
Separating Words with Small Grammars

James Currie

�

Department of Mathematics

University of Winnipeg

Winnipeg, Manitoba, Canada R3B 2E9

currie@io.uwinnipeg.ca

Holger Petersen

Institut f�ur Informatik der Universit�at Stuttgart

Breitwiesenstra�e 20{22

D-70565 Stuttgart, Germany

petersen@informatik.uni-stuttgart.de

John Michael Robson

LaBRI

Universit�e Bordeaux I

351, cours de la Lib�eration

33405 TALENCE Cedex France

robson@labri.u-bordeaux.fr

Je�rey Shallit

�

Department of Computer Science

University of Waterloo

Waterloo, Ontario, Canada N2L 3G1

shallit@graceland.uwaterloo.ca

February 16, 1999

Abstract

We study the following problem: given two words w and x, with jwj; jxj � n, what is

the size of the smallest context-free grammarG which generates exactly one of fw; xg?

If jwj 6= jxj, then we prove there exists a G separating w from x of size O(log logn),

and this bound is best possible. If jwj = jxj, then we get an upper bound on the size

of G of O(logn), and a lower bound of
(

logn

log logn

).

�

Research supported in part by a grant from NSERC.

1

1 Introduction and De�nitions

Consider two deterministic �nite automata (DFA's) M

1

= (Q

1

;�; �

1

; q

1

; F

1

) and M

2

=

(Q

2

;�; �

2

; q

2

; F

2

). A well-known theorem [7, 11] states that if M

1

and M

2

accept di�erent

languages, then there is a \short" string accepted by one but not the other. More precisely,

if L(M

1

) 6= L(M

2

), then there exists w 2 �

�

such that

w 2 (L(M

1

)� L(M

2

)) [(L(M

2

)� L(M

1

))

and

jwj � card(Q

1

) + card(Q

2

)� 2: (1)

Here card(Q) denotes the cardinality of the set Q. The bound (1) is best possible, even over

a unary alphabet.

The \inverse" problem | where we are given two distinct words and want to �nd a

\small" DFA separating them | appears to be much more di�cult. More formally, let � be

a �nite alphabet, and let w; x 2 �

�

be distinct words of length � n. Goral�c��k and Koubek

[4] were apparently the �rst to study the problem of �nding a small DFA M that separates

w from x, i.e., such that

card(L(M) \ fw; xg) = 1:

They observed that w and x can be separated with O(log n) states if jwj 6= jxj, and sketched

a proof that o(n) states su�ce if jwj = jxj. Robson [8] improved the latter upper bound to

O(n

2=5

(log n)

3=5

). Also see [9].

In this note we study this last problem, where \deterministic �nite automaton" is replaced

with \context-free grammar" (CFG). We need a notion of the size of a context-free grammar.

If G = (V;�; P; S) then we de�ne the description size of G, ds(G), as follows:

ds(G) = 1 + card(V) + card(�) +

X

(A;�)2P

(j�j+ 3):

(Compare similar measures of Gruska [5].) For a variable A 2 V , we de�ne

L(A) = fw 2 �

�

: A =)

�

wg;

and

ds(A) =

X

(A;�)2P

(j�j+ 3):

2 The case of unequal lengths

In this section we �nd an upper bound on the size of a separating grammar in the case that

the two words are of di�erent length.

2

Theorem 1 Suppose w; x 2 �

�

with jwj; jxj � n and jwj 6= jxj. Let k = card(�). Then there

exists a CFG G

w;x

that separates w from x, with description size ds(G

w;x

) = O(k+log log n).

Proof. By the prime number theorem, if jwj; jxj � n and jwj 6= jxj, then there exists a

prime p = O(log n) such that jwj 6� jxj (mod p). More precisely, for n � 2, such a prime

exists with p � 4:4 log n (see [11, Example 6]). Let i = jwj mod p. Then w 2 (�

p

)

�

�

i

and

x 62 (�

p

)

�

�

i

. Thus it su�ces to show how to generate (�

p

)

�

�

i

with a grammar of description

size O(k + log p).

For a non-negative integer r, de�ne

s(r) =

8

>

<

>

:

0; if r = 0;

r � 1; if r odd;

r=2; if r > 0 is even;

and set T

r

= fr; s(r); s

2

(r); : : : g. Note that T

r

is a �nite set; in fact, it is easy to see that

card(T

r

) � 2 + 2 log

2

r for r � 1.

Now de�ne G

w;x

= (V;�; P; S) as follows. Let T = T

p

[T

i

, and let

V = fA

r

: r 2 Tg [fS;B;Cg:

Let P be the following set of productions:

S ! CA

i

;

C ! � j A

p

C;

B ! c; 8 c 2 �;

A

0

! �;

A

2j

! A

j

A

j

; if 2j 2 T � f0g;

A

2j+1

! BA

2j

; if 2j + 1 2 T:

Then it is easy to prove by induction that L(A

j

) = �

j

for all j 2 T . Hence L(C) = (�

p

)

�

,

and L(S) = (�

p

)

�

�

i

. The total description size of G

w;x

is O(k + log p) = O(k + log log n).

3 The case of equal lengths

In this section we �nd an upper bound on the size of a separating grammar in the case that

the two words are of equal length.

Theorem 2 Suppose w; x 2 �

�

with jwj; jxj � n and jwj = jxj. Let k = card(�) � 2. Then

there exists a CFG G

w;x

that separates w from x with description size ds(G

w;x

) = O(k+log n).

3

Proof. If w 6= x and jwj = jxj then there must exist a position j, 1 � j � n, in which

a = w

j

6= x

j

= b for a; b 2 �. Then w 2 �

j�1

a�

n�j

and x 62 �

j�1

a�

n�j

.

Now de�ne G

w;x

= (V;�; P; S) as follows. Let T

0

= T

j�1

[T

n�j

, where T is de�ned as in

the proof of Theorem 1, and let

V = fA

r

: r 2 T

0

g [fS;B;Cg:

Let P be the following set of productions:

S ! A

j�1

a A

n�j

B ! c; 8 c 2 �;

A

0

! �;

A

2i

! A

i

A

i

; if 2i 2 T

0

� f0g;

A

2i+1

! BA

2i

; if 2i+ 1 2 T

0

:

It is easy to see that L(S) = �

j�1

a�

n�j

, so w 2 L(S) and x 62 L(S). We observe that

ds(G

w;x

) = O(k + log n).

4 Lower bounds

It is natural to wonder how close our results are to being optimal. In this section we obtain

some lower bounds.

Our technique is based on the following lemma. Let S be a �nite set. We call a �nite

collection U = fU

1

; U

2

; : : : ; U

j

g of subsets of S a separating collection if for all x; y 2 S with

x 6= y, there exists a set C

xy

2 U such that

card(C

xy

\ fx; yg) = 1:

Lemma 3 Suppose S is a �nite set of cardinality m � 1. If U is a separating collection for

S, then card(U) � dlog

2

me. Furthermore, this bound is best possible.

Proof. For each x 2 S consider the set of indices of members of U to which x belongs, that

is,

V

x

= fi : x 2 U

i

g:

Then we claim that all the sets V

x

are distinct; for if not we would have V

x

= V

y

for some

y 6= x, and then every set in U containing x would also contain y. Hence U is not a separating

collection. It follows that 2

card(U)

� m, and hence card(U) � log

2

m. Since the cardinality

of a set must be an integer, we obtain card(U) � dlog

2

me.

We now show the bound is best possible. Without loss of generality, we may assume

S = f0; 1; 2; : : : ;m� 1g. Then de�ne

U

i

= fr 2 S : the i'th least signi�cant bit of the binary expansion of r is 1g

for 0 � i < dlog

2

me, and set U = fU

i

: 0 � i < dlog

2

meg. It works.

4

Remark. We do not know who �rst proved Lemma 3, but it must be very well known. It

can be found (stated in the language of perfect hash families) in [1, Thm. 1.2, Cor. 1.3]. We

thank C. J. Colbourn for bringing this reference to our attention.

We now apply Lemma 3 to get lower bounds corresponding to Theorems 1 and 2.

Theorem 4 Let k = card(�) be �xed. For all n � 1 there exists a pair of distinct words

w; x 2 �

n

requiring a context-free grammar of description size
(

logn

log logn

) to separate them.

Proof. Without loss of generality we may assume that � = f1; 2; : : : ; kg. Let G =

(V;�; P; S) be a CFG separating w from x. Without loss of generality we may assume

that V = fA

1

; A

2

; : : : ; A

r

g and A

1

= S.

We may encode G as a string s over the alphabet V [� [f#g as follows: if

P = fB

1

! �

1

; B

2

! �

2

; : : : ; B

t

! �

t

g

then

s = B

1

#�

1

#B

2

#�

2

� � �#B

t

#�

t

#:

Then

jsj =

X

1�i�t

(j�

i

j+ 3) � ds(G);

and each position in s can take on at most j�j+ jV j+ 1 � ds(G) di�erent values. Suppose

ds(G) � d. Then there are at most d

d

di�erent strings encoding such a grammar, and hence

at most d

d

di�erent grammars with description size � d. Hence there are at most d

d

di�erent

languages generated by CFG's with description size � d. Let U be the collection of all these

languages.

Now apply Lemma 3. There are k

n

distinct words of length n. If U is a separating

collection for the set of words of length � n, then we have

d

d

� card(U) � log

2

k

n

:

It follows that

d log d � log n + log log

2

k;

and so, for �xed k, we have d =
(

logn

log logn

).

Theorem 5 Let k = card(�) be �xed. For all n � 1 there exists a pair of words w; x with

jwj 6= jxj and jwj; jxj � n requiring a context-free grammar with description size
(

log logn

log log logn

)

to separate them.

Proof. Suppose G is a context-free grammar separating w and x, where jwj 6= jxj. Without

loss of generality we may assume k = 1.

There are n + 1 strings in 0

�

of length � n, so by applying Lemma 3 as in the proof of

the previous theorem, we �nd that d

d

� log

2

(n + 1), and so d =
(

log logn

log log logn

).

5

We �nish this section by observing that the lower bound technique in Lemma 3 cannot

improve the lower bounds in Theorems 4 and 5 without a signi�cant new idea. This is

because, as we show below in Theorem 6, there are d

(d)

distinct languages generable by

context-free grammars with description size � d | even over a unary alphabet.

Theorem 6 Any subset S � f�; 0; 0

2

; : : : ; 0

n�2

n

�1

g can be generated using a grammar with

description size O(2

n

). Hence 2

n�2

n

= (2

n

)

2

n

di�erent languages can be generated by gram-

mars with description size O(2

n

).

Proof. Let A

j

= f0

i

: jn � i < (j + 1)ng for 0 � j < 2

n

, and for 0 � j < 2

n

de�ne

S

j

= S \ A

j

for 0 � j < 2

n

. We observe that S

j

� A

0

0

jn

for 0 � j < 2

n

. Let W

j

be the

subset of A

0

such that S

j

= W

j

0

jn

. Then we have

S =

[

0�j<2

n

W

j

0

jn

:

Now we describe a \small" grammar G

S

= (V; f0g; P;R) generating S. The idea is to

generate all nonempty subsets of A

0

and all strings 0

jn

, 0 � j < 2

n

, with O(2

n

) description

size.

First, we create productions

B

j

!

(

�; if j = 0;

0B

j�1

; if j > 0.

for 0 � j � n. Note that L(B

j

) = f0

j

g, and

P

0�j�n

ds(B

j

) = 5n+ 3.

Second, for all 2

n

� 1 nonempty subsets T � A

0

, we create productions as follows:

C

T

!

(

B

j

; if card(T) = 1 and T = f0

j

g;

C

T�fjg

j B

j

; if card(T) > 1 and j = max

t2T

t.

Note that L(C

T

) = T , and

X

T�A

0

T 6=;

ds(C

T

) = 4n+ 8(2

n

� n � 1):

Third, for 0 � j < 2

n

, we create productions as follows:

X

j

!

8

>

<

>

:

�; if j = 0;

B

n

; if j = 1;

B

n

X

j�1

; if 1 < j < 2

n

;

6

Note that L(X

j

) = 0

jn

and

X

0�j<2

n

ds(X

j

) = 3 + 4 + 5(2

n

� 2):

Finally, we create productions

R ! C

W

j

X

j

for all j such that 0 � j < 2

n

and W

j

is nonempty. Then ds(R) � 5 � 2

n

.

Now let

V = fRg [fX

j

: 0 � j < 2

n

g [fC

T

: T � A

0

g [fB

j

: 0 � j � ng:

It is now easy to see that G

S

= (V; f0g; P;R) has description size O(2

n

) and generates the

set S.

5 An improved lower bound for unequal lengths

In this section we improve the lower bound of Theorem 5. The method is similar to that

used by Goral�c��k and Koubek [4] in the case of �nite automata.

We assume that the grammars in the section are in \binary normal form"; that is, that

every production is of the form A ! BC or A ! B for B;C 2 V , or A ! a for a 2 �,

or A ! �. We can do this by (1) replacing all occurrences of terminals a in the right-hand

sides of productions of length � 2 by a new variable X

a

, and then adding the production

X

a

! a; and (2) replacing all productions of the form A! X

1

X

2

� � �X

t

for t > 2 with t� 1

productions of the form A ! X

1

B

1

, B

1

! X

2

B

2

, : : : , B

t�3

! X

t�2

B

t�2

, B

t�2

! X

t�1

X

t

.

This change converts every grammar to one in binary normal form with only a linear increase

in description size.

1

We begin with some terminology. Fix a grammar G = (V; T; P; S). A word a

i

is called

a pumping word if there exist a variable A and integers i

1

; i

2

� 0 such that i = i

1

+ i

2

and

A

�

=)

G

a

i

1

Aa

i

2

. A cutting operation or cut can be performed on a parse tree T if there exist

two occurrences of the same variable A at nodes N

1

and N

2

, with N

2

a descendant of N

1

.

The cut is performed by replacing the subtree rooted at N

1

by that rooted at N

2

, obtaining

a new tree T

0

. If the yield of T is w, and the yield of T

0

is w

0

, then we say w

0

is obtained by

cutting from w. If w = a

j

and w

0

= a

k

, then a

j�k

is a pumping word. A pasting operation

is the result of undoing a cut. We say w is obtained by pasting from w

0

.

We say a cut is basic if there is no other possible cut, possibly involving other variables,

within the subtree rooted at N

1

. A pumping word is called basic if it is cut out by some

basic cut. Note that if a cut is possible, then a basic cut is also possible.

1

Note this may not be the case for Chomsky normal form, since Chomsky normal form also demands no

unit productions. The standard algorithm for removing unit productions can potentially increase the size of

the grammar by a quadratic factor.

7

For the rest of this section, unless otherwise stated, we assume G = (V; T; P; S) is in

binary normal form, with s := card(V) and m := 2

s

.

Lemma 7 If a parse tree T has yield x with jxj � m, then it is possible to perform a cut in

it.

Proof. The proof is the same as the familiar proof of the pumping lemma [2]. Since jxj � 2

s

,

we have jxj > 2

s�1

. Since every node of the parse tree has outdegree � 2, there is a path

from the root of T to a leaf of length � s+ 1. Such a path has � s + 2 nodes, all of which

but the last are labeled with variables. Hence some variable occurs twice on this path.

Lemma 8 Every basic pumping word is of length < 2m.

Proof. Let a

i

be a word with i � 2m, and consider an arbitrary cut operation which cuts

out a

i

. Consider the subtree T

1

rooted at node N

1

of the cut. The yield of T

1

is of length

� 2m. Since G is in binary normal form, the node N

1

has at most two children. Thus N

1

has a child which is the root of a subtree T

2

with yield of length � m. By Lemma 7, it is

possible to perform a cut in T

2

. Hence the cut at N

1

is not basic. Since we considered an

arbitrary cut, a

i

is not cut out by any basic cut and hence a

i

is not a basic pumping word.

Lemma 9 Given a derivation S

�

=) w, there is a word w

0

with jw

0

j < 2ms, obtained from

w by a sequence of zero or more basic cuts, such that w

0

has a derivation in G using all the

variables used in the derivation of w.

Proof. Let T be the parse tree corresponding to the given derivation S

�

=) w. Consider

reducing T to a tree T

00

with yield w

00

by a sequence of basic cuts c

1

; c

2

; : : : ; c

j

, such that no

further cuts are possible in T

00

. By Lemma 7 we have jw

00

j < m. Suppose that the basic cuts

which removed the last occurrence of some variable are c

n

1

; : : : ; c

n

k

, in that order. Then we

can perform pasting operations to T

0

, reversing the e�ects of cuts c

n

k

; : : : ; c

n

1

, and obtaining

a parse tree T

0

with yield w

0

. Then all the other pasting operations corresponding to the

remaining c

i

can be performed in any order to obtain a tree with yield w. Since w has been

obtained from w

0

by pasting basic pumping words, w

0

can be obtained from w by basic cuts.

Then, since k � s� 1, we have

jw

0

j < jw

00

j+ 2m(s� 1) < m+ 2m(s� 1) < 2ms:

We now �x one such sequence of basic cuts, and de�ne r(w) to be the word w

0

obtained

from w by this sequence of basic cuts.

8

Theorem 10 Let G = (V; T; P; S) be a context-free grammar in binary normal form with

s = card(V). De�ne m = 2

s

, m

0

= lcm(1; 2; : : : ; 2m), and M = 4m

2

m

0

. Then G does not

separate a

2M

from a

3M

.

Proof. We show a

2M

2 L(G) i� a

3M

2 L(G).

=): Suppose w = a

2M

2 L(G), and consider a parse tree T for a

2M

. Since jwj = 2M �

m, we can perform a pasting operation on T , which increases the length of the resulting

yield by i, where a

i

is a basic pumping word. By Lemma 8 we have i < 2m, and so i jm

0

.

But m

0

jM , so we can perform this pasting operation M=i times to get a derivation of a

3M

.

(=: Consider the set B = fa

b

1

; a

b

2

; : : : ; a

b

j

g of all nonempty basic pumping words,

where b

1

� b

2

� � � � � b

j

. De�ne g := gcd

x2B

jxj. Now if t is an integer linear combination

of the b

i

, then g j t. Furthermore, by a well-known result [3], if u � (b

1

=g�1)(b

j

=g�1), then

gu is a non-negative integer linear combination of the b

i

. Since b

i

< 2m for 1 � i � j, it

follows that if i � 4m

2

, then a

i

2 B

�

i� g j i.

Now suppose w = a

3M

2 L(G). Without loss of generality, we may assume that every

variable in V is used in the derivation of w; for if not, we could replace V by V

0

, where

V

0

consists only of those variables appearing in the derivation of w. Consider the word

a

x

= r(a

3M

), where r is the function de�ned after Lemma 9.

Since a

x

was obtained from a

3M

by a sequence of basic cuts, we must have a

3M�x

2 B

�

.

By Lemma 9, we have x < 2ms < M . Hence 3M � x > 2M � x > M � 4m

2

. Since g jM ,

it follows that a

2M�x

2 B

�

. By Lemma 9, the parse tree for a

x

uses all variables of V , so

we can perform any sequence of paste operations. Thus we can perform pasting operations

that add 2M � x a's to a

x

, obtaining a

2M

, and so a

2M

2 L(G).

Corollary 11 Let k = card(�) be �xed. For all n � 1 there exist words w; x with jwj 6=

jxj and jwj; jxj � n requiring a context-free grammar with description size
(log log n) to

separate them.

Proof. Let G be a context-free grammar with description size d. By previous remarks we

may convert G to an equivalent grammar G

0

in binary normal form with description size �d

for some constant �. Then by Theorem 10, G

0

(and hence G) fails to separate a

2M

from

a

3M

. But m = 2

s

� 2

�d

. Also, m

0

= lcm(1; 2; : : : ; 2m) � e

2:08m

by a well-known estimate

[10]. It follows that 3M � 12 � 2

2�d

� e

2:08�2

�d

, and so d =
(log log n), where n = 3M .

6 Separating grammars with words

Finally, we note that there is no bound similar to that in (1) for CFG's.

Theorem 12 There is no computable function f : N ! N with the following property: if

G

1

, G

2

are context-free grammars with L(G

1

) 6= L(G

2

) and ds(G

1

);ds(G

2

) � n, then there

exists w with jwj � f(n) such that w 2 (L(G

1

)� L(G

2

)) [(L(G

2

)� L(G

1

)).

9

Proof. Assume that such a function exists. Then a Turing machine could test if L(G

1

) =

L(G

2

) by computing b = f(max(ds(G

1

);ds(G

2

))) and testing membership of w in L(G

1

) and

L(G

2

) for all jwj � b. The membership test can be done, for example, using the well-known

Cocke-Younger-Kasami algorithm [6, pp. 139{141]. If such a w is found with

w 2 (L(G

1

)� L(G

2

)) [(L(G

2

)� L(G

1

));

then reject; otherwise accept. This would give a decision procedure for testing equality of

context-free languages, which is well-known to be recursively unsolvable [2, Thm. 6.3b].

7 Acknowledgments.

We would like to thank David Swart and the referees for their careful reading of this paper.

References

[1] M. Atici, S. S. Magliveras, D. R. Stinson, and W.-D. Wei. Some recursive constructions

for perfect hash families. J. Combinatorial Designs 4 (1996), 353{363.

[2] Y. Bar-Hillel, M. Perles, and E. Shamir. On formal properties of simple phrase structure

grammars. Z. Phonetik. Sprachwiss. Kommunikationsforsch. 14 (1961), 143{172.

[3] A. Brauer. On a problem of partitions. Amer. J. Math. 64 (1942), 299{312.

[4] P. Goral�c��k and V. Koubek. On discerning words by automata. In L. Kott, editor,

Proc. 13th Int'l Conf. on Automata, Languages, and Programming (ICALP), Vol. 226

of Lecture Notes in Computer Science, pp. 116{122. Springer-Verlag, 1986.

[5] J. Gruska. On the size of context-free grammars. Kybernetika 8 (1972), 213{218.

[6] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, 1979.

[7] E. F. Moore. Gedanken-experiments on sequential machines. In C. E. Shannon and

J. McCarthy, editors, Automata Studies, Vol. 34 of Annals of Mathematics Studies, pp.

129{153. Princeton University Press, Princeton, 1956.

[8] J. M. Robson. Separating strings with small automata. Inform. Process. Lett. 30 (1989),

209{214.

[9] J. M. Robson. Separating words with machines and groups. RAIRO Inform. Th�eor.

App. 30 (1996), 81{86.

10

[10] J. B. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime

numbers. Ill. J. Math. 6 (1962), 64{94.

[11] J. Shallit and Y. Breitbart. Automaticity I: Properties of a measure of descriptional

complexity. J. Comput. System Sci. 53 (1996), 10{25.

11

