A Simple Proof that Phi is Irrational^{*}

Jeffrey Shallit Student, Lower Merion High School Ardmore, Pennsylvania 19003

Most proofs of the irrationality of phi, the golden ratio, involve the concepts of number fields and the irrationality of $\sqrt{5}$. This proof involves only very simple algebraic concepts. Denoting the golden ratio as ϕ , we have

enoting the golden ratio as φ , we have

$$\phi^2 - \phi - 1 = 0.$$

Assume $\phi = p/q$, where p and q are integers with no common factors except 1. For if p and q had a common factor we could divide it out to get a new set of numbers p' and q'.

Then

$$(p/q)^{2} - (p/q) - 1 = 0 (p/q)^{2} - (p/q) = 1 p^{2} - pq = q^{2} p(p-q) = q^{2}$$
 (1)

Equation (1) implies that p divides q^2 , and therefore p and q have a common factor. But we already know that p and q have no common factor other than 1, and p cannot equal 1 because this would imply $q = 1/\phi$, which is not an integer. Therefore our original assumption that $\phi = p/q$ is false and ϕ is irrational.

^{*}From Fibonacci Quarterly 13 (1975) 32