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Abstra
t

We 
onsider simulating �nite automata (both deterministi
 and nondeterministi
)

with 
ontext-free grammars in Chomsky normal form (CNF). We show that any

unary DFA with n states 
an be simulated by a CNF grammar with O(n

1=3

) vari-

ables, and this bound is tight. We show that any unary NFA with n states 
an be

simulated by a CNF grammar with O(n

2=3

) variables. Finally, for larger alphabets

we show that there exist languages whi
h 
an be a

epted by an n-state DFA, but

whi
h require 
(n= logn) variables in any equivalent CNF grammar.

Key words: formal languages, 
ontext-free grammar, �nite automata

1 Introdu
tion

In des
riptional 
omplexity we are interested in the des
riptive power of var-

ious 
omputing models, su
h as deterministi
 �nite automata (DFA's), non-
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deterministi
 �nite automata (NFA's), and 
ontext-free grammars (CFG's)

[12℄. For example, many re
ent papers have examined the number of states

required by deterministi
 �nite automata to simulate various operations on

languages (see, e.g., Yu, Zhuang, and Salomaa [19℄). This is in sharp 
ontrast

to the more familiar 
omputational 
omplexity, where we are instead 
on-


erned with the time and spa
e used by 
omputing models su
h as Turing

ma
hines as a fun
tion of the size of the input.

In this paper we study the des
riptional 
omplexity of 
ontext-free grammars

that simulate �nite automata. For both DFA's and NFA's the number of states

is a generally-a

epted measure of des
riptional 
omplexity (e.g., [14,3℄), al-

though it 
an be argued that for NFA's the number of transitions is more

suitable. However, for CFG's there is no univerally-agreed-upon measure of

des
riptional 
omplexity. For example, the following are just three of the many

proposed measures of the 
omplexity of a CFG:

(a) the number of variables [9,7℄;

(b) the number of produ
tions [10℄;

(
) the sum of the lengths of the produ
tions [15℄.

For still other proposals, see [11℄.

Given a CFL L, we may measure its 
omplexity by 
hoosing one of the above

measures and 
omputing the minimum over all CFG's G with L = L(G). In

this paper we fo
us on measure (a). As stated it is not 
ompletely satisfa
-

tory for the des
riptional 
omplexity of CFL's; for example, if there are no

restri
tions on the length of produ
tions then any �nite language 
an be gen-

erated by a CFG with a single variable. So instead we restri
t our attentions to

CFG's in Chomsky normal form (CNF). Re
all that a 
ontext-free grammar

G = (V;�; P; S) is said to be in Chomsky normal form if every produ
tion

is of the form A ! BC, or A ! a, where A;B;C 2 V , and a 2 �. This

measure of des
riptional 
omplexity was previously mentioned by Shallit and

Wang [18℄ and appears in a re
ent paper of Nederhof and Satta [16℄. It is also

of interest be
ause it generalizes the well-studied 
on
ept of word 
hains (see

x 3).

The standard 
onstru
tion showing that every DFA M (or NFA, for that

matter) has an equivalent regular grammar (see, for example, [13, x9.1℄) proves

that if M has n states and an input alphabet � of k symbols, then there is a

CNF grammar with n + k variables generating L(M) � f�g. We will see that

this bound 
an be signi�
antly improved in the unary 
ase.

We say a grammar G is in binary normal form (BNF) if every produ
tion is

in one of the following four forms: A ! a, A ! �, A ! B, or A ! BC,

with A;B;C 2 V and a 2 �. We use the following fa
t throughout the

paper: if G = (V;�; P; S) is a grammar in BNF, then there exists a grammar
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G

0

= (V;�; P

0

; S) in Chomsky normal form su
h that L(G

0

) = L(G)�f�g. To

see this, note that the usual algorithm [13, x4.4℄ for removing �-produ
tions

and unit produ
tions does not introdu
e additional variables.

2 Simulation of Unary Automata

In this se
tion we 
onsider simulating unary automata, that is, automata

whose input alphabet 
onsists of a single symbol.

Lemma 2.1 Let T be any subset of f�; a; a

2

; : : : ; a

n�1

g. Then there exists a

BNF grammar G su
h that L(G) = T , and G has O(n

1=3

) variables.

Proof. De�ne r := dn

1=3

e. We 
an then express an integer i, 0 � i < n, in

base r using at most 3 digits, say i = e

i

r

2

+ f

i

r + g

i

, with 0 � e

i

; f

i

; g

i

< r.

We now de�ne some produ
tions, as follows:

G

0

! � F

0

! � E

0

! �

G

1

! a F

1

! G

r

E

1

! F

r

G

2

! G

1

G

1

F

2

! F

1

F

1

E

2

! E

1

E

1

G

3

! G

2

G

1

F

3

! F

2

F

1

E

3

! E

2

E

1

.

.

.

.

.

.

.

.

.

G

r�1

! G

r�2

G

1

F

r�1

! F

r�2

F

1

E

r�1

! E

r�2

E

1

G

r

! G

r�1

G

1

F

r

! F

r�1

F

1

If X 2 V is a variable in a grammar G = (V;�; P; S), we abuse notation

somewhat by de�ning L(X) = fx 2 �

�

: X =)

�

xg. It is trivial to prove by

indu
tion that

L(G

i

) = fa

i

g; 0 � i � r;

L(F

i

) = fa

ir

g; 0 � i � r;

L(E

i

) = fa

ir

2

g; 0 � i < r:

Now we de�ne the remaining produ
tions.
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S!E

0

S

0

j E

1

S

1

j E

2

S

2

j � � � j E

r�1

S

r�1

S

0

!F

i

G

j

for all i; j, 0 � i; j < r; su
h that a

ir+j

2 T ;

S

1

!F

i

G

j

for all i; j, 0 � i; j < r, su
h that a

r

2

+ir+j

2 T ;

.

.

.

S

r�1

!F

i

G

j

for all i; j, 0 � i; j < r, su
h that a

(r�1)r

2

+ir+j

2 T .

The resulting grammar is in BNF, and the total number of variables is 4r+3 =

O(n

1=3

).

Example 2.2 Consider representing the set T = fa

2

; a

4

; a

6

; a

17

; a

18

; a

21

; a

25

g by

a grammar in CNF. Here n = 26 and r = 3. The following BNF grammar generates

S:

S ! E

0

S

0

j E

1

S

1

j E

2

S

2

F

0

! �

S

0

! F

0

G

2

j F

1

G

1

j F

2

G

0

F

1

! G

3

S

1

! F

2

G

2

F

2

! F

1

F

1

S

2

! F

0

G

0

j F

1

G

0

j F

2

G

1

F

3

! F

2

F

1

G

0

! � E

0

! �

G

1

! a E

1

! F

3

G

2

! G

1

G

1

E

2

! E

1

E

1

G

3

! G

2

G

1

The �-produ
tions, unit produ
tions, and useless symbols may easily be removed to

give the following equivalent grammar in CNF:

S ! G

1

G

1

j F

1

G

1

j F

1

F

1

j E

1

S

1

j E

2

S

2

j E

1

E

1

F

1

! G

2

G

1

S

1

! F

2

G

2

F

2

! F

1

F

1

S

2

! G

2

G

1

j F

2

G

1

E

1

! F

2

F

1

G

1

! a E

2

! E

1

E

1

G

2

! G

1

G

1

Next, we state a lemma from [17℄:

Lemma 2.3 Let M be a unary DFA with n states. Then there exist integers

t � 0 and 
 � 1 with t + 
 � n, and sets A � f�; a; a

2

; : : : ; a

t�1

g and B �

f�; a; a

2

; : : : ; a


�1

g su
h that L(M) = A+Ba

t

fa




g

�

.

Now we 
an prove an upper bound.

Theorem 2.4 Let M be a unary DFA with n states. Then there exists a


ontext-free grammar G in CNF su
h that L(G) = L(M) � f�g, and G has

O(n

1=3

) variables.
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Proof. By Lemma 2.3 we 
an write L(M) = A + Ba

t

fa




g

�

for suitable

A;B; t; 
. By Lemma 2.1, we 
an 
onstru
t BNF grammars with O(n

1=3

) vari-

ables for the languages A, B, fa

t

g, and fa




g.

2

We 
an now easily 
ombine

these BNF grammars to get a BNF grammar for A+Ba

t

fa




g

�

, having O(n

1=3

)

variables. Hen
e a CNF grammar for L(M)�f�g exists withO(n

1=3

) variables.

Remark. Our upper bound 
an be viewed as a trade-o� result, in that we

have de
reased the number of variables in our grammar to O(n

1=3

) at the 
ost

of a linear in
rease in the total size of the des
ription.

We now prove a mat
hing lower bound.

Theorem 2.5 There exist 
onstants 
; n

0

su
h that for all integers n � n

0

there exists a �nite subset T � fa; a

2

; : : : ; a

n�1

g su
h that any 
ontext-free

grammar G in CNF with L(G) = T has at least 
n

1=3

variables.

Proof. Suppose L(G) = T , and G has t variables. If G is in CNF then there

are t

3

+ t possible produ
tions and for ea
h produ
tion we 
an de
ide whether

or not to in
lude it in the grammar. This gives 2

t

3

+t

distin
t grammars. But

there are 2

n�1

possible subsets of fa; a

2

; : : : ; a

n�1

g. It follows that t

3

+t � n�1,

and hen
e t = 
(n

1=3

), as desired.

Corollary 2.6 There exist 
onstants 
; n

0

su
h that for all n � n

0

there is

a unary DFA M of n states, a

epting a �nite language, su
h that any CNF

grammar G with L(G) = L(M) � f�g has at least 
n

1=3

variables.

Proof. Use Theorem 2.5 and the fa
t that any subset of f�; a; a

2

; : : : ; a

n�1

g


an be a

epted by a DFA 
ontaining � n+ 1 states.

We now turn to nondeterministi
 �nite automata.

Theorem 2.7 Let M be a unary NFA with n states. Then there exists a


ontext-free grammar G in CNF su
h that L(G) = L(M) � f�g, and G has

O(n

2=3

) variables.

Proof. We use a result of Chrobak [4℄ whi
h says that every unary NFA

with n states is equivalent to an NFA in a 
ertain normal form (
alled Chrobak

normal form), whi
h has the following properties: there is a \tail" of O(n

2

)

states, ending in a single nondeterministi
 state whi
h leads to a number of

di�erent 
y
les, and the total number of states in all the 
y
les is bounded

above by n. See Figure 1 for an illustration.

2

A
tually, using the \binary method", we 
an generate the languages fa




g and

fa

t

g using 
ontext-free grammars in BNF having only O(logn) variables; see [5℄.
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a

-

�

�

�

�

a

-

�

�

�

�

�

�

�

�

��

a

�

�

�

�

�R

a

�

�

�

�

�

�

�

�

-

a

�

a

�

�

�

�

�

�

�

�

�

�

�

�

�

a

?

a

�

�

�

�

�

��

a

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 1. An NFA in Chrobak normal form

Thus it follows that

L(M) = A [ a

t

0

�

[

1�i�s

B

i

fa




i

g

�

1

A

for some sets A � f�; a; : : : ; a

t�1

g with t = O(n

2

), and B

i

� f�; a; : : : ; a




i

�1

g,

for some integers s; 


1

; : : : ; 


s

> 0, su
h that 


1

+ � � �+ 


s

� n.

We now des
ribe a set of variables and produ
tions whi
h 
an be used to gen-

erate the set of strings 
orresponding to the 
y
les of the automaton, namely,

the set

S

1�i�s

B

i

fa




i

g

�

.

To this end, we de�ne r := dn

1=3

e and, exa
tly as in the proof of Lemma 2.1,

we introdu
e the variables E

i

; F

i

; G

i

, i = 0; : : : ; r, and the 
orresponding pro-

du
tions, in su
h a way that

L(G

i

) = fa

i

g; 0 � i � r;

L(F

i

) = fa

ri

g; 0 � i � r;

L(E

i

) = fa

r

2

i

g; 0 � i < r:

Now we 
onsider the ith 
y
le, whose length is 


i

, and we de�ne r

i

:= d


i

=r

2

e.

First, we des
ribe a set of variables and produ
tions useful to generate the set

B

i

. More pre
isely, we introdu
e the variables

S

(i)

; S

(i)

0

; : : : ; S

(i)

r

i

�1

;

with the produ
tions:

S

(i)

!E

0

S

(i)

0

j E

1

S

(i)

1

j E

2

S

(i)

2

j � � � j E

(i)

r

i

�1

S

(i)

r

i

�1

and

S

(i)

h

!F

k

G

j

for all k; j; h, 0 � k; j < r, 0 � h < r

i

, su
h that a

hr

2

+kr+j

2 B

i

.
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It is easy to verify that L(S

(i)

) = B

i

.

As a se
ond step, we 
onsider the 
y
le length 


i

. Let j; k; h � 0 be the integers

su
h that hr

2

+kr+ j = 


i

. We introdu
e two variables T

(i)

and T

0

(i)

with the

produ
tions T

(i)

! E

h

T

0

(i)

and T

0

(i)

! F

k

G

j

, where hr

2

+ kr + j = 


i

. Then

L(T

(i)

) = fa




i

g.

Finally, we introdu
e a further variable U

(i)

with the produ
tions U

(i)

!

S

(i)

j T

(i)

U

(i)

. From the previous dis
ussion, it is not diÆ
ult to 
on
lude that

L(U

(i)

) is the language a

epted by the i'th 
y
le, i.e.,

L(U

(i)

) = B

i

fa




i

g

�

:

Now we 
ompute the number of variables introdu
ed so far. The number of

variables E

i

; F

i

, and G

i

is O(n

1=3

). Furthermore, for the ith 
y
le, we have

introdu
ed at most r

i

+ 4 variables. Thus, the total number is

X

1�i�s

(r

i

+ 4) = O(s) +

X

1�i�s

r

i

= O(s) + #fi j r

i

= 1g+

X

1�i�s

r

i

>1

r

i

;

where #T denotes the 
ardinality of a set T . Observe that we may assume that

ea
h of the 
y
le lengths is distin
t, for otherwise we 
ould simply 
onsolidate


y
les of equal lengths. Thus, s = O(n

1=2

). Furthermore, #fi j r

i

= 1g � s.

By de�nition, r

i

> 1 i� 


i

� r

2

= (dn

1=3

e)

2

. Sin
e

P

1�i�s




i

� n, the number

of 
y
les of length at least r

2

is bounded by r = dn

1=3

e. Hen
e

X

1�i�s

r

i

>1

r

i

=

X

1�i�s




i

�r

2

�




i

r

2

�

� r

�




i

r

2

�

� n

1=3

 

n

dn

1=3

e

2

!

= O(n

2=3

):

By Lemma 2.1, the languages A and fa

t

g 
an be generated with BNF gram-

mars having O(n

2=3

) variables. By the above remarks, we 
an generate the

language

S

1�i�s

B

i

fa




i

g

�

with a BNF grammar having O(n

2=3

) variables. It

follows that the same upper bound holds for a CNF grammar for L(M)�f�g.

3 The 
ase of larger alphabets

Now we turn to the 
ase of a �xed size, non-unary alphabet. As mentioned

above, the standard 
onstru
tion for showing that any DFA M (or NFA)

has an equivalent regular grammar [13, x9.1℄ gives an upper bound of n + k

variables on the size of a 
ontext-free grammar in CNF a

epting L(M)�f�g.
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In this se
tion we obtain a lower bound. Our lower bound a
tually holds for

the more spe
i�
 
ase where the language 
onsists of a single word.

Lemma 3.1 There exists a 
onstant 
 su
h that for all m � 1 there exists a

language L

m

a

epted by a DFA with 2

m

+m + 1 states (or by an NFA with

2

m

+m states) su
h that the smallest number of variables in any 
ontext-free

grammar in CNF generating L

m

is > 
2

m

=m.

Proof. As is well-known, for allm there exists a string w

m

of length 2

m

+m�1

over f0; 1g su
h that every string of length m appears as a subword of w

m

.

These strings are sometimes 
alled de Bruijn words [8,6℄. Let L

m

= fw

m

g.

Then 
learly L

m


an be a

epted by a DFA with 2

m

+m+1 states or an NFA

with 2

m

+m states.

We now argue that at least 
2

m

=m variables are needed to generate L

m

.

A word 
hain is a straight-line program to generate a word, where every in-

stru
tion is of the form A

i

:= a, where a 2 � is a single letter, or A

i

:= A

j

A

k

,

where j; k < i. The length of a word 
hain is the number of instru
tions.

It is easy to see that every n-variable CNF grammar G = (V;�; P; S), with no

useless symbols, generating fwg 
orresponds to a word 
hain of length n+ j�j

generating w [18℄.

Now a known result on word 
hains [1℄ says that a word 
hain of length 
2

m

=m

is needed to generate w

m

. Our lower bound follows.

Corollary 3.2 There exist 
onstants 
; n

0

su
h that for all n � n

0

there exists

a DFAM

n

having n states su
h that any CNF grammar G with L(G) = L(M

n

)

has at least 
n=(log n) variables.

Results on word 
hains also imply that the 
n=(log n) bound is tight for lan-

guages 
onsisting of a single word [2℄.
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