Simulating Finite Automata with Context-Free Grammars

Michael Domaratzki ${ }^{\text {a }}$, Giovanni Pighizzini ${ }^{\text {b }}$, Jeffrey Shallit ${ }^{\text {c, }}{ }^{1}$
${ }^{\text {a }}$ Department of Computer Science, Queen's University Kingston, Ontario K7L 3N6, Canada
${ }^{\mathrm{b}}$ Dipartimento di Scienze dell'Informazione, Università degli Studi di Milano via Comelico 39, 20135 Milano, Italy
${ }^{\text {c }}$ Department of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Abstract

We consider simulating finite automata (both deterministic and nondeterministic) with context-free grammars in Chomsky normal form (CNF). We show that any unary DFA with n states can be simulated by a CNF grammar with $O\left(n^{1 / 3}\right)$ variables, and this bound is tight. We show that any unary NFA with n states can be simulated by a CNF grammar with $O\left(n^{2 / 3}\right)$ variables. Finally, for larger alphabets we show that there exist languages which can be accepted by an n-state DFA, but which require $\Omega(n / \log n)$ variables in any equivalent CNF grammar.

Key words: formal languages, context-free grammar, finite automata

1 Introduction

In descriptional complexity we are interested in the descriptive power of various computing models, such as deterministic finite automata (DFA's), non-

Email addresses: domaratz@cs.queensu.ca (Michael Domaratzki), pighizzi@dsi.unimi.it (Giovanni Pighizzini), shallit@math.uwaterloo.ca (Jeffrey Shallit).

URLs: http://www.cs.queensu.ca/home/domaratz/ (Michael Domaratzki), http://homes.dsi.unimi.it/~pighizzi/home-eng.html (Giovanni Pighizzini), http://www.math.uwaterloo.ca/~shallit (Jeffrey Shallit).
${ }^{1}$ Research supported in part by a grant from NSERC.
deterministic finite automata (NFA's), and context-free grammars (CFG's) [12]. For example, many recent papers have examined the number of states required by deterministic finite automata to simulate various operations on languages (see, e.g., Yu, Zhuang, and Salomaa [19]). This is in sharp contrast to the more familiar computational complexity, where we are instead concerned with the time and space used by computing models such as Turing machines as a function of the size of the input.

In this paper we study the descriptional complexity of context-free grammars that simulate finite automata. For both DFA's and NFA's the number of states is a generally-accepted measure of descriptional complexity (e.g., [14,3]), although it can be argued that for NFA's the number of transitions is more suitable. However, for CFG's there is no univerally-agreed-upon measure of descriptional complexity. For example, the following are just three of the many proposed measures of the complexity of a CFG:
(a) the number of variables $[9,7]$;
(b) the number of productions [10];
(c) the sum of the lengths of the productions [15].

For still other proposals, see [11].
Given a CFL L, we may measure its complexity by choosing one of the above measures and computing the minimum over all CFG's G with $L=L(G)$. In this paper we focus on measure (a). As stated it is not completely satisfactory for the descriptional complexity of CFL's; for example, if there are no restrictions on the length of productions then any finite language can be generated by a CFG with a single variable. So instead we restrict our attentions to CFG's in Chomsky normal form (CNF). Recall that a context-free grammar $G=(V, \Sigma, P, S)$ is said to be in Chomsky normal form if every production is of the form $A \rightarrow B C$, or $A \rightarrow a$, where $A, B, C \in V$, and $a \in \Sigma$. This measure of descriptional complexity was previously mentioned by Shallit and Wang [18] and appears in a recent paper of Nederhof and Satta [16]. It is also of interest because it generalizes the well-studied concept of word chains (see § 3).

The standard construction showing that every DFA M (or NFA, for that matter) has an equivalent regular grammar (see, for example, [13, $\S 9.1]$) proves that if M has n states and an input alphabet Σ of k symbols, then there is a CNF grammar with $n+k$ variables generating $L(M)-\{\epsilon\}$. We will see that this bound can be significantly improved in the unary case.

We say a grammar G is in binary normal form (BNF) if every production is in one of the following four forms: $A \rightarrow a, A \rightarrow \epsilon, A \rightarrow B$, or $A \rightarrow B C$, with $A, B, C \in V$ and $a \in \Sigma$. We use the following fact throughout the paper: if $G=(V, \Sigma, P, S)$ is a grammar in BNF, then there exists a grammar
$G^{\prime}=\left(V, \Sigma, P^{\prime}, S\right)$ in Chomsky normal form such that $L\left(G^{\prime}\right)=L(G)-\{\epsilon\}$. To see this, note that the usual algorithm [13, §4.4] for removing ϵ-productions and unit productions does not introduce additional variables.

2 Simulation of Unary Automata

In this section we consider simulating unary automata, that is, automata whose input alphabet consists of a single symbol.

Lemma 2.1 Let T be any subset of $\left\{\epsilon, a, a^{2}, \ldots, a^{n-1}\right\}$. Then there exists a BNF grammar G such that $L(G)=T$, and G has $O\left(n^{1 / 3}\right)$ variables.

Proof. Define $r:=\left\lceil n^{1 / 3}\right\rceil$. We can then express an integer $i, 0 \leq i<n$, in base r using at most 3 digits, say $i=e_{i} r^{2}+f_{i} r+g_{i}$, with $0 \leq e_{i}, f_{i}, g_{i}<r$. We now define some productions, as follows:

$G_{0} \rightarrow \epsilon$	$F_{0} \rightarrow \epsilon$	$E_{0} \rightarrow \epsilon$
$G_{1} \rightarrow a$	$F_{1} \rightarrow G_{r}$	$E_{1} \rightarrow F_{r}$
$G_{2} \rightarrow G_{1} G_{1}$	$F_{2} \rightarrow F_{1} F_{1}$	$E_{2} \rightarrow E_{1} E_{1}$
$G_{3} \rightarrow G_{2} G_{1}$	$F_{3} \rightarrow F_{2} F_{1}$	$E_{3} \rightarrow E_{2} E_{1}$
\vdots	\vdots	\vdots
G_{r-1}	$\rightarrow G_{r-2} G_{1}$	$F_{r-1} \rightarrow F_{r-2} F_{1}$
G_{r}	$\rightarrow G_{r-1} G_{1}$	$F_{r} \rightarrow F_{r-1} F_{1}$

If $X \in V$ is a variable in a grammar $G=(V, \Sigma, P, S)$, we abuse notation somewhat by defining $L(X)=\left\{x \in \Sigma^{*}: X \Longrightarrow^{*} x\right\}$. It is trivial to prove by induction that

$$
\begin{aligned}
L\left(G_{i}\right) & =\left\{a^{i}\right\}, \quad 0 \leq i \leq r ; \\
L\left(F_{i}\right) & =\left\{a^{i r}\right\}, \quad 0 \leq i \leq r ; \\
L\left(E_{i}\right) & =\left\{a^{i r^{2}}\right\}, \quad 0 \leq i<r .
\end{aligned}
$$

Now we define the remaining productions.

$$
\begin{aligned}
S & \rightarrow E_{0} S_{0}\left|E_{1} S_{1}\right| E_{2} S_{2}|\cdots| E_{r-1} S_{r-1} \\
S_{0} & \rightarrow F_{i} G_{j} \text { for all } i, j, 0 \leq i, j<r, \text { such that } a^{i r+j} \in T \\
S_{1} & \rightarrow F_{i} G_{j} \text { for all } i, j, 0 \leq i, j<r, \text { such that } a^{r^{2}+i r+j} \in T \\
& \vdots \\
S_{r-1} & \rightarrow F_{i} G_{j} \text { for all } i, j, 0 \leq i, j<r, \text { such that } a^{(r-1) r^{2}+i r+j} \in T .
\end{aligned}
$$

The resulting grammar is in BNF, and the total number of variables is $4 r+3=$ $O\left(n^{1 / 3}\right)$.

Example 2.2 Consider representing the set $T=\left\{a^{2}, a^{4}, a^{6}, a^{17}, a^{18}, a^{21}, a^{25}\right\}$ by a grammar in CNF. Here $n=26$ and $r=3$. The following BNF grammar generates S :

$$
\begin{array}{ll}
S \rightarrow E_{0} S_{0}\left|E_{1} S_{1}\right| E_{2} S_{2} & F_{0} \rightarrow \epsilon \\
S_{0} \rightarrow F_{0} G_{2}\left|F_{1} G_{1}\right| F_{2} G_{0} & F_{1} \rightarrow G_{3} \\
S_{1} \rightarrow F_{2} G_{2} & F_{2} \rightarrow F_{1} F_{1} \\
S_{2} \rightarrow F_{0} G_{0}\left|F_{1} G_{0}\right| F_{2} G_{1} & F_{3} \rightarrow F_{2} F_{1} \\
G_{0} \rightarrow \epsilon & E_{0} \rightarrow \epsilon \\
G_{1} \rightarrow a & E_{1} \rightarrow F_{3} \\
G_{2} \rightarrow G_{1} G_{1} & E_{2} \rightarrow E_{1} E_{1} \\
G_{3} \rightarrow G_{2} G_{1} &
\end{array}
$$

The ϵ-productions, unit productions, and useless symbols may easily be removed to give the following equivalent grammar in CNF:

$$
\begin{array}{rlr}
S & \rightarrow G_{1} G_{1}\left|F_{1} G_{1}\right| F_{1} F_{1}\left|E_{1} S_{1}\right| E_{2} S_{2} \mid E_{1} E_{1} & \\
F_{1} \rightarrow G_{2} G_{1} \\
S_{1} \rightarrow F_{2} G_{2} & F_{2} \rightarrow F_{1} F_{1} \\
S_{2} \rightarrow G_{2} G_{1} \mid F_{2} G_{1} & E_{1} \rightarrow F_{2} F_{1} \\
G_{1} \rightarrow a & E_{2} \rightarrow E_{1} E_{1} \\
G_{2} \rightarrow G_{1} G_{1} &
\end{array}
$$

Next, we state a lemma from [17]:
Lemma 2.3 Let M be a unary $D F A$ with n states. Then there exist integers $t \geq 0$ and $c \geq 1$ with $t+c \leq n$, and sets $A \subseteq\left\{\epsilon, a, a^{2}, \ldots, a^{t-1}\right\}$ and $B \subseteq$ $\left\{\epsilon, a, a^{2}, \ldots, a^{c-1}\right\}$ such that $L(M)=A+B a^{t}\left\{a^{c}\right\}^{*}$.

Now we can prove an upper bound.
Theorem 2.4 Let M be a unary DFA with n states. Then there exists a context-free grammar G in CNF such that $L(G)=L(M)-\{\epsilon\}$, and G has $O\left(n^{1 / 3}\right)$ variables.

Proof. By Lemma 2.3 we can write $L(M)=A+B a^{t}\left\{a^{c}\right\}^{*}$ for suitable A, B, t, c. By Lemma 2.1, we can construct BNF grammars with $O\left(n^{1 / 3}\right)$ variables for the languages $A, B,\left\{a^{t}\right\}$, and $\left\{a^{c}\right\} .{ }^{2}$ We can now easily combine these BNF grammars to get a BNF grammar for $A+B a^{t}\left\{a^{c}\right\}^{*}$, having $O\left(n^{1 / 3}\right)$ variables. Hence a CNF grammar for $L(M)-\{\epsilon\}$ exists with $O\left(n^{1 / 3}\right)$ variables.

Remark. Our upper bound can be viewed as a trade-off result, in that we have decreased the number of variables in our grammar to $O\left(n^{1 / 3}\right)$ at the cost of a linear increase in the total size of the description.

We now prove a matching lower bound.
Theorem 2.5 There exist constants c, n_{0} such that for all integers $n \geq n_{0}$ there exists a finite subset $T \subseteq\left\{a, a^{2}, \ldots, a^{n-1}\right\}$ such that any context-free grammar G in CNF with $L(G)=T$ has at least cn ${ }^{1 / 3}$ variables.

Proof. Suppose $L(G)=T$, and G has t variables. If G is in CNF then there are $t^{3}+t$ possible productions and for each production we can decide whether or not to include it in the grammar. This gives $2^{t^{3}+t}$ distinct grammars. But there are 2^{n-1} possible subsets of $\left\{a, a^{2}, \ldots, a^{n-1}\right\}$. It follows that $t^{3}+t \geq n-1$, and hence $t=\Omega\left(n^{1 / 3}\right)$, as desired.

Corollary 2.6 There exist constants c, n_{0} such that for all $n \geq n_{0}$ there is a unary DFA M of n states, accepting a finite language, such that any CNF grammar G with $L(G)=L(M)-\{\epsilon\}$ has at least $c n^{1 / 3}$ variables.

Proof. Use Theorem 2.5 and the fact that any subset of $\left\{\epsilon, a, a^{2}, \ldots, a^{n-1}\right\}$ can be accepted by a DFA containing $\leq n+1$ states.

We now turn to nondeterministic finite automata.
Theorem 2.7 Let M be a unary NFA with n states. Then there exists a context-free grammar G in CNF such that $L(G)=L(M)-\{\epsilon\}$, and G has $O\left(n^{2 / 3}\right)$ variables.

Proof. We use a result of Chrobak [4] which says that every unary NFA with n states is equivalent to an NFA in a certain normal form (called Chrobak normal form), which has the following properties: there is a "tail" of $O\left(n^{2}\right)$ states, ending in a single nondeterministic state which leads to a number of different cycles, and the total number of states in all the cycles is bounded above by n. See Figure 1 for an illustration.

2 Actually, using the "binary method", we can generate the languages $\left\{a^{c}\right\}$ and $\left\{a^{t}\right\}$ using context-free grammars in BNF having only $O(\log n)$ variables; see [5].

Fig. 1. An NFA in Chrobak normal form
Thus it follows that

$$
L(M)=A \cup a^{t}\left(\bigcup_{1 \leq i \leq s} B_{i}\left\{a^{c_{i}}\right\}^{*}\right)
$$

for some sets $A \subseteq\left\{\epsilon, a, \ldots, a^{t-1}\right\}$ with $t=O\left(n^{2}\right)$, and $B_{i} \subseteq\left\{\epsilon, a, \ldots, a^{c_{i}-1}\right\}$, for some integers $s, c_{1}, \ldots, c_{s}>0$, such that $c_{1}+\cdots+c_{s} \leq n$.

We now describe a set of variables and productions which can be used to generate the set of strings corresponding to the cycles of the automaton, namely, the set $\bigcup_{1 \leq i \leq s} B_{i}\left\{a^{c_{i}}\right\}^{*}$.

To this end, we define $r:=\left\lceil n^{1 / 3}\right\rceil$ and, exactly as in the proof of Lemma 2.1, we introduce the variables $E_{i}, F_{i}, G_{i}, i=0, \ldots, r$, and the corresponding productions, in such a way that

$$
\begin{aligned}
& L\left(G_{i}\right)=\left\{a^{i}\right\}, \quad 0 \leq i \leq r ; \\
& L\left(F_{i}\right)=\left\{a^{r i}\right\}, \quad 0 \leq i \leq r ; \\
& L\left(E_{i}\right)=\left\{a^{r^{2} i}\right\}, \quad 0 \leq i<r .
\end{aligned}
$$

Now we consider the i th cycle, whose length is c_{i}, and we define $r_{i}:=\left\lceil c_{i} / r^{2}\right\rceil$. First, we describe a set of variables and productions useful to generate the set B_{i}. More precisely, we introduce the variables

$$
S^{(i)}, S_{0}^{(i)}, \ldots, S_{r_{i}-1}^{(i)}
$$

with the productions:

$$
\begin{aligned}
& S^{(i)} \rightarrow E_{0} S_{0}^{(i)}\left|E_{1} S_{1}^{(i)}\right| E_{2} S_{2}^{(i)}|\cdots| E_{r_{i}-1}^{(i)} S_{r_{i}-1}^{(i)} \quad \text { and } \\
& S_{h}^{(i)} \rightarrow F_{k} G_{j} \text { for all } k, j, h, 0 \leq k, j<r, 0 \leq h<r_{i}, \text { such that } a^{h r^{2}+k r+j} \in B_{i}
\end{aligned}
$$

It is easy to verify that $L\left(S^{(i)}\right)=B_{i}$.

As a second step, we consider the cycle length c_{i}. Let $j, k, h \geq 0$ be the integers such that $h r^{2}+k r+j=c_{i}$. We introduce two variables $T^{(i)}$ and $T^{\prime(i)}$ with the productions $T^{(i)} \rightarrow E_{h} T^{\prime(i)}$ and $T^{\prime(i)} \rightarrow F_{k} G_{j}$, where $h r^{2}+k r+j=c_{i}$. Then $L\left(T^{(i)}\right)=\left\{a^{c_{i}}\right\}$.

Finally, we introduce a further variable $U^{(i)}$ with the productions $U^{(i)} \rightarrow$ $S^{(i)} \mid T^{(i)} U^{(i)}$. From the previous discussion, it is not difficult to conclude that $L\left(U^{(i)}\right)$ is the language accepted by the i 'th cycle, i.e.,

$$
L\left(U^{(i)}\right)=B_{i}\left\{a^{c_{i}}\right\}^{*}
$$

Now we compute the number of variables introduced so far. The number of variables E_{i}, F_{i}, and G_{i} is $O\left(n^{1 / 3}\right)$. Furthermore, for the i th cycle, we have introduced at most $r_{i}+4$ variables. Thus, the total number is

$$
\sum_{1 \leq i \leq s}\left(r_{i}+4\right)=O(s)+\sum_{1 \leq i \leq s} r_{i}=O(s)+\#\left\{i \mid r_{i}=1\right\}+\sum_{\substack{1 \leq i \leq s \\ r_{i}>1}} r_{i},
$$

where $\# T$ denotes the cardinality of a set T. Observe that we may assume that each of the cycle lengths is distinct, for otherwise we could simply consolidate cycles of equal lengths. Thus, $s=O\left(n^{1 / 2}\right)$. Furthermore, $\#\left\{i \mid r_{i}=1\right\} \leq s$.

By definition, $r_{i}>1$ iff $c_{i} \geq r^{2}=\left(\left\lceil n^{1 / 3}\right\rceil\right)^{2}$. Since $\sum_{1 \leq i \leq s} c_{i} \leq n$, the number of cycles of length at least r^{2} is bounded by $r=\left\lceil n^{1 / 3}\right\rceil$. Hence

$$
\sum_{\substack{1 \leq i \leq s \\ r_{i}>1}} r_{i}=\sum_{\substack{1 \leq i \leq 2 \\ c_{i} \geq r^{2}}}\left\lceil\frac{c_{i}}{r^{2}}\right\rceil \leq r\left\lceil\frac{c_{i}}{r^{2}}\right\rceil \leq n^{1 / 3}\left(\frac{n}{\left\lceil n^{1 / 3}\right\rceil^{2}}\right)=O\left(n^{2 / 3}\right) .
$$

By Lemma 2.1, the languages A and $\left\{a^{t}\right\}$ can be generated with BNF grammars having $O\left(n^{2 / 3}\right)$ variables. By the above remarks, we can generate the language $\bigcup_{1 \leq i \leq s} B_{i}\left\{a^{c_{i}}\right\}^{*}$ with a BNF grammar having $O\left(n^{2 / 3}\right)$ variables. It follows that the same upper bound holds for a CNF grammar for $L(M)-\{\epsilon\}$.

3 The case of larger alphabets

Now we turn to the case of a fixed size, non-unary alphabet. As mentioned above, the standard construction for showing that any DFA M (or NFA) has an equivalent regular grammar [13, §9.1] gives an upper bound of $n+k$ variables on the size of a context-free grammar in CNF accepting $L(M)-\{\epsilon\}$.

In this section we obtain a lower bound. Our lower bound actually holds for the more specific case where the language consists of a single word.

Lemma 3.1 There exists a constant c such that for all $m \geq 1$ there exists a language L_{m} accepted by a DFA with $2^{m}+m+1$ states (or by an NFA with $2^{m}+m$ states) such that the smallest number of variables in any context-free grammar in CNF generating L_{m} is $>c 2^{m} / m$.

Proof. As is well-known, for all m there exists a string w_{m} of length $2^{m}+m-1$ over $\{0,1\}$ such that every string of length m appears as a subword of w_{m}. These strings are sometimes called de Bruijn words $[8,6]$. Let $L_{m}=\left\{w_{m}\right\}$. Then clearly L_{m} can be accepted by a DFA with $2^{m}+m+1$ states or an NFA with $2^{m}+m$ states.

We now argue that at least $c 2^{m} / m$ variables are needed to generate L_{m}.
A word chain is a straight-line program to generate a word, where every instruction is of the form $A_{i}:=a$, where $a \in \Sigma$ is a single letter, or $A_{i}:=A_{j} A_{k}$, where $j, k<i$. The length of a word chain is the number of instructions.

It is easy to see that every n-variable CNF grammar $G=(V, \Sigma, P, S)$, with no useless symbols, generating $\{w\}$ corresponds to a word chain of length $n+|\Sigma|$ generating w [18].

Now a known result on word chains [1] says that a word chain of length $c 2^{m} / m$ is needed to generate w_{m}. Our lower bound follows.

Corollary 3.2 There exist constants c, n_{0} such that for all $n \geq n_{0}$ there exists a DFA M_{n} having n states such that any CNF grammar G with $L(G)=L\left(M_{n}\right)$ has at least $c n /(\log n)$ variables.

Results on word chains also imply that the $c n /(\log n)$ bound is tight for languages consisting of a single word [2].

4 Acknowledgments

We are grateful to the referees for several suggested improvements, including a simplification of the proof of Theorem 2.5.

References

[1] I. Althöfer. Tight lower bounds for the length of word chains. Inform. Process. Lett. 34 (1990), 275-276.
[2] J. Berstel and S. Brlek. On the length of word chains. Inform. Process. Lett. 26 (1987/88), 23-28.
[3] J.-C. Birget. Intersection and union of regular languages and state complexity. Inform. Process. Lett. 43 (1992), 185-190.
[4] M. Chrobak. Finite automata and unary languages. Theoret. Comput. Sci. 47 (1986), 149-158.
[5] J. Currie, H. Petersen, J. M. Robson, and J. Shallit. Separating words with small grammars. J. Automata, Languages, and Combinatorics 4 (1999), 101110.
[6] N. G. de Bruijn. A combinatorial problem. Proc. Konin. Neder. Akad. Wet. 49 (1946), 758-764.
[7] J. Goldstine, J. K. Price, and D. Wotschke. A pushdown automaton or a context-free grammar - which is more economical? Theoret. Comput. Sci. 18 (1982), 33-40.
[8] I. J. Good. Normal recurring decimals. J. London Math. Soc. 21 (1946), 167169.
[9] J. Gruska. On a classification of context-free languages. Kibernetika 3 (1967), 22-29.
[10] J. Gruska. Some classifications of context-free languages. Inform. Control 14 (1969), 152-179.
[11] J. Gruska. Descriptional complexity of context-free languages. In Proc. Math. Found. Computer Sci., pp. 71-83, 1973.
[12] J. Gruska. Descriptional complexity (of languages): a short survey. In A. Mazurkiewicz, editor, Proc. 5th Symposium, Mathematical Foundations of Computer Science 1976, Vol. 45 of Lecture Notes in Computer Science, pp. 65-80. Springer-Verlag, 1976.
[13] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 1979.
[14] R. Mandl. Precise bounds associated with the subset construction on various classes of nondeterministic finite automata. In Proc. 7th Princeton Conference on Information and System Sciences, pp. 263-267. 1973.
[15] A. R. Meyer and M. J. Fischer. Economy of description by automata, grammars, and formal systems. In Proc. 12th Annual Symposium on Switching and Automata Theory, pp. 188-191, 1971.
[16] M. J. Nederhof and G. Satta. IDL-Expressions: A compact representation for finite languages in generation systems. Manuscript, 2002.
[17] G. Pighizzini and J. Shallit. Unary language operations, state complexity, and Jacobsthal's function. To appear, Internat. J. Found. Comput. Sci., 2002.
[18] J. Shallit and M.-w. Wang. Automatic complexity of strings. J. Automata, Languages, and Combinatorics 6 (2001), 537-551.
[19] S. Yu, Q. Zhuang, and K. Salomaa. The state complexities of some basic operations on regular languages. Theoret. Comput. Sci. 125 (1994), 315-328.

