Words Avoiding Reversed Subwords

Narad Rampersad and Jeffrey Shallit
School of Computer Science
University of Waterloo
Waterloo, ON, N2L 3G1
CANADA
nrampersad@math.uwaterloo.ca
shallit@graceland.math.uwaterloo.ca

Abstract

We examine words w satisfying the following property: if x is a subword of w and $|x|$ is at least k for some fixed k, then the reversal of x is not a subword of w.

1 Introduction

Let Σ be a finite, nonempty set called an alphabet. We denote the set of all finite words over the alphabet Σ by Σ^{*}. The empty word is represented by ϵ. Let Σ_{k} denote the alphabet $\{0,1, \ldots, k-1\}$.

Let \mathbb{N} denote the set $\{0,1,2, \ldots\}$. An infinite word is a map from \mathbb{N} to Σ. The set of all infinite words over the alphabet Σ is denoted Σ^{ω}.

A map $h: \Sigma^{*} \rightarrow \Delta^{*}$ is called a morphism if h satisfies $h(x y)=-h(x) h(y)$ for all $x, y \in \Sigma^{*}$. A morphism may be defined by specifying its action on Σ. Morphisms may also be applied to infinite words in the natural way.

If $w \in \Sigma^{*}$ is written $w=w_{1} w_{2} \cdots w_{n}$, where each $w_{i} \in \Sigma$, then the reversal of w, denoted \dot{w}^{R}, is the word $w_{n} w_{n-1} \cdots w_{1}$.

If y is a nonempty word, then the word $y y y \cdots$ is written as y^{ω}. If an infinite word w can be written in the form y^{ω} for some nonempty y, then w is said to be periodic. If w can be written in the form $y^{\prime} y^{\omega}$ for some nonempty y, then w is said to be ultimately periodic.

A square is a word of the form $x x$, where $x \in \Sigma^{*}$ is nonempty. A word w^{\prime} is called a subword (resp. a prefix or a suffix) of w if w can be written in the form $u w^{\prime} v\left(\right.$ resp. $w^{\prime} v$ or $\left.u w^{\prime}\right)$ for some $u, v \in \Sigma^{*}$. We say a word w is squarefree (or avoids squares) if no subword of w is a square.

JCMCC 54 (2005), pp. 157-164

2 Avoiding reversed subwords

Szilard [6] asked the following question:
Does there exist an infinite word w such that if x is a subword of w , then x^{R} is not a subword of w ?

Clearly there must be some restriction on the length of x : if $|x|=1$, then all nonempty words fail to have the desired property. For $|x| \geq 2$, however, we have the following result.

Theorem 1. There exists an infinite word \mathbf{w} over Σ_{3} such that if x is a subword of w and $|x| \geq 2$, then x^{R} is not a subword of w. Furthermore, w is unique up to permutation of the alphabet symbols.
Proof. Note that if $|x| \geq 3$ and both x and x^{R} are subwords of w, then there is a prefix x^{\prime} of x such that $\left|x^{\prime}\right|=2$ and $\left(x^{\prime}\right)^{R}$ is a suffix of x^{R}. Hence it suffices to show the theorem for $|x|=2$. We show that the infinite word

$$
\mathrm{w}=(012)^{\omega}=012012012012 \cdots
$$

has the desired property. To see this, consider the set \mathcal{A} consisting of all subwords of w of length two. We have $\mathcal{A}=\{01,12,20\}$. Noting that if $x \in \mathcal{A}$, then $x^{R} \notin \mathcal{A}$, we conclude that if x is a subword of w and $|x| \geq 2$, then x^{R} is not a subword of w.

To see that w is unique up to permutation of the alphabet symbols, consider another word w^{\prime} satisfying the conditions of the theorem, and suppose that w^{\prime} begins with 01 . Then 01 must be followed by 2,12 must be followed by 0 , and 20 must be followed by 1 . Hence,

$$
\mathbf{w}^{\prime}=(012)^{\omega}=012012012012 \cdots=w
$$

Note that the solution given in the proof of Theorem 1 is periodic. In the following theorem, we give a nonperiodic solution to this problem for $|x| \geq 3$.
Theorem 2. There exists an infinite nonperiodic word w over Σ_{3} such that if x is a subword of w and $|x| \geq 3$, then x^{R} is not a subword of w .
Proof. By reasoning similar to that given in the proof of Theorem 1, it suffices to show the theorem for $|x|=3$. Let w^{\prime} be an infinite nonperiodic word over Σ_{2}. For example, if $\mathbf{w}^{\prime}=11010010001 \cdots$, then w^{\prime} is nonperiodic. Define the morphism $h: \Sigma_{2}^{\omega} \rightarrow \Sigma_{3}^{\omega}$ by

$$
\begin{aligned}
& 0 \rightarrow 0012 \\
& 1 \rightarrow 0112
\end{aligned}
$$

Then $\mathrm{w}=h\left(\mathrm{w}^{\prime}\right)$ has the desired property. Consider the set \mathcal{A} consisting of all subwords of w of length three. We have

$$
\mathcal{A}=\{001,011,012,112,120,200,201\}
$$

Noting that if $x \in \mathcal{A}$, then $x^{R} \notin \mathcal{A}$, we conclude that if x is a subword of w and $|x| \geq 3$, then x^{R} is not a subword of w.

To see that w is not periodic, suppose the contrary; i.e., suppose that $\mathbf{w}=y^{\omega}$ for some $y \in \Sigma_{3}^{*}$. Clearly, $|y|>4$. Suppose then that y begins with $h(0)$. Noting that the only way to obtain 00 from $h(a b)$, where $a, b \in \Sigma_{2}$, is as a prefix of $h(0)$, we see that $y=h\left(y^{\prime}\right)$ for some $y^{\prime} \in \Sigma_{2}^{*}$. Hence, $\mathrm{w}=\left(h\left(y^{\prime}\right)\right)^{\omega}=h\left(\left(y^{\prime}\right)^{\omega}\right)$, and so $\mathrm{w}^{\prime}=\left(y^{\prime}\right)^{\omega}$ is periodic, contrary to our choice of \mathbf{w}^{\prime}.

Over a two-letter alphabet we have the following negative result.
Theorem 3. Let $k \leq 4$ and let w be a word over Σ_{2} such that if x is a subword of w and $|x| \geq k$, then x^{R} is not a subword of w. Then $|w| \leq 8$.

Proof. As mentioned previously, if $k=1$ the result holds trivially. If $k=2$, note that all binary words of length at least three must contain one of the following words: $00,11,010$, or 101 . Similarly, if $k=3$, note that all binary words of length at least five must contain one of the following words: 000 , $010,101,111,0110$, or 1001 ; and if $k=4$, note that all binary words of length at least nine must contain one of the following words: 0000,0110 , $1001,1111,00100,01010,01110,10001,10101$, or 11011. Hence, $|w| \leq 8$, as required.

For $|x| \geq 5$, however, we find that there are infinite words with the desired property.

Theorem 4. There exists an infinite word \mathbf{w} over Σ_{2} such that if x is a subword of \mathbf{w} and $|x| \geq 5$, then x^{R} is not a subword of \mathbf{w}.

Proof. By reasoning similar to that given in the proof of Theorem 1, it suffices to show the theorem for $|x|=5$. We show that the infinite word

$$
\mathrm{w}=(001011)^{\omega}=001011001011001011 \cdots
$$

has the desired property. To see this, consider the set \mathcal{A} consisting of all subwords of w of length five. We have

$$
\mathcal{A}=\{00101,01011,01100,10010,10110,11001\}
$$

Noting that if $x \in \mathcal{A}$, then $x^{R} \notin \mathcal{A}$, we conclude that if x is a subword of w and $|x| \geq 5$, then x^{R} is not a subword of \mathbf{w}.

Let z be the word 001011. We denote the complement of z by \bar{z}, i.e., the word obtained by substituting 0 for 1 and 1 for 0 in z. Let \mathcal{B} be the set defined as follows:

$$
\mathcal{B}=\{x \mid x \text { is a cyclic shift of } z \text { or } \bar{z}\}
$$

We have the following characterization of the words satisfying the conditions of Theorem 4.
Theorem 5. Let w be an infinite word over Σ_{2} such that if x is a subword of w and $|x| \geq 5$, then x^{R} is not a subword of w . Then w is ultimately periodic. Specifically, w is of the form $y^{\prime} y^{\omega}$, where $y^{\prime} \in\{\epsilon, 0,1,00,11\}$ and $y \in \mathcal{B}$.

Proof. By reasoning similar to that given in the proof of Theorem 1, it suffices to show the theorem for $|x|=5$. We call a word $w \in \Sigma_{2}^{*}$ valid if w satisfies the property that if x is a subword of w and $|x|=5$, then x^{R} is not a subword of w. We have the following two facts, which may be verified computationally.

1. All 32 valid words of length 9 are of the form $y^{\prime} y y^{\prime \prime}$, where $y^{\prime} \in\{\epsilon, 0,1,00,11\}, y \in \mathcal{B}$, and $y^{\prime \prime} \in \Sigma_{2}^{*}$.
2. Let w be one of the 20 valid words of the form $y y^{\prime \prime}$, where $y \in \mathcal{B}$, $y^{\prime \prime} \in \Sigma_{2}^{*}$, and $\left|y^{\prime \prime}\right|=9$. Then y is a prefix of $y^{\prime \prime}$.

We will prove by induction on n that for all $n \geq 1, y^{\prime} y^{n}$ is a prefix of w , where $y^{\prime} \in\{\epsilon, 0,1,00,11\}$ and $y \in \mathcal{B}$.

If $n=1$, then by applying the first fact to the prefix of w of length 9 , we have that $y^{\prime} y$ is a prefix of w , as required.

Assume then that $y^{\prime} y^{n}$ is a prefix of \mathbf{w}. We can thus write $w=$ $y^{\prime} y^{n-1} y w^{\prime}$, for some $w^{\prime} \in \Sigma_{2}^{\omega}$. By applying the second fact to the prefix of $y w^{\prime}$ of length 15 , we have that y is a prefix of w^{\prime}. Hence $w=$ $y^{\prime} y^{n-1} y y \mathbf{w}^{\prime \prime}=y^{\prime} y^{n+1} \mathbf{w}^{\prime \prime}$, for some $\mathbf{w}^{\prime \prime} \in \Sigma_{2}^{\omega}$, as required.

We therefore conclude that if w satisfies the conditions of the theorem, then w is of the form $y^{\prime} y^{\omega}$, where $y^{\prime} \in\{\epsilon, 0,1,00,11\}$ and $y \in \mathcal{B}$.

Next we give a nonperiodic solution to this problem for $|x| \geq 6$.
Theorem 6. There exists an infinite nonperiodic word w over Σ_{2} such that if x is a subword of \mathbf{w} and $|x| \geq 6$, then x^{R} is not a subword of \mathbf{w}.
Proof. By reasoning similar to that given in the proof of Theorem 1, it suffices to show the theorem for $|x|=6$. Let w^{\prime} be an infinite nonperiodic word over Σ_{2}. Define the morphism $h: \Sigma_{2}^{\omega} \rightarrow \Sigma_{2}^{\omega}$ by

$$
\begin{aligned}
& 0 \rightarrow 0001011 \\
& 1 \rightarrow 0010111
\end{aligned}
$$

We show that the infinite word $\mathbf{w}=h\left(\mathbf{w}^{\prime}\right)$ has the desired property. To see this, consider the set \mathcal{A} consisting of all subwords of w of length six. We have

$$
\begin{aligned}
\mathcal{A}= & \{000101,001011,010110,010111,011000,011001,011100 \\
& 100010,100101,101100,101110,110001,110010,111000,111001\}
\end{aligned}
$$

Noting that if $x \in \mathcal{A}$, then $x^{R} \notin \mathcal{A}$, we conclude that if x is a subword of w and $|x| \geq 6$, then x^{R} is not a subword of w .

To see that w is not periodic, suppose the contrary; i.e., suppose that $\mathbf{w}=y^{\omega}$ for some $y \in \Sigma_{2}^{*}$. Clearly, $|y|>7$. Suppose then that y begins with $h(0)$. Noting that the only way to obtain 000 from $h(a b)$, where $a, b \in \Sigma_{2}$, is as a prefix of $h(0)$, we see that $y=h\left(y^{\prime}\right)$ for some $y^{\prime} \in \Sigma_{2}^{*}$. Hence, $\mathbf{w}=\left(h\left(y^{\prime}\right)\right)^{\omega}=h\left(\left(y^{\prime}\right)^{\omega}\right)$, and so $\mathbf{w}^{\prime}=\left(y^{\prime}\right)^{\omega}$ is periodic, contrary to our choice of w^{\prime}.

Finally we consider words avoiding squares as well as reversed subwords. It is easy to check that no binary word of length ≥ 4 avoids squares. However, Thue [7] gave an example of a infinite squarefree ternary word. Over a four-letter alphabet we have the following negative result, which may be verified computationally.

Theorem 7. Let w be a squarefree word over Σ_{4} such that if x is a subword of w and $|x| \geq 2$, then x^{R} is not a subword of w. Then $|w| \leq 20$.

In contrast with the result of Theorem 7, Alon et al. [1] have noted that over a four-letter alphabet there exists an infinite squarefree word that avoids palindromes x where $|x| \geq 2$. (A palindrome is a word x such that $x=x^{R}$.) However, over a five-letter alphabet there are infinite words with an even stronger avoidance property.
Theorem 8. There exists an infinite squarefree word \mathbf{w} over Σ_{5} such that if x is a subword of w and $|x| \geq 2$, then x^{R} is not a subword of w .
Proof. By reasoning similar to that given in the proof of Theorem 1, it suffices to show the theorem for $|x|=2$. Let w^{\prime} be an infinite squarefree word over Σ_{3}. Define the morphism $h: \Sigma_{3}^{\omega} \rightarrow \Sigma_{5}^{\omega}$ by

$$
\begin{aligned}
& 0 \rightarrow 012 \\
& 1 \rightarrow 013 \\
& 2 \rightarrow 014 .
\end{aligned}
$$

We show that the infinite word $\mathrm{w}=h\left(\mathrm{w}^{\prime}\right)$ has the desired property.
First we note that to verify that w is squarefree, it suffices by a theorem of Thue [8] (see also $[2,3,4]$) to verify that $h(w)$ is squarefree for all 12 squarefree words $w \in \Sigma_{3}^{*}$ such that $|w|=3$. This is left to the reader.

To see that if x is a subword of w and $|x|=2$, then x^{R} is not a subword of w , consider the set \mathcal{A} consisting of all subwords of w of length 2 . We have

$$
\mathcal{A}=\{01,12,13,14,20,30,40\} .
$$

Noting that if $x \in \mathcal{A}$, then $x^{R} \notin \mathcal{A}$, we conclude that if x is a subword of w and $|x| \geq 2$, then x^{R} is not a subword of w .

Finally, we consider a slight variation of the original problem; that is, we examine words w that have the property that if x and x^{R} are both subwords of w, then $x=x^{R}$. Over a two letter alphabet, all such words w are of the form $0 \cdots 0,1 \cdots 1,0 \cdots 01 \cdots 1$, or $1 \cdots 10 \cdots 0$. Over a three letter alphabet, we have the following characterization.

Theorem 9. There are $2^{n}-1$ words $w \in \Sigma_{3}^{*}$ of length n that begin with 0 and have the property that if x and x^{R} are both subwords of w, then $x=x^{R}$.

Proof. Any word w satisfying the conditions of the theorem is either of the form $0 \cdots 0$, or begins with $0 \cdots 01$ or $0 \cdots 02$. Supose that w begins with $0 \cdots 01$ (the case where w begins with $0 \cdots 02$ is similar). Then $0 \cdots 01$ cannot be followed by a 0 , as then 01 and 10 would both be subwords of w. Extending this reasoning, we find that w must be a prefix of a word of the form

$$
(0 \cdots 01 \cdots 12 \cdots 2)(0 \cdots 01 \cdots 12 \cdots 2) \cdots
$$

(here the parentheses are not part of the word but just serve to group repeating blocks).

We see then that the language \mathcal{L} of all words satisfying the conditions of the theorem can be described by the following regular expression (see [5] for more on regular expressions):

$$
\mathcal{L}=\left(00^{*} 11^{*} 22^{*}\right)^{*}\left(0^{*}+00^{*} 1^{*}\right)+\left(00^{*} 22^{*} 11^{*}\right)^{*}\left(0^{*}+00^{*} 2^{*}\right) .
$$

The minimal (incomplete) deterministic finite automaton (again, see [5] for more on finite automata) M that accepts \mathcal{L} has eight states and is given by

$$
M=\left(\left\{q_{1}, \ldots, q_{8}\right\}, \Sigma_{3}, \delta, q_{1},\left\{q_{1}, \ldots, q_{8}\right\}\right) .
$$

Note that all states are final. We omit the precise specification of the transition function δ and instead consider the adjacency matrix $A=\left(a_{i j}\right)$, where the entries $a_{i j}$ give the number of transitions from state q_{i} to state q_{j}. We have

$$
A=\left[\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

The (i, j) entry of A^{n} gives the number of paths of length n from state q_{i} to state q_{j}. The number of words of length n accepted by M is thus given by the sum of the values of the first row of A^{n} (since all states are final). An easy induction shows that

$$
A^{n}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
2^{n}-1 \\
2^{n+1}-1 \\
2^{n} \\
2^{n} \\
2^{n} \\
2^{n} \\
2^{n} \\
2^{n}
\end{array}\right] \text { for } n \geq 1
$$

from which we see that \mathcal{L} contains $2^{n}-1$ words of length n.

References

[1] N. Alon, J. Grytczuk, M. Haluszczak, O. Riordan, "Nonrepetitive colorings of graphs", Random Structures and Algorithms 21 (2002), 336346.
[2] D. Bean, A. Ehrenfeucht, G. McNulty, "Avoidable patterns in strings of symbols", Pacific J. Math. 85 (1979), 261-294.
[3] J. Berstel, "Sur les mots sans carré définis par un morphisme", $A u$ tomata, languages and programming (Sixth Colloq., Graz, 1979), pp. 16-25, Lecture Notes in Comput. Sci. 71, Springer, Berlin-New York, 1979.
[4] M. Crochemore, "Sharp characterizations of squarefree morphisms", Theoret. Comput. Sci. 18 (1982), 221-226.
[5] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, 1979.
[6] A. Szilard, personal communication, 2003.
[7] A. Thue, "Über unendliche Zeichenreihen", Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. 7 (1906), 1-22.
[8] A. Thue, "Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen", Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. 1 (1912), 1-67.

