log N ).

VII. Epilogue.

1Betrothed pairs (M , N ) satisfy σ (M) = σ (N ) = M + N + 1;
we note reluctantly that a pair cannot
be both betrothed and amicable.
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In section II, we showed how to split N given a multiple of p − 1. The results on σ (N ) can
be phrased similarly; if we know a multiple of p + 1 (or p2 + p + 1, etc.) we can split N . This
leads to the question: for which polynomials f ( p) do there exist fast algorithms for splitting N?
We will address this question in a future paper [BS].

The complexity of several number-theoretic functions is still open. One example is comput-
ing discrete logarithms (mod p).

Not every difficult number-theory function is equivalent to factoring; some are apparently
harder. For example, remarks of Shanks indicate that factorization is reducible to finding the
class number of an imaginary quadratic field [Shan] but no reduction in the other direction is
known, nor is it even clear that this problem is in NP.
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