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Abstract
We examine words u satisfying the following property: if c is a

subword of u and lrl is at least k for some fixed lc, then ihe reversal
of r is not a subword of tr.r.

1- Introduction
Let X be a finite, nonempty set called an alphabet. We denote the set of all
finite words over the alphabet X by X*. The empty word is represented by
e. Let X* denote the alphabet {0,1,..., & - 1}.

Let N denote the set {0, 1, 2, . . .}. A" infinite word is a map from N to
X. The set of all infinite words over the alphabet E is denoted X'.

A map h : X* + A* is called a morphism if h satisfies h(ry) =. h(n)h(y)
for all r, g e X*. A morphism may be defined by specifying its action on
X. Nlorphisms may also be applied to infinite words in the natural way.

If w € l* is written t = aruz" 'r-ur, where each ur; € E, then the
reuersol of u-,, denoted ton, is the word lrnwn-r"'wl.

If y is a nonempty word, then the word yaa ' '' is written as 3r'. If an
infinite word w can be written in the forr4 y' for some nonempty g, then
w is said Lo be periodic. If w can be written in the fotm y'g' for some
nonempty g, then w is said to be ultimately periodic.

A square is a word of the form rr, where r e E* is nonempty. A word
tul is called a subword, (resp. a prefir or a suffir) of u.' if tu can be written
in tlre form uu-''u (resp.'u'u or uw') f.or some u'u € X*. We say a word tr.r

is squarefree (or auoids squares) if no subword of tr is a square.
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2 Avoiding reversed subwords
Szilard [6] asked the following question:

Does there exist an infiniie word w such that if r is a sub-
lvord of w, then rfi is not a subword of w?

Clearly there must be some restriction on the length of c: if |rl = 1,
then all nonempty words fail to have the desired property. For lrl ) 2,
however, we have the following result.

Theorem 1. There exists an infinite word w ouer Es such that if r is a
subword of w andl*122, then nR is not a subword of w. Furtherrnore)w
is unique up to permutation of the alphabet symbols.

Prool. Note that if |rl ) 3 and both r and rE are subwords of w, then
there is a prefix x' of r such that lxtl = 2 and (r')n is a suffix of rR. Hence
it suffices to show the theorem for lrl - 2. We show that the infinite word

w = (012)'= 012012012012...

has the desired property. To see this, consider the set "zt consisting of all
subwords of w of length two. We have .4 - {01,12,20}. Noting that if
r e A, then eR (. A, we conclude thai if r is a subword of w and lrl ) 2,
then rR is not a subword of w.

To see that w is unique up to permutation of the alphabet symbols,
consider another word w/ satisfying the conditions of the theorem, and
suppose that w/ begins with 01. Then 01 must be followed by 2, 12 must
be followed by 0, and 20 must be foliowed by 1. Hence,

w' = (012)' = 012012012012 "' = w.

n
Note thai the solution given in the proof of Theorem 1 is periodic. In

the following theorem, we give a nonperiodic solution to this problem for
l,l 2 3.

Theorem 2. There erists an infinite nonperiodic word w ouer Z3 such
that if r is a subword of w and |tl > 3, then rR is not a subword of w'
Proof. By reasoning similar to that given in ihe proof of Theorem 1, it
suffices to show the theorem for lrl - 3. Let w/ be an infinite nonpe-
riociic word over E2. For exampie, if w/: 11010010001"', then w/ is
nonperiodic. Define the morphism h : Ei -+ X$ by

0 -+ 0012
1 -+ 0112.
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Then w = ft(w') has the desired property. Consider the set "4 consisting
of a,ll subwords of w of length three. We have

/ = {001, 011, 012, t12,I20,200, 201}.

Noting that if r € A, then .tR (. A, we conclude that if s is a subrvorcl of
w and |rl > 3, then eR is not a subword of w.

To see that w is not periodic, suppose the contraryl f.e., suppose that
w = f for some y e X;. Clearly, lyl > a. Suppose then that y begins with
h(0). Noting that the only way to obtain 00 from h(ab), where a,b eE2,
is as a prefix of h(0), we see that y : h(y') for some y' e E;. Hence,
w: (h ty'))' = h ((v')"), and so *' = (a')'is periodic, contrary to our
choice of w'. !

Over a two-letter alphabet we have the following negative result'

Theorem 3. Let k 1 4 and let w be a word ouer E2 sueh that if t is a
subword of w andlrl> k, then xR is not a subword of w. Then lrl S 8'

Proof . As mentioned previously,if k :1 the result holds trivialiy' If k = !'
note that all binary words of length at least three must contain one of the
followingwords: 00, 11,010, or 101. SimilarlSif k = 3, note that allbinary
words of length at least five must contain one of the following words: 000'
010, 101, 111, 0110, or 1001; and if k = 4, note that all binary words of
length at least nine must contain one of the following words: 0000, 0110'
1001, 1111, 00100, 01010, 01110, 10001, 10101, or 11011. Hence, lrl < 8'
as required. tl

For lcl ) 5, however, we find that there are infinite words with the
desired property.

Theorem 4, There ecists an infinite word w ouer D2 such that if r is a

subword of w and l"l > S, then rR is not a subword of w'

Proof . By reasoning similar to that given in the proof of Theorem 1, it
suf[ces to show the theorem for lrl = 5' We show that the infinite word

w = (ooiott)' = 0010110010110010i1 "'
has the desired property. To see this, consider the set / consisting of all
subwords of w of length five' We have

/ - {00101, 01011, 01100, 10010, 10110, 11001}.

Noting that if x € A, then rR (. A, we conclude that if c is a subworcl of
w ancl |rl > 5, then rR is not a subword of w. n
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Let z be the word 001011. lVe denote the complement of z by i, i.e.,
the rvord obtained by substituting 0 for l and l for 0 in z. Let B be the set
defined as follows:

B = {r lr is a cyclic shift of z or Z}.

lve have the following characterization of the words saiisfying the condi-
tions of Theorem 4.

Theorern 5. Let w be an infinite word ouer E2 such that if r is a subuord
of w and |rl > 5, then rR is not a subword of w. Then w is ztltimately
perioclic. Specifically, w is of the form yty' , where y' e {e,0,1,00, ll} and
yeD.
Proof. By reasoning similar to that given in the proof of Theorem 1, it
suffices to show the theorem for lrl= 5. lVe call a word w €D\ uatid if w
satisfies the property thai if r is a subword of u and lel = 5, then rR is
not a subword of rl. lVe have the following two facts, which may be verified
computationally.

1. All 32 valid words of length 9 are of the form y'yy",where
y' € {e, 0, 1, 00, 11}, y € B, and y" e Ei.

2. Let 'ru be one of the 20 valid words of the form yy" , where y e B,
Y" e El, and ly"l = 9. Then g is a prefix of y"'

We will prove by induction on n that for all n 2l, y'f is a prefix of
w, where y' e {e ,0, 1,00, 11i and y e B.

If n = 1, then by applying the first fact to the prefix of w of length 9,
we have that yty is a prefix of w, as required.

Assume then that A'An is a prefix of w. We can thus write w =
y'A'-rAw', for some w' e Di. By applying the second fact to the pre-
fix of gw' of length 15, we have that y is a prefix of w/. Hence w =
yty'-rayw" = ?l'yn*Lw", for some w" e Dl , as required.

lVe therefore conclude that if w satisfies the conditions of the theorem,
then w is of tlie form yty', where A' € {e ,0, 1,00, 11} and A e B. X

Next we give a nonperiodic solution to this problem for lrl > 6.

Theorem 6. There er:ists an infinite nonperiodic word w ouer D2 such
that if r is a subword of w and |rl > 6, then rR is not a subuord of w.
Proof. By reasoning similar to that given in the proof of Theorem 1, it
sumces to show the theorem for lrl = 6. Let w' be an infinite nonperiodic
wotd over X2. Define the morphism h : Di -+ Xi by

0 -+ 000101i
1 -r 0010111.
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We show that the infinite word w - h(*') has the desired property. To see
this, consider the set "zt consisting of all subwords of w of length six. We
have

A = i000101,001011,010110,010111,011000,0i1001,011100,
100010, 100101, 101 i00, 101110, 1 10001, 1i0010, 111000, 111001].

Noting that if r e A, then rft f A, we conclucle that if r is a subword of
w and |rl) 6, then rR is not asubword of w.

To see that w is not periodic, suppose the contrary; i.e., suppose that
w = Au for some y € E;. Clearly, lyl > 7. Suppose ihen that E begins wiih
h(0). Noting that the only rvay to obtain 000 from A(ab), where a,b €Ez,
is as a prefix of h(0), we see that y = h(y') for some y' e l'i. Hence,
w = (h(y'))' = h((a')"), and so *' = (v')'is periodic, contrary to our
choice of w'. n

Finally we consider words avoiding squares as well as reversed subwords.
It is easy to check that no binary word of lengih ) 4 avoids squares. How-
ever, Thue [7] gave an example of a infinite squarefree ternary word. Over
a four-letter alphabet we have the following negative result, which may be
verified computationally.

Theorern 7, Letw be a squarefree word ouerEa such that if n is a subword
of w and l*l> 2, then rR is not a subword of w. Then lul < 20.

In contrast with the result of Theorem 7, Alon et al. l7l have noted
that over a four-letter alphabet there exists an infinite squarefree word
that avoids palindromes r where l*l >- 2. (A palindrome is a word r such
that r - rn.) However, over a five-letter alphabet there are infinite words
with an even stronger avoidance property.

Theorem 8. There et:ists an infinite squarefree wordw ouerEs such that
if r is a subword of w andl*l> Z, then xR is not a subword of w.

Proof. By reasoning similar to that given in the proof of Theorern 1, it
suffices to show the theorem for lrl - 2. Let w' be an infinite squarefree
word over X3. Define the morphism h : X$ -+ Xf by

0 -+ 012
1+014
2 -+ 014.

We show that the infinite word w - h(*') has the desired property.
First we note that to verify that w is squarefree, it suffices by a theorem

of Thue 18] (see also [2, 3, 4]) to verify that A(u) is squarefree for all 12

squarefree words u e Ej such that l'r'ul = 3' This is left to the reader'
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Tosee that if r isasubrvorci of w and lrl = 2, then rR isnot asub,rvord
of w, consider the set / coirsisting of all subwords of w of length 2. lVe
have

/ = {01, 12, 13, i4,20,30.40}.
Noting that if x € A, then rR f A, we conclude that if c is a subword of
w and |rl > 2, then rR is not asubword of w. n

Finaliy, we consider a slight variation of the original problem; that is,
we examine words tu that have the property ihat if r and rR are both
subwords of tl, then n = *R. over a two letter alphabet, all such words
to are ofthe form 0.'.0, 1...1,0...01...1, or 1...10...0. Over a three
Ietter alphabet, we have the following characterization.

Theorem 9. There are 2n * t words.ru € Xi of tength n that begin with 0
and haue the property that if r and rR are both subwords of w, then t = rR.
Proof. Any word tu satisfying the conditions of the theorem is either of the
form 0'..0, or begins wiih 0'..01 or 0'..02. Supose that w begins with
0."01 (the case where u begins with 0...02 is similar). Then 0...01
cannot be followed by a 0, as then 01 and 10 would both be subwords of to.
Extending this reasoning, we find that u must be a prefix of a word of ihe
form

(0...01 ...r2...2)(0...01.. .12...2)...
(here the parentheses are not part of the word but just serve to group
repeating blocks).

We see then that the language L of all words satisfying the conditions
of the theorem can be described by the foiiowing regular expressinn (see [5]
for more on regular expressions):

I - (00*i1.22*).(0* + 00.1") + (00.22.11')*(0* + 00.2.).

The minimal (incomplete) deterministic finite automaton (again, see [5]
for more on finite automata) M that accepts I has eight states and is given
by

IUI = ({q1,...,4s}, Zz,6,qr,{qt,...,S8}) .

Note that all states are final. We omit the precise specification of the
transition function d and instead consider the adjacency matrix A= (aU),
where the entries aai give the number of transitions from state q; to state
g3. We have
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A-

The (i, j) entry of A' gives the number of paths of length n from state
g; to state 97. The number of words of length n accepted by M is thus
given by the sum of the values of the first row of.4" (since all states are
final). An easy induction shows that

01000000
01i10000
00101000
00010i00
000010i0
0000010i00100010
00010001

A'

2" -l
2+7 -I

2n
2n
2n
2n
2n
2n

forn)1,

from which we see lhat L contains 2" - | words of length n. tr
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