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Abstract

It is proved that the simple continued fractions for the irrational numbers defined
by

∞∑

k=0

1

u2
k

(u ≥ 3, an integer)

and related quantities are predictable, that is, have a definite pattern. The proof uses
only elementary properties of continued fractions. The nature of the partial quotients
is discussed.

1 Introduction

The continued fraction for a real number x is an expansion of the form

x = a0 +
1

a1 +
1

a2 + · · ·

where the ai’s are positive integers, except for a0, which is an integer. The a’s are
called the partial denominators1 of the continued fraction.

It is well-known that the continued fraction for x terminates if and only if x is
rational. On the other hand, if the continued fraction is infinite, and the a’s are
periodic after some point, then x is a quadratic irrational.

There are also well-known patterns in the expansions for e, e2, tanh 1/k, etc.
The purpose of this paper is to announce a new result concerning continued frac-

tions; namely, that the continued fraction expansions for the irrational numbers defined
by

∞∑

k=0

1

u2k
(u ≥ 3, an integer)

1Readers may be puzzled by the use of the idiosyncratic term “partial denominators” in place of the much
more familiar “partial quotients”. This term was not my choice, but was imposed on me by the referee.
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and related quantities are predictable, that is, have a definite pattern.

2 Elementary properties of continued fractions

We write

pn/qn = a0 +
1

a1 +
1

a2 + · · ·+
1

an
= [a0, a1, a2, . . . , an]

We call pn/qn the n’th convergent.
Now we recall some of the elementary properties of continued fractions, which are

well-known and easily proved (for example, see Perron [1] or Hardy and Wright [2, p.
129]).

CF1: Let pn/qn = [a0, a1, a2, . . . , an]. Then

pn = anpn−1 + pn−2, (n ≥ 1), p−1 = 1, p0 = a0

qn = anqn−1 + qn−2, (n ≥ 1), q−1 = 0, q0 = 1

CF2: pnqn−1 − pn−1qn = (−1)n−1

CF3: The continued fraction for a real rational number x is unique, apart from the
fact that if an ≥ 2, then

x = [a0, a1, . . . , an] = [a0, a1, . . . , an − 1, 1].

CF4: The convergents are always in lowest terms.
CF5: If pn/qn = [a0, a1, . . . , an] and rm/sm = [b0, b1, . . . , bm] then

[a0, a1, . . . , an, b0, b1, . . . , bm] =
pn−1sm + pnrm
qn−1sm + qnrm

CF6: If pn/qn = [a0, a1, . . . , an] then

[an, an−1, . . . , a2, a1] = qn/qn−1

3 A Theorem

Theorem 1 Let

B(u, v) =
∑

0≤k≤v

1

u2k
=

1

u
+

1

u2
+

1

u4
+ · · ·+

1

u2v

(u ≥ 3, an integer). Then
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(A) B(u, 0) = [0, u];

B(u, 1) = [0, u− 1, u+ 1].

(B) If B(u, v) = [a0, a1, . . . , an] = pn/qn then B(u, v + 1) = [a0, a1, . . . , an−1, an +
1, an − 1, an−1, an−2, . . . , a2, a1].

Proof. Part (A) is easily verified by a short computation. Let us prove part (B).
We have

[a0, a1, a2, . . . , an−1] = pn−1/qn−1

[a0, a1, a2, . . . , an−1, an + 1] = (pn + pn−1)/(qn + qn−1) (CF1)

[a0, a1, a2, . . . , an−1, an + 1, an − 1] =
(an − 1)(pn + pn−1) + pn−1

(an − 1)(qn + qn−1) + qn−1
(CF1) (1)

[an−1, an−2, . . . , a2, a1] = qn−1/qn−2 (CF6) (2)

Applying (CF5) to equations (1) and (2), we find

[a0, a1, . . . , an−1, an + 1, an − 1, an−1, an−2, . . . , a1]

=
(pn + pn−1)(qn−2) + ((an − 1)(pn + pn−1) + pn−1)(qn−1)

(qn + qn−1)(qn−2) + ((an − 1)(qn + qn−1) + qn−1)(qn−1)

=
pnqn−2 + pn−1qn−2 + anpnqn−1 + anpn−1qn−1 − pnqn−1

qnqn−2 + qn−1qn−2 + anqnqn−1 + anq2n−1 − qnqn−1
.

(3)

From (CF1) it follows that

(pn − pn−2)qn−1 = anpn−1qn−1 (4)

(qn − qn−2)pn = anpnqn−1 (5)

(qn − qn−2)qn = anqnqn−1 (6)

(qn − qn−2)qn−1 = anq
2
n−1 (7)

Substituting equations (4)–(7) in the right side of (3), we obtain

[a0, a1, . . . , an−1, an + 1, an − 1, an−1, an−2, . . . , a1]

=
pn−1qn−2 − pn−2qn−1 + pnqn

q2n
(8)

At this point, let us assume that n is even — an assumption which will later be
verified by induction. Since n is even,

pn−1qn−2 − pn−2qn−1 = (−1)n−2 = 1 (CF2) (9)

Substituting (9) in the right side of (8), we find

[a0, a1, . . . , an−1, an + 1, an − 1, an−1, an−2, . . . , a1] =
pnqn + 1

q2n
. (10)

3



We now show that qn = u2
v

. We have

pn/qn = B(u, v)

=
∑

0≤k≤v

1

u2v

=
R

u2
v

where R =
∑

0≤k≤v u
2v−2k . Now R is not divisible by u (and therefore not by u2

v

)
since

R = 1 + u
∑

0≤k≤v−1

u2
v−2k−1.

Hence pn/qn = R/u2
v

in lowest terms. Applying (CF4), we conclude that qn = u2
v

.
Therefore,

[a0, a1, . . . , an−1, an + 1, an − 1, an−1, an−2, . . . , a1] =
pnqn + 1

q2n

=
pn
qn

+
1

q2n

= B(u, v) +
1

(u2v )2

= B(u, v) +
1

u2v+1

= B(u, v + 1),

as was to be shown. (CF3) ensures the uniqueness of the result. Note that the continued
fraction for B(u, v + 1) given in (10) has a total of 2n + 1 partial denominators while
the continued fraction for B(u, v) has n+ 1 partial denominators.

We may now justify our assumption that n is even: the assumption that the con-
tinued fraction for B(u, v) has an odd number of partial denominators (n even) leads
to the proof of part (B) and the fact that the continued fraction for B(u, v + 1) also
has an odd number of partial denominators. But the continued fraction for B(u, 1) has
3 partial denominators, so the proof of part (B) of the theorem is now complete, by
induction.

At this point it should be stated that the conclusions of Theorem 1 essentially hold
for u = 2. However, we run into the difficulty that some of the partial denomina-
tors may be 0. When this occurs, we can transform the continued fraction using the
following equation

[a0, a1, . . . , ak, 0, ak+1, . . .] = [a0, a1, . . . , ak + ak+1, ak+2].

4 Further results

Theorem 2 The continued fraction for B(u, v) has 2v + 1 partial denominators.
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Proof. This follows immediately from the remarks in the last paragraph of the proof
of Theorem 1.

Theorem 3 B(u,∞) =
∑

0≤k<∞
1

u2k
is irrational for integer u ≥ 2.

Proof. We write the base-u expansion of B(u,∞) as

.1101000100000001 · · ·(u) ,

with 1’s in the first, second, fourth, etc., places. This expansion neither terminates nor
repeats. Thus B(u,∞) is irrational, and its continued fraction does not terminate.

Theorem 4 The first 2v partial denominators of the continued fraction for B(u, v)
are identical with those of the continued fraction for B(u,∞).

Proof. Examination of part (B) of Theorem 1 shows that the first 2v partial denom-
inators of the continued fraction for B(u, v) are identical with those of the continued
fraction for B(u, v + 1), which are identical with those of the continued fraction for
B(u, v + 2), etc.

We observe that repeated application of part (B) of Theorem 1 thus generates the
partial denominators of the continued fraction for B(u,∞).

For example, we find for u = 3:

B(3, 0) = [0, 3]

B(3, 1) = [0, 2, 4]

B(3, 2) = [0, 2, 5, 3, 2]

B(3, 3) = [0, 2, 5, 3, 3, 1, 3, 5, 2]

...

B(3,∞) = [0, 2, 5, 3, 3, 1, 3, 5, 3, 1, 5, 3, 1, . . .]

For u = 4 we find

B(4,∞) = [0, 3, 6, 4, 4, 2, 4, 6, 4, 2, 6, 4, 2, . . .].

Comparison of the two preceding continued fractions leads to the following theorem.

Theorem 5 If B(u,∞) = [a0, a1, a2, . . .] then B(u + b,∞) = [a0, a1 + b, a2 + b, . . .],
(u ≥ 3, b ≥ 0).

Proof. The proof follows easily by induction.

Note that this theorem implies that once the continued fraction for B(3,∞) is
determined, it is trivial to calculate the continued fractions for B(4,∞), B(5,∞), etc.

Using the terminology of Maurice Shrader-Frechette [3], we define the mass M(x) of
a rational number x, as the sum of the partial denominators of the continued fraction
for x. That is, if x = [a0, a1, a2, . . . , an], then M(x) =

∑
0≤k≤n ak. Then
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Theorem 6 M(B(u, v)) = u · 2v.

Proof. From part (A) of Theorem 1, we see that

M(B(u, 0)) = u;

M(B(u, 1)) = 2u.

Part (B) of Theorem 1 implies that M(B(u, v + 1)) = 2M(B(u, v)) since a0 = 0. The
desired conclusion follows by induction.

Looking at the continued fraction expansions after Theorem 4 leads one to ask if
these expansions ever repeat. In fact, they do not, as is shown in the following theorem.

Theorem 7 B(u,∞) is not a quadratic irrational.

Proof. We know that a number is a quadratic irrational if and only if its continued
fraction expansion is infinite and periodic after some point. We will show that the
assumption that the continued fraction for B(u,∞) is periodic after some point leads
to a contradiction. Assume that the length of the repeating portion is r terms. We
may also assume without loss of generality that the repeating portion begins with the
partial denominator a2n+1 with r ≤ 2n. Thus we have

ajr+s = as (jr + s, s ≥ 2n + 1) (11)

It is easily verified that the following two equations are consequences of part (B) of
Theorem 1:

a2n+1+1 = a2n+1 − 2 (12)

a2n+1+x+1 = a2
n+1−x, (1 ≤ x ≤ 2n+1 − 1). (13)

The length of the repeating period, r, must be at least 2 since the middle terms of the
derived continued fraction given in part (B) of Theorem 1

. . . , an + 1, an − 1, . . .

are evidently different. Thus let us substitute x = r − 1 in equation (13) to obtain

a2n+1+r = a2n+1−r+1. (14)

Putting s = 2n+1 + 1, j = −1 in equation (11), we obtain

a2n+1−r+1 = a2n+1+1. (15)

Combining equations (14) and (15), we find

a2n+1+r = a2n+1+1. (16)

Again, putting s = 2n+1, j = 1 in equation (11), we see

a2n+1+r = a2n+1 . (17)
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Combining equations (16) and (17), we find

a2n+1 = a2n+1+1. (18)

We see that equation (18) contradicts equation (12). Thus, no such repeating portion
can exist and B(u,∞) cannot be a quadratic irrational.

In fact, B(u,∞) is transcendental, as is shown in Schneider [4, p. 35].

Theorem 8 The continued fraction for B(u,∞) consists only of five unique partial
denominators: 0, u−2, u−1, u, and u+2. The distribution of the partial denominators
for B(u, v) is as follows (u ≥ 3):

Partial Denominator Number of Occurrences
0 1

u− 2 2v−2 − 1
u− 1 2
u 2v−1 − 1

u+ 2 2v−2

Proof. The proof follows easily by induction from part (B) of Theorem 1.

Theorem 8 immediately implies the following:

Theorem 9 The partial denominators of the continued fraction for B(u,∞) are bounded.

A theorem of Khintchine [5, p. 69] states that the set of all numbers in (0, 1) whose
continued frcations have bounded partial denominators is of measure zero, so Theorem
9 is a little surprising.

A theorem of Kuzmin [5, p. 101] says that for almost all real numbers,

lim
k→∞

(a1a2 · · · ak)
1/k = K,

where K
.
= 2.68545. This theorem fails to hold B(u,∞), since Theorem 8 gives

(a1a2 · · · ak)
1/k = [(u− 1)2(u− 2)k/4−1uk/2−1(u+ 2)k/4]1/k

for k = 2v . Letting k → ∞, we see that

lim
k→∞

(a1a2 · · · ak)
1/k = [u2(u− 2)(u+ 2)]1/4 6= K.

Although Theorem 7 showed that there is no repeating portion in the partial denom-
inators for B(u,∞), nevertheless, certain partial denominators occur with regularity,
as shown in the following theorem.

Theorem 10 If B(u,∞) = [a0, a1, . . . , an, . . .] then an = u+2 if n ≡ 2 or 7 (mod 8),
and an = u if n ≡ 3 or 6 (mod 8).
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Proof. The proof follows by induction from part (B) of Theorem 1.

Similar theorems can be proved if the mod (8) in Theorem 10 is replaced by mod
(greater powers of 2).

The following generalization of Theorem 1 will be stated without proof, although
the proof is virtually identical to that for Theorem 1.

Let us consider the continued fraction for utB(u,∞) where t ≥ 0. Let v′ be the
least non-negative integer such that 2v

′

> t.

Theorem 11 Let c = utB(u, v′ − 1) (put c = 0 for v′ = 0), and let d = 2v
′

− t. Then

(A)

utB(u, v′) = [c, ud];

utB(u, v′ + 1) = [c, ud − 1, 1, ut − 1, ud].

and

(B) for all v ≥ v′+1, if utB(u, v) = [a0, a1, . . . , an], then utB(u, v+1) = [a0, a1, . . . , an, u
t−

1, 1, an − 1, an−1, an−2, . . . , a2, a1].

For example, repeated application of Theorem 11 gives

45B(4,∞) = [324, 63, 1, 1023, 64, 1023, 1, 63, 1023, 1, 63, . . . .

Theorem 11 implies statements about utB(u, v) similar to those about B(u, v) given
in Theorems 2-10. One particular interesting consequence of Theorem 11 is obtained
for t = 1, u = 2. We find

2B(2,∞) = [1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, . . .]

and the continued fraction consists solely of 1’s and 2’s.
The following theorem, stated without proof, says that the continued fractions for

C(u, v) =
∑

0≤k≤v

(−1)k

u2k
=

1

u
−

1

u2
+

1

u4
− · · · +

(−1)v

u2
v

are similar to those in Theorem 1.

Theorem 12 (A)

C(u, 0) = [0, u];

C(u, 1) = [0, u+ 1, u− 1].

(B) If C(u, v) = [a0, a1, . . . , an] then C(u, v + 1) = [a0, a1, . . . , an−1, an − (−1)v , an +
(−1)v , an−1, an−2, . . . , a1].

Thus, for example,

C(3,∞) = [0, 4, 3, 1, 3, 5, 1, 3, 5, 3, 3, 1, 5, 3, 1, . . .].

Theorem 12 has consequences similar to those stated in Theorems 2–10.
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