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Abstract. 

In this paper, we describe a set of A P L  programs 
prepared by the author for computation of homology 
groups of  simplicial complexes. These programs may be 
used in conjunction with a first course in algebraic topol- 
ogy in several ways: to help the student gain an intuitive 
feel for homology theory, to suggest plausible conjectures 
in algebraic topology, and to aid proofs. 

I. Introduction. 

Use of  the computer as an aid to the discovery and 
proof of  mathematical theorems has increased greatly in 
the past ten years. One example that immediately comes 
to mind is the machine-aided proof of the four-color con- 
jecture by Haken and Appel (see [1]). Computers have 
also been used extensively in group theory [2 3] and 
number theory [4 5]. 

In this paper, we describe a set of  A P L  programs 
prepared by the author for computation of homology 
groups of  simplicial complexes. The entire set of pro- 
grams takes up little more than one sheet of paper, and 
most are written in the direct definition (a-oJ) formalism 
(see the appendix). These programs may be used in con- 

junction with a first course in algebraic topology in several 
ways: to help the student gain an intuitive feel for homol- 
ogy theory, to suggest plausible conjectures in algebraic 
topology, and to aid proofs. 
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The programs exemplify the use of  the computer to 
compute, not as a tutor or instructor. Use of A P L  in this 
way has been encouraged for more than ten years; for 
example, see [6]. 

In many ways, A P L  is the ideal language to express 
algebraic concepts. First, its function-oriented structure 
applies naturally to algebraic systems. Second, its power- 
ful array processing allows easy manipulation of matrices. 
Finally, A P E s  conciseness and power make development 
and testing easy. 

II. Algebraic Topology. 

An n-simplex is the n-dimensional generalization of  a 
triangle in 2-space, i. e. a set homeomorphic to 

{(t0, f l , ' ' ' , t n ) l  ti>/O, t o + f l +  " " " + t  n = l}  

the standard simplex. The points (1,0,0 ..... 0), 
(0,1,0,...,0), etc. are called the vertices of the standard 
simplex. 

o 

0-simplex 1-simplex 

2-simplex 3-simplex 
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A simplex A is said to be a face of  a simplex B if A is 
a subset of  B and every vertex of A is also a vertex of  B. 
For example, the 3-simplex above has 15 faces: the four 
points, the six lines, the four triangles, and the 
tetrahedron making up the 3-simplex itself. The dimen- 
sion of a simplex is one less than the number of  vertices 
defining it. 

Two simplices A and B are said to be properly joined 
provided that either A N B ffi ~ or A N B is a face of 
both A and B. See Figure 2. 

k / V  
Proper Joining Improper Joining 

Figure 2 

A simplicial complex K is a finite collection of  properly 
joined simplices such that each face of a member of  K is 
also a member of K. 

Through the process of  triangulation, common 
topological objects may be represented by simplicial com- 
plexes. For example, the figure below is a triangulation of  
the Moebius strip, a one-sided surface. 

1 2 

LH/ 
4 5 

4 

/ 
Figure 3: Triangulation of Moebius Strip 

Associated with each simplicial complex is a set of  
groups called homology groups. These groups partially 
describe the structure of  the complex, and methods for 
their computation form a large part of  elementary alge- 
braic topology. 

For more on these concepts, see [7 8]. 

The APL workspace HOMOLOGY contains a set of  
functions and variables to manipulation representations of 
simplicial complexes, including the computation of  their 
homology groups. 

III. Representations 

An important question is: How should simplicial com- 
plexes be represented? We want a representation that is 
both efficient (in terms of  storage requirements) and 
easily manipulated. 

One representation (which we will call B- 
representation) is through Boolean matrices, where each 
row represents a face of  a complex. For example, the 
Moebius strip could be represented by the following 
matrix of size 24 5: 

BFVVFP MOEBIUS 
1 0 0 0 0 0  
1 1 0 0 0 0  
1 1 0 1 0 0  
1 0 0 1 0 0  
1 0 0 1 0 1  
1 0 0 0 0 1  
0 1 0 0 0 0  
0 1 1 0 0 0  
0 1 1 0 1 0  
0 1 0 1 0 0  
0 1 0 1 1 0  
0 1 0 0 1 0  
0 0 1 0 0 0  
0 0 1 1 0 0  
0 0 1 1 0 1  
0 0 1 0 1 0  
0 0 1 0 1 1  
0 0 1 0 0 1  
0 0 0 1 0 0  
0 0 0 1 1 0  
O 0 0 1 0 1  
O 0 0 0 1 0  
O 0 0 0 1 1  
O 0 0 0 0 1  

The presence of a 1 in column N indicates that vertex N 
is included in the face represented by the given row. 

Another representation (which we call V- 
representation) is to again use rows to represent faces, 
but give the vertices explicitly (numbered from 1 to N), 
padded with zeros on the right, if necessary. The order in 
which rows appear is unimportant, but within each row 
the non-zero entries should appear in ascending order. 
The Moebius strip could be represented by the following 
matrix: 

VFP MOEBIUS 
1 0 0  
1 2 0  
1 2 4  
1 4 0  
1 4 6  
1 6 0  
2 0 0  
2 3 0  
2 3 5  
2 4 0  
2 4 5  
2 5 0  
3 0 0  
3 4 0  
3 4 6  
3 5 0  
3 5 6  
36O 
4 0 0  
45O 
4 6 0  
5 0 0  
5 6 0  
6 0 0  

Another alternative, which is more efficient in terms 
of  storage requirements, consists of representing com- 
plexes by listing only the principal simplices, i. e. those 
maximal with respect to inclusion. We call this the P- 
representation. To continue with our example of  the 
Moebius strip, a P-representation might be 
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MOEBIUS 
1 2 4  
1 4 6  
2 3 5  
2 4 5  
3 4 6  
3 5 6  

The last possibility is a cross between P- and B- 
representations, where only principal simplices are given, 
but they are listed as rows in a Boolean matrix. This is 
the representation given in [9 10]. We will not use it in 
this paper. 

We also want functions to convert between the vari- 
ous representations. These are given as follows: 

BFV 
VFB 
VFP 
PFV 

Convert to B-rep from V-rep 
Convert to V-rep from B-rep 
Convert to V-rep from P-rep 
Convert to P-rep from V-rep 

Following the suggestion of Berry [11], these functions 
are designed to link together easily: for example,  
PFV VFB M converts M from Boolean to principal sim- 
plex representation. 

Unless stated otherwise, most functions in the 
HOMOLOGY workspace assume arguments in V- 
representation. Although this representation is less 
efficient in terms of  space needed, the ease of  manipula- 
tion more than compensates for this deficiency. 

IV. Homology.  

Suppose we are given a simplicial complex A in V- 
representation. The faces of  A can be classified according 
to their dimension; for example, the Moebius strip has 6 
faces of  dimension 2. 

Suppose A has N faces of dimension P and M faces of 
dimension P-1. We can then form a matrix of size 
(N,M),  say P INCID A, which contains :t:1 in row I and 
column J iff the J-th subsimplex of dimension P-1 is a 
face of the I-th subsimplex of  dimension P. All other 
entries are 0. The signs of  the non-zero e lements  are 
chosen to alternate across rows. These matrices are called 
Incidence matrices. For example,  

HSTRIP÷VFP HOEBIUS 
1 INCID MSTRIP 

1 -1 0 0 0 0 
1 0 0 -1 0 0 
1 0 0 0 0 "1 
0 1 "I 0 0 0 
0 1 0 "1 0 0 
0 1 0 0 -1 0 
0 0 1 -I 0 0 
0 0 1 0 "1 0 
0 0 1 0 0 -I 
0 0 0 1 -1 0 
0 0 0 1 0 -1 
0 0 0 0 I -1 

2 INCID MSTRIP 
1 -1 0 0 1 0 0 
0 1 -1 0 0 0 0 
0 0 0 i 0 -1 0 
0 0 0 0 1 -1 0 
0 0 0 0 0 0 1 
0 0 0 0 0 0 0 

0 0 0 0 0  
0 0 0 1 0  
1 0 0 0 0  
0 0 1 0 0  
0 " 1 0 1 0  
1 - 1 0 0 1  

The rows of these incidence matrices can be con- 
sidered to be generators of  an abelian group; algebraically 
speaking, the rows span a submodule of  Z ('). The rows 
of  the incidence matrix may not form a basis, however,  
and it is important later to have a minimal spanning set. 
A matrix with integer entries can be reduced to one in 
upper triangular form that spans the same submodule by a 
type of  Euclidean algorithm; this is done by the APL func- 
tion UT. UT M produces a matrix such that 
(UT M ) + .  x M is in upper triangular form. We can then 
delete rows containing all zeroes with the function 
REDUCE, which generates a minimal spanning set. Note  
that only integer operations are used. 

For example: 

REDUCE: RZR TRI w A HIN SPANNING ROW SET 
RZR: ( v / ~ O ) / ~  . REMOVE ZERO ROWS 
YRI: (UT w)+.x~ A CHANGE TO UPPER TRIANG FORM 

B÷REDUCE 2 INCID HSTRIP 
8 

I -1 0 0 I 0 0 0 0 0 0 0 
0 1 -1 0 0 0 0 0 0 0 1 0 
0 0 0 1 0 1 0 1 0 0 0 0 
0 0 0 0 1 - 1  0 0 0 1 0 0 
0 0 0 0 0 0 i 0 -1 0 1 0 
0 0 0 0 0 0 0 I -1 0 0 1 

pB 
612 

In a similar ~sh ion ,  it is possible to obtain a basis ~ r  
the null space of a given matrix; in Nct, this is nothing 
more than the rows of UT M corresponding to the zero 
rows of  ( U T  M) +. ~ M. For example: 

HE: (^/O=T+.x~I~T+UT ~ . NULL SPACE 
Z÷NS 1 INCID MSTRIP 
Z 

1 1 0 0 1 0 0 0 0 0 0 0  
1 1 0 1 0 0 1 0 0 0 0 0  
0 0 0 1 0 - 1 0 1 0 0 0 0  
1 0 - 1 1 0 0 0 0 1 0 0 0  

- 1 1 0 0 0 - 1 0 0 0 1 0 0  
0 1 - 1 0 0 0 0 0 0 0 1 0  
1 0 - 1 0 0 1 0 0 0 0 0 1  

pZ 
712 

Note that the matrices given by Z and B above have 
the same number of  columns. The group (or Z - m o d u l e )  
represented by Z is called the cycle group and that 
represented by B is called the boundary group. We can 
find a function that maps B into Z; this amounts to 
expressing the rows of  B as integer linear combinations of 
rows of Z and is neatly given by the I~ function. In 
theory, the result will be a matrix with integer entries, but 
round-off error occasionally obscures this. 

OPP+I 

S 
IE0 "3E-17 -5E-17 

-1E-18 -~E-17 6E-17 
1E-3~ -2E-17 1E0 

-2E'18 8E-17 -8E-19 
iE-18 ~E-17 -IE-17 

-1E-18 1E0 "1E-18 
"2E-18 2E'17 1E-17 

tS+.5 
1 0 0 1 0 0 
0 0 0 0 I 0 
0 0 1 0 0 1 
0 0 0 0 -1 "1 
0 0 0 1 0 0 
0 1 0 0 1 0 
0 0 0 0 0 1 

1E0 3E-16 2E-17 
"5E-17 1E0 -9E-17 
8E-17 -8E-17 1E0 

-2E-17 -1E0 -1E0 
1E0 ~E-17 -7E-17 
1E-17 1E0 1E-16 

-2E-17 3E-17 1E0 
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The matrix H given by the matrix division "imbeds" B 
into Z; a well-known theorem says that we can change H 
into a diagonal matrix through elementary row and 
column operations. This is done by the function D~G.  
DIAG: ~TRI ~TRI ~ A REDUCE TO DIAGONAL FORM 

DIAG LH÷.5 
1 0 0 0 0 0  
0 1 0 0 0 0  
0 0 1 0 0 0  
0 0 0 1 0 0  
0 0 0 0 - 1 0 .  
0 0 0 0 0 - 1  
0 0 0 0 0 0  

The interpretation of this matrix is as follows: The 
quotient group represented by H is isomorphic to a sum 
of cyclic groups: 

Z / a l Z + Z / a 2 Z +  ' ' '  + Z / a n Z  

where the a n are entries on the diagonal of H. Hence the 
number of rows containing all zeros correspond to copies 
of Z, and other non-unit rows indicate the torsion (finite 
order) subgroups. In this case, H is isomorphic to Z. 

The entire procedure is automated by the function 
CH, which takes a left argument of the order of the 
homology group to be computed and a right argument of 
a simpliciai complex in vertex form. The result is the 
non-unit entries on the diagonal of the H matrix. 

Usually it is more amenable to employ the function 
CHOMP (which stands for "Compute Homology, 
Please"); this has a left argument identical to that of CH 
and a right argument of the name of a complex in P- 
representation. The result is a character matrix describing 
the homology groups. 

CHOMP 'MOEBIUS j 
H(O) : Z 
//(i) : Z 
//(2) = 0 

V. Discovering Theorems. 

The HOMOLOGY workspace provides P- 
representations of triangulations of some common topo- 
logical objects: 

KLEIN Klein Bottle 
PROJPLANE Projective Plane 
TOR US Torus 
MOEBIUS Moebius Strip 
CYL Cylinder 

Also provided are the following functions, which generate 
sequences of topological objects: 

I SPHERE N The N-sphere I 
K N Complete graph on N points 

It is useful to be able to join these objects in various ways. 
The following "conjunctive" functions are provided: 

A DUB Disjoint union 
A CS B Connected sum 
A CP B Cartesian product 

Direct sum corresponds to placing A beside B; connected 
sum cuts a "hole" corresponding to the first simplex in A 
and B and gluing the complexes together at the "hole". 
Cartesian product forms a new complex by a method simi- 
lar to APL outer product. 

For example, 

C H O M P  'KLEIN '  
H(O) - Z 
H ( I )  - Z / 2 Z  + Z 
H(2)  - 0 

C t l O M P  'PROJPLANE CS  P R O J P L A N E '  
H(O) - z 

H ( I )  - Z I2Z  + Z 
H(2 )  - 0 

Even if he doesn't know the theorem that 2- 
pseudomanifolds are isomorphic iff they have the same 
homology groups, the student might conjecture: The 
Klein bottle is isomorphic to the connected sum of two 
projective planes. 

In a similar fashion, the student could compare the 
homology groups of the torus with those of the Cartesian 
product of two circles (i. e. 1-spheres): 

C H O M P  'TOR US'  
H(O) " Z 
H(1)  - Z + Z 
H(2)  - Z 

C H O M P  ' (SPHERE I )  CP  S P H E R E  1'  
H(O) - Z 

H ( I )  - Z + Z 
H(2)  - Z 

There are many similar examples. 

Comparing the groups of the the Klein bottle, projective 
plane, and objects like the torus, another plausible (in 
fact, true) conjecture would be: A 2-pseudomanlfold Is 
non-orientable iff its second homology group Is {0}. 

Let's now look at the homology groups of N- 
dimensional spheres. For example: 

C t l O M P  'SPt tERE I '  
H(O) - Z 
H(1)  - Z 

C H O M P  "SPHERE 2" 
H(O) - Z 
H ( I )  - 0 
H(2 )  - Z 

C H O M P  'SPHERE 3 '  
H(O) - Z 
H O )  - 0 
H ( 2 )  - 0 
H(3 )  - Z 
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Judging from these examples, a plausible conjecture might 
be: The 0-th and N-th homology groups of the N-sphere 
are both {Z}; all others are {0}, 

These are just a few of the theorems that can be 
discovered easily by an inquiring student. 

Vl. Interface with Graphics. 

It is worthwhile to mention a simple experimental 
interface of the HOMOLOGY workspace with graphics 
workspaces suitable for use with a Tektronix 4013 or 4015 
terminal. This allows interactive graphics input of simpli- 
cial complexes, where the user sketches a triangulation on 
the screen and the groups are computed automatically. 

For example, below is the sample input from the 
graphical homology program for the Moebius strip. 

1 2 3 4 

HO(I tSTRIP)  " Z 

H i ( t fSTRIP)  " Z 

H2 ( I ISTR!P )  • O 
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VII. Topics for Further Development. 

The HOMOLOGY workspace has been used success- 
fully in conjunction with an elementary course in algebraic 
topology at the University of California, Berkeley. How- 
ever, there are many ways in which the workspace could 
be improved. We list just a few: 

A. Rewrite the functions that compute with incidence 
matrices to use sparse representation methods. 

B. Develop good interactive methods for input and 
display of higher-dimensional complexes on graphics ter- 
minals. 

C. Find upper bounds on the computation time and 
space needed to determine homology groups based on the 
number  of simplexes. 
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Appendix: Function Listings 

A. Functions to Compute and Display Homology Groups. 

BBASE: REDUCE (~+I) INCID 
CHAR: -/,(O.tUIM ~) APPLY 'NF VFP ',~ ~ EULEB-POINCARE CHARACTERISTIC 
CHOMP: (O,~DIM ~) APPLY 'CROM ',~ s COMPUTE HOMOLOGY, PLEASE 
CHOM: a HEAD PMT a CH VFP w 
CH: 1 REMOVE I 1 1 ~ SQUARE DIAG a HBASE ~ ~ COMPUTE HOMOLOGY 
DIAG: ~TRI ~TRI ~ ~ REDUCE TO DIAGONAL FORM 
DIM: ([/+/~0)-1 
FMT: REF -25.(~ ZERO 'Z/' WITH (RLF vCOL ~),'Z') WITH ' + ' : 0=p~ : .~0 ~ 
HBASE: [.5+(~a BBASE ~)~a ZBASE 
HEAD: 'R(',(*s),') = '°~ 
IRCID: (^/v/J2] (RTF a SIMP ~)*.=RTF (e-l) SIMP ~) INCI 
INCI: (Oa)p(,a)\((l~pa)x~+l)p(~+l)pl -I 
NF: (pa SIMP ~)[I] . NO. OF FACES OF ~ OF DIM a 
NS: (^/O=T+.xm)~T÷UT ~ ~ NULL SPACE 
REDUCE: EZR TRI ~ . MIN SPANNING ROW SET 
SIMP: ((a+l)=+/~0)/~ ~ GIVEN SC ~ IN V-FORM, DETERMINES a-SIMPLICES 
SQUARE: (Tpltp~)÷~ ~ SELECT SQUARE SUBMATHIX 
TRI: (UT ~)+.x~ ~ CHANGE TO UPPER THIANG FORM 
ZBASE: NS a INCID ~: a=0 : ID [/0,,~ 
ZERO: ~[:l],(s~0) BLANK 0 I$~ 

B. Functions to Convert Representations. 
BFV: +/[2] ~*.=*[/0,,~ a B-REP PROM V-REP 
BSUB: ~(~pT)Tl-l+2*~ . BOOLEAN MATRIX REPRESENTING ALL NON-NULL SUBSETS 
MASK: ,(+/~)°.~tl*ps 
SORT: ~[ORDER ~;] 
SUBSETS: (O,~)[i+VFB BSUB p~] ~ SUBSETS OF ~, PADDED WITH O'S 
VFB: RTF (p~)p(MASK ~)\(A~O)/A÷,~x(p~)p*l*p~ ~ V-HEP PROM 8-REP 

V V÷VFP P;X 
[1] ~ V-EEP FROM P-REP [1] 
[2] V÷(O.l*pP)pE÷O [2] 
[3] Li:÷((I*pP)<K÷K+i)/L2 [3] 
[%] V÷V CAT SUBSETS 0 REMOVE P[K;] [~] 
[5] ~LI [5] 
[6] LT:V÷RDR V [6] 

v [7] 
[B] 

V P~PFV V 
CONVERTS TO P-REP FROM V-REP 

V÷V[~+/V~O;] 
ORDER BY LARGEST SIMPLICES 

P÷(0,1*pV)p0 
LO:~(O=ItpV)/O 
P÷P°[i] V[i;] 
V÷(-^/V~V[1;],O)/V 
÷LO 

V 

C. Functions to Generate and Join Objects. 

K: ( l ,w+l )p1~+l  ~ COMPLETE GRAPH ON ~+I POINTS, P-REP 
SPHERE: eVFB (t~÷2)*.~t~+2 s PRINCIPAL SIMPLICRS FOR N-SPHERE 
CS: SORT ROWSORT RENUM (i 0*a REPL a[l;].[0.5] T[l&]).[l] I 0$T÷~+[/0,,a 
DU: a CAT ~+[/0,,a ~ DISJOINT UNION 
ECP: +\i.[3] (ID 2)[;i+(~-1) COMB a+~-2] ~ ELEMENTARY CART PROD 

V Z÷A CP B;R~U~T~P~J 
[i] ~ CARTESIAN PRODUCT 
[2] T~F/,A 
[3] u~F/.B 
[~ ]  R~(T,U)p*TxU 
[5] P~(tl÷pA) PAIRIi*pB 
[6] Z÷(O,-l+(l@pA)+l*pB)pO 
[7] J÷0 
[8] LO:~((ltpP)<J÷J+I)/O 
[9] C÷O REMOVE A[P[J;I]&] 
[i0] D÷O REMOVE B[P[J;2];] 
[11] Z÷Z CAT R[C&D] INDEX(pC) ECFpD 
[12] ÷L0 

V 

D. Utility Functions. 
APPLY: (i (,Ira),' ',~) CAT (15a) APPLY ~ : 0=p~ : 0 00'' 
BLANK: a ~ / w  
CAT: (MAT a) JOIN MAT w A CATENATE TWO ARRAYS, TREATED AS MATRICES 
COL: ((p~),l)pw A CONVERT TO COLUMN 
COMB: (O,a COMB m-l),[l] 1,(a-l) COMB w-i : v/a=~,0 : (l,~)ps=~ 
EXP: (l,(l#p~)p0),0,[l] ~ A ADD ROW AND COLUMN TO MATRIX w 
PILL: l÷0p~ n FILL CHARACTER FOR 
ID: tw)o.:~w R SQUARE IDENTITY MATRIX 
INDEX: ,a)[OIO+(pa)l~-OIO] 
JOIN: ((itpa),T)f~),[l] ((l÷pw),T÷(l*pa)Fl*p~)÷~ R JOIN TWO MATRICES 
MAT: -241 l,p~)pw 
PAIR: ((Pa)X0~)Pa),[l.5] .~((p~),0w)p~ n PAIR GENERATOR 
RDR: v/T*-i 0.0,[i] T){T÷SORT ~ A REMOVE DUPLICATE ROWS 
REF: Tv-i*O,T÷(FILL ~)~.FILL ~)/w,PILL 
REMOVE: (~*a)/~ 
RENUM: (UNI ~ ) t w  
REPLACE: (a,~[2;])[(*pa)[(a¢~[ll])x(pa)+~[l;]la] 
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REPL: (ps)p(,a) REPLACE 
RLF: (O,-i+(v/~FILL m)~l)+~ m REMOVE LEADING FILL CHARACTER8 
ROWSORT: ~ INDEX 2 GRADEUP 
HTF: (O,I-(~v/~FILL ~)tl)+w m REMOVE TRAILING FILL CHARACTERS 
HZR: ( v / ~ O ) / w  ~ REMOVE ZERO ROWS 
SORT: ~[ORDEH st] 
UNI: (~l+~.l+-l÷~)/w÷~[&~,~] 
WITH: a o ( ( l ~ p = ) , p ~ ) p ~  : (pp~)>ppa : ( ( ( i f p ~ ) , p = ) p a ) . ~  

V T÷ORDER A~IIK V Z~AXIS GHADEUP A|T~V 
[1] T÷~I*pA [1] . RETURNS INDICES SUCH THAT 
[2] l~(pA)[2] [2] m A INDEX I GRADEUP A 
[3] LI:÷(O~I)/O [3] m SORTS THE ELEMENTS OF A ALONG THE I'TH AXIS 
[4] T+T[X+~A[;I]] [4] Z÷(pA)T(~.A)-~IO 
[5] A÷A[E;] [53 T÷AXIS~opA 
[8] I~I-1 [6] Z÷~IO+Z[~(T/pA)IT~Z] 
[7] ~L1 [7] V÷(T/LpoA),AXIS 

V [8] Z÷(~IO,i+V)~((p~A),(pA)[V])pZ 
V 

V Z÷UT M~K;R~A~S~T;C 
[I] A RETURNS A MATRIX <UT M> SUCH THAT (UT M)+.xM IS UPPER 
[2] A TRIANGULAR. BOTH THE ARGUMENT AND RESULT HAVE INTEGER 
[3] . ENTRIES. 
[~3 Z÷ID l~pM 
[5] ~(0=l*pM)/0 
[6] m FIND FIRST COLUMN WITB A NON-ZERO ENTRY 
[7] X÷(v/O,M) tl 
[8] A IF THERE ARE NONE. WE ARE DONE 
[9] ÷(E>i+pM)/O 
[10] . FIND THE SMALLEST NOR-ZERO ENTRZ IN THAT COLUMN... 
[11] S+[/I(O~M[|K])/M[;K] 
[12] LT: 
[13] E+S 
[1~] , ...AND FIND WHERE THAT ENTRY OCCURS 
[15] A÷(IM[~K])LH 
[16] m SWITCH ROWS IN BOTH MATRICES 
[17] R 
[18] M[1,A;]÷M[A,i~] 
[19] Z[i,A;]~Z[A,I~] 
[20] . AND SUBTRACT MULTIPLES OF TEE FIRST ROW FROM ALL 
[21] A THE OTHER ROWS 
[22] T÷i~*I+pM 
[23] C~[M[T~E]~M[I;E] 
[2~] M[T;]÷M[T;]-C°..M[1;] 
[25] Z[T;]~Z[T;]-Co.xZ[1;] 
[26] n WHAT IS THE NEW SMALLEST NON-ZERO ENTRY IN THAT COLUMN? 
[27] S÷[/~(O~M[~K])/M[;K] 
[28] A IF IT'S SMALLER. CONTINUE| OTHERWISE WE'RE DONE WITH THE IST ROW 
[29] ~(E>S)/L2 
[30] m AT THIS POINT, WE RECUESE TO GET THE REST OF THE ROWS 
[31] A AND THEN PRODUCE THE RESULT BY A SIMPLE +.x 
[ 3 2 ]  Z÷(EXP UT 1 1 ~M)÷.xZ 

V 

E. Variables 

TORUS 
125 
128 

137 
i ~ 8 
157 
235 
239 
259 
288 
3 ~ 6 
379 
~ 55 
~ 59 
~ 89 
567 
678 
789 

PHOJFLANE 
123 
i 2 tt 
I 3 5 

156 
2 3 8 
2 ~ 5 
2 5 8 
3 ~ 5 
3 ~ & 

CXL 
124 
134 
346 
3 8 6 
256 
125 

KLEIN 
125 
127 
I 37 
139 
1 ~ 5 
1 ~ 9 
238 
238 
256 
278 
387 
389 
~ 58 
~ 67 
~ 69 
~ 78 
569 
589 

MOEBIUS 
12~ 

235 
2~5 
346 
356 

338 


