Simulating Finite Automata with
Context-Free Grammars

Michael Domaratzki®, Giovanni Pighizzini®, Jeffrey Shallit ¢!

& Department of Computer Science, QQueen’s University Kingston, Ontario K7L
3N6, Canada

> Dipartimento di Scienze dell’Informazione, Universita degli Studi di Milano via
Comelico 39, 20135 Milano, Italy

¢ Department of Computer Science, University of Waterloo, Waterloo, Ontario

N2L 3G1, Canada

Abstract

We consider simulating finite automata (both deterministic and nondeterministic)
with context-free grammars in Chomsky normal form (CNF). We show that any
unary DFA with n states can be simulated by a CNF grammar with O(n'/3) vari-
ables, and this bound is tight. We show that any unary NFA with n states can be
simulated by a CNF grammar with O(n2/3) variables. Finally, for larger alphabets
we show that there exist languages which can be accepted by an n-state DFA, but
which require Q(n/logn) variables in any equivalent CNF grammar.

Key words: formal languages, context-free grammar, finite automata

1 Introduction

In descriptional complexity we are interested in the descriptive power of var-
ious computing models, such as deterministic finite automata (DFA’s), non-

Email addresses: domaratz@cs.queensu.ca (Michael Domaratzki),
pighizzi@dsi.unimi.it (Giovanni Pighizzini), shallit@math.uwaterloo.ca
(Jeftfrey Shallit).

URLs: http://www.cs.queensu.ca/home/domaratz/ (Michael Domaratzki),
http://homes.dsi.unimi.it/"pighizzi/home-eng.html (Giovanni Pighizzini),
http://wuw.math.uwaterloo.ca/"shallit (Jeffrey Shallit).

1 Research supported in part by a grant from NSERC.

Preprint submitted to Elsevier Science 17 April 2002

deterministic finite automata (NFA’s), and context-free grammars (CFG’s)
[12]. For example, many recent papers have examined the number of states
required by deterministic finite automata to simulate various operations on
languages (see, e.g., Yu, Zhuang, and Salomaa [19]). This is in sharp contrast
to the more familiar computational complexity, where we are instead con-
cerned with the time and space used by computing models such as Turing
machines as a function of the size of the input.

In this paper we study the descriptional complexity of context-free grammars
that simulate finite automata. For both DFA’s and NFA’s the number of states
is a generally-accepted measure of descriptional complexity (e.g., [14,3]), al-
though it can be argued that for NFA’s the number of transitions is more
suitable. However, for CFG’s there is no univerally-agreed-upon measure of
descriptional complexity. For example, the following are just three of the many
proposed measures of the complexity of a CFG:

(a) the number of variables [9,7];
(b) the number of productions [10];
(c) the sum of the lengths of the productions [15].

For still other proposals, see [11].

Given a CFL L, we may measure its complexity by choosing one of the above
measures and computing the minimum over all CFG’s G with L = L(G). In
this paper we focus on measure (a). As stated it is not completely satisfac-
tory for the descriptional complexity of CFL’s; for example, if there are no
restrictions on the length of productions then any finite language can be gen-
erated by a CFG with a single variable. So instead we restrict our attentions to
CFG’s in Chomsky normal form (CNF). Recall that a context-free grammar
G = (V,X,P,S) is said to be in Chomsky normal form if every production
is of the form A — BC, or A — a, where A, B,C € V., and a € X. This
measure of descriptional complexity was previously mentioned by Shallit and
Wang [18] and appears in a recent paper of Nederhof and Satta [16]. It is also
of interest because it generalizes the well-studied concept of word chains (see

§ 3).

The standard construction showing that every DFA M (or NFA, for that
matter) has an equivalent regular grammar (see, for example, [13, §9.1]) proves
that if M has n states and an input alphabet ¥ of & symbols, then there is a
CNF grammar with n + k variables generating L(M) — {e}. We will see that

this bound can be significantly improved in the unary case.

We say a grammar G is in binary normal form (BNF) if every production is
in one of the following four forms: A — a, A — ¢, A - B, or A — BC,
with A, B,C € V and a € X. We use the following fact throughout the
paper: if G = (V,X, P, S) is a grammar in BNF, then there exists a grammar

G = (V,X, P',9) in Chomsky normal form such that L(G') = L(G) — {e}. To
see this, note that the usual algorithm [13, §4.4] for removing e-productions
and unit productions does not introduce additional variables.

2 Simulation of Unary Automata

In this section we consider simulating unary automata, that is, automata
whose input alphabet consists of a single symbol.

Lemma 2.1 Let T be any subset of {e,a,a? ... ,a""'}. Then there exists a
BNF grammar G such that L(G) = T, and G has O(n'/®) variables.

Proof. Define r := [n'/3]. We can then express an integer 7, 0 < i < n, in
base r using at most 3 digits, say i = e;r? + fir + ¢;, with 0 < ¢;, f5, g: < r.
We now define some productions, as follows:

Gy — ¢ Iy — ¢ Ey— €

Gy —a F, — G, E, = F,
Gy, — GGy F,— FFy Ey, - E\E,
Gs — GGy B — EByFy E; — Ey)Ey

Gro1 — GGy Fo_y = F,_,F E,_y = E,_2F
Gr — GT—lGl Fr — Fr—lFl

If X € Vis a variable in a grammar G = (V,X, P,S), we abuse notation
somewhat by defining L(X) = {x € ¥* : X =~ z}. It is trivial to prove by
induction that

L(G)={d}, 0<i<ry
L(F)={d"}, 0<i<
L(E)={a"}, 0<i<r

Now we define the remaining productions.

S—>E050 | E151 | EZSZ | s | E,«_ls,«_l
So— F;Gj for all 1,7, 0 < 1,7 < r, such that "t e T
S1 = F,Gj forall 1,7, 0 <1,7 < r, such that URARENT T,

Sr—1 = FiGjforall ¢, 5,0 <4,7 <r, such that TV rirts o

The resulting grammar is in BNF, and the total number of variables is 4r+3 =

O(n1/3).

Example 2.2 Consider representing the set T = {a?, a*, a5, a'", a'®, a?', a*®} by
a grammar in CNF. Here n = 26 and r = 3. The following BNF grammar generates

S

S — E()So | E151 | EQSQ FO — €
SO — FOG2 | F1G1 | F2G0 F1 — G3

S1 — FrGy F, - F\Fy
Sy = FoGo | FiGo | Gy Fy — FBF
Go — ¢ Ey— e

Gi —a Ey — F3
Gy — G1G E, - E\E,;
Gz — G,G

The e-productions, unit productions, and useless symbols may easily be removed to
give the following equivalent grammar in CNF:

S — G1G1 | F1G1 | F1F1 | E151 | EzSz | E1E1 F1 — G2G1

S1 — Fy,Go F -
Sy — G2 Gy | F2Gy By > FBF
Gi—a E, - E1E;
G2 — G1G1

Next, we state a lemma from [17]:

Lemma 2.3 Let M be a unary DFA with n states. Then there exist integers
t>0and c>1 witht+c <n, and sets A C {e,a,a? ..., a""'} and B C
{e,a,a?, ..., a '} such that L(M) = A+ Ba'{a}*.

Now we can prove an upper bound.

Theorem 2.4 Let M be a unary DFA with n states. Then there exists a
context-free grammar G in CNF such that L(G) = L(M) — {¢}, and G has
O(n'/3) variables.

Proof. By Lemma 2.3 we can write L(M) = A + Ba'{a°}* for suitable
A, B, t,c. By Lemma 2.1, we can construct BNF grammars with O(n'/?) vari-
ables for the languages A, B, {a'}, and {a°}.? We can now easily combine
these BNF grammars to get a BNF grammar for A+ Ba'{a}*, having O(n'/?)
variables. Hence a CNF grammar for L(M)—{e} exists with O(n'/?) variables.

Remark. Our upper bound can be viewed as a trade-off result, in that we
have decreased the number of variables in our grammar to O(n'/?) at the cost
of a linear increase in the total size of the description.

We now prove a matching lower bound.

Theorem 2.5 There exist constants c,ng such that for all integers n > ng

there ewists a finite subset T C {a,a?, ...,a" '} such that any context-free
grammar G in CNF with L(G) = T has at least cn'/® variables.

Proof. Suppose L(G) =T, and G has t variables. If G is in CNF then there
are t3 +t possible productions and for each production we can decide whether
or not to include it in the grammar. This gives 20°+ distinct grammars. But
there are 2"~! possible subsets of {a, a?, ..., a""'}. It follows that >+t > n—1,
and hence t = Q(n'/?), as desired.

Corollary 2.6 There exist constants c,ng such that for all n > ng there is
a unary DFA M of n states, accepting a finite language, such that any CNF
grammar G with L(G) = L(M) — {€} has at least en'/® variables.

Proof. Use Theorem 2.5 and the fact that any subset of {e,a,a?, ..., a" "'}
can be accepted by a DFA containing < n + 1 states.

We now turn to nondeterministic finite automata.

Theorem 2.7 Let M be a unary NFA with n states. Then there exists a
context-free grammar G in CNF such that L(G) = L(M) — {¢}, and G has

O(n2/3) variables.

Proof. We use a result of Chrobak [4] which says that every unary NFA
with n states is equivalent to an NFA in a certain normal form (called Chrobak
normal form), which has the following properties: there is a “tail” of O(n?)
states, ending in a single nondeterministic state which leads to a number of
different cycles, and the total number of states in all the cycles is bounded
above by n. See Figure 1 for an illustration.

2 Actually, using the “binary method”, we can generate the languages {a°} and
{a'} using context-free grammars in BNF having only O(logn) variables; see [5].

Fig. 1. An NFA in Chrobak normal form
Thus it follows that

L(M)=AUd" (U Bi{ac"}*)

1<i<s

for some sets A C {¢,a,...,a'"'} with t = O(n?), and B; C {¢,a,...,a% '},
for some integers s, ¢y, ..., ¢, > 0, such that ¢, +--- 4+ ¢, < n.

We now describe a set of variables and productions which can be used to gen-
erate the set of strings corresponding to the cycles of the automaton, namely,

the set Ujcics Bi{a®}”.

To this end, we define r := [n'/3] and, exactly as in the proof of Lemma 2.1,
we introduce the variables E;, F;, G;, 1 =0,...,r, and the corresponding pro-
ductions, in such a way that

<SS

L(F)={d"}, 0<i<nm

LE)={da""}, 0<i<r
Now we consider the ith cycle, whose length is ¢;, and we define r; := [¢;/r?].

First, we describe a set of variables and productions useful to generate the set
B;. More precisely, we introduce the variables

§@ 50, ..., 8%

ri—1»
with the productions:

SO = BoSY | By ST | B8 |- EW S and

ri—1~r;—1

S\ — FuGy for all k, j,h, 0 < k,j <, 0 < h <y, such that "o+ ¢ B,

It is easy to verify that L(SW) = B,.

As a second step, we consider the cycle length ¢;. Let 7, k, i > 0 be the integers
such that Ar? 4+ kr +j = ¢;. We introduce two variables T® and T with the
productions T — E, 7" and 7'V — FyG;, where hr* 4+ kr + j = ¢;. Then
L(TW) = {a%}.

Finally, we introduce a further variable U®) with the productions U® —
SO | TOUG ., From the previous discussion, it is not difficult to conclude that
L(UW) is the language accepted by the i'th cycle, i.e.,

L(UY) = Bi{a}".

Now we compute the number of variables introduced so far. The number of
variables E;, F;, and G; is O(n'/3). Furthermore, for the ith cycle, we have
introduced at most r; + 4 variables. Thus, the total number is

D(ri+d)=0(s)+ Y ri=06)+#{i|ri=1+ >

1<i<s 1<i<s 1<i<s
ry>1
where #7T denotes the cardinality of a set T'. Observe that we may assume that
each of the cycle lengths is distinct, for otherwise we could simply consolidate
cycles of equal lengths. Thus, s = O(n'/?). Furthermore, #{i | r; = 1} < s.

By definition, r; > 1 iff ¢; > 2 = ([n'/?])%. Since Yi<i<s ¢ < n, the number
of cycles of length at least r? is bounded by r = [n'/?]. Hence

C,; C,; n
E r; = E —l<r[—l-‘<n1/3():On2/3.
1<i<e 1<i<e "rz-‘ B 7"2 N |VTL1/3—|2 ()
ry>1 ci2r2

By Lemma 2.1, the languages A and {a'} can be generated with BNF gram-
mars having O(n?/3) variables. By the above remarks, we can generate the
language U,<;c, Bi{a®}* with a BNF grammar having O(n?/?) variables. It
follows that the same upper bound holds for a CNF grammar for L(M) — {e}.

3 The case of larger alphabets

Now we turn to the case of a fixed size, non-unary alphabet. As mentioned
above, the standard construction for showing that any DFA M (or NFA)
has an equivalent regular grammar [13, §9.1] gives an upper bound of n + &
variables on the size of a context-free grammar in CNF accepting L(M) — {e€}.

In this section we obtain a lower bound. Our lower bound actually holds for
the more specific case where the language consists of a single word.

Lemma 3.1 There exists a constant ¢ such that for all m > 1 there exists a
language L, accepted by a DFA with 2™ + m + 1 states (or by an NFA with
2™ 4+ m states) such that the smallest number of variables in any context-free
grammar in CNF generating L, is > 2™ [m.

Proof. Asiswell-known, for all m there exists a string w,, of length 2™ +m—1
over {0,1} such that every string of length m appears as a subword of w,,.
These strings are sometimes called de Bruijn words [8,6]. Let L,, = {wn}.
Then clearly L,, can be accepted by a DFA with 2™ +m + 1 states or an NFA
with 2™ 4+ m states.

We now argue that at least ¢2™/m variables are needed to generate L,,.

A word chain is a straight-line program to generate a word, where every in-
struction is of the form A; := a, where ¢ € ¥ is a single letter, or A; := A;A;,
where j,k < 1. The length of a word chain is the number of instructions.

It is easy to see that every n-variable CNF grammar G = (V, X, P, S), with no
useless symbols, generating {w} corresponds to a word chain of length n 4 |X|
generating w [18].

Now a known result on word chains [1] says that a word chain of length ¢2™ /m
is needed to generate w,,. Our lower bound follows.

Corollary 3.2 There exist constants ¢, ng such that for all n > ng there exists
a DFA M, having n states such that any CNF grammar G with L(G) = L(M,,)

has at least en/(logn) variables.

Results on word chains also imply that the en/(logn) bound is tight for lan-
guages consisting of a single word [2].

4 Acknowledgments

We are grateful to the referees for several suggested improvements, including
a simplification of the proof of Theorem 2.5.

References

[1] I. Althofer. Tight lower bounds for the length of word chains. Inform. Process.
Lett. 34 (1990), 275-276.

[2] J. Berstel and S. Brlek. On the length of word chains. Inform. Process. Lett.
26 (1987/88), 23-28.

[3] J.-C. Birget. Intersection and union of regular languages and state complexity.
Inform. Process. Lett. 43 (1992), 185-190.

[4] M. Chrobak. Finite automata and unary languages. Theoret. Comput. Sci. 47
(1986), 149-158.

[5] J. Currie, H. Petersen, J. M. Robson, and J. Shallit. Separating words with
small grammars. J. Automata, Languages, and Combinatorics 4 (1999), 101
110.

[6] N. G. de Bruijn. A combinatorial problem. Proc. Konin. Neder. Akad. Wet.
49 (1946), 758-764.

[7] J. Goldstine, J. K. Price, and D. Wotschke. A pushdown automaton or a
context-free grammar — which is more economical? Theoret. Comput. Sci. 18
(1982), 33-40.

[8] I.J. Good. Normal recurring decimals. J. London Math. Soc. 21 (1946), 167
169.

[9] J. Gruska. On a classification of context-free languages. Kibernetika 3 (1967),
22-29.

[10] J. Gruska. Some classifications of context-free languages. Inform. Control 14
(1969), 152-179.

[11] J. Gruska. Descriptional complexity of context-free languages. In Proc. Math.
Found. Computer Seci., pp. 71-83, 1973.

[12] J. Gruska. Descriptional complexity (of languages): a short survey. In
A. Mazurkiewicz, editor, Proc. 5th Symposium, Mathematical Foundations of
Computer Science 1976, Vol. 45 of Lecture Notes in Computer Science, pp.
65-80. Springer-Verlag, 1976.

[13] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

[14] R. Mandl. Precise bounds associated with the subset construction on various
classes of nondeterministic finite automata. In Proc. 7th Princeton Conference
on Information and System Sciences, pp. 263-267. 1973.

[15] A. R. Meyer and M. J. Fischer. Economy of description by automata, grammars,
and formal systems. In Proc. 12th Annual Symposium on Switching and
Automata Theory, pp. 188-191, 1971.

[16] M. J. Nederhof and G. Satta. IDL-Expressions: A compact representation for
finite languages in generation systems. Manuscript, 2002.

[17] G. Pighizzini and J. Shallit. Unary language operations, state complexity, and
Jacobsthal’s function. To appear, Internat. J. Found. Comput. Sci., 2002.

[18] J. Shallit and M.-w. Wang. Automatic complexity of strings. J. Automata,
Languages, and Combinatorics 6 (2001), 537-551.

[19] S. Yu, Q. Zhuang, and K. Salomaa. The state complexities of some basic
operations on regular languages. Theoret. Comput. Sci. 125 (1994), 315-328.

10

