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I. Introdu
tion.

Re
ently, Pollard broke a signature s
heme suggested by Ong, S
hnorr, and Shamir

[OSS℄. His interesting method involved �nding a solution (x; y) to the 
ongruen
e

x

2

�Dy

2

� k (mod N); (1)

where N is a 
omposite number with unknown fa
torization.

I �rst heard of Pollard's algorithm during an informal talk by Adi Shamir in late April,

1984. At the time, the method seemed very mysterious to me, and I didn't see where the

motivation 
ame from. Also, there seemed to be several points whose justi�
ation was

skimpy (due, no doubt, to the informality of the presentation.) I have spent some time

�lling in the missing details.

Pollard's algorithm for solving (1) has yet to appear in print. Sin
e it 
ontains several


lever ideas, at least one of whi
h 
an be used to solve other problems [Sha2℄, it seemed

worthwhile to given a reasonably detailed exposition, and an analysis of the expe
ted

running time. I do this below.

I have made some small modi�
ations to the algorithm as presented by Shamir, so if

there are any mistakes, they are my fault.

II. Sket
h of the algorithm.

Equation (1) above, though it doesn't look it, really is the most general se
ond degree

equation in two variables. This is well-known to people who play with quadrati
 forms;

here's how to see it:

Take the general se
ond degree equation

ax

2

+ bxy + 
y

2

+ dx+ ey + f = 0; (2)
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we want to rewrite it in the form

u

2

�Dt

2

= B: (3)

First, 
onsider (2) as an equation in x and 
omplete the square. We �nd

(2ax + by + d)

2

= (by + d)

2

� 4a(
y

2

+ ey + f)

Now expand the right side and de�ne D = b

2

� 4a
 (the ubiquitous dis
riminant!); g =

bd� 2ae, and h = d

2

� 4af . If we now write

t = 2ax+ by + d

we have

t

2

= Dy

2

+ 2gy + h:

Now multiply this last equation through by D and 
omplete the square to get

(Dy + g)

2

= Dt

2

+ g

2

�Dh

Now if we put u = Dy + g and B = g

2

�Dh, we are done.

Note that solutions to (3) provide solutions to (2), sin
e

y =

u� g

D

; x =

t� by � d

2a

:

For example, see [Leg℄.

Eri
 Ba
h notes that this result is a spe
ial 
ase of the well-known theorem from

algebrai
 geometry, whi
h states that every rational 
urve of genus 0 is isomorphi
; i. e.,

there exists a 1-1 polynomial map taking you from one to the other.

The next thing to note is that

x

2

�Dy

2

� k (mod p); (4)

k 6= 0, 
an be solved in random polynomial time if p is a prime. The basi
 idea is that the

values of x

2

�Dy

2

are in fa
t equally distributed among the p� 1 nonzero residue 
lasses

(mod p). Thus for any k there must be roughly p pairs (x; y) that give a solution to (4).

On the other hand, there are no more than two solutions x to (4) for any parti
ular value
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of y; hen
e (4) must be solvable for about p=2 di�erent values of y. Thus we 
an 
hoose y

at random and then try to solve

x

2

� k +Dy

2

(mod p)

using any randompolynomial time algorithm for square roots (mod p), for example, the one

in [AMM℄. We su

eed about half the time, so this algorithm runs in random polynomial

time. All the details are given in [Sha℄.

On
e we have a solution to (4), we 
an \lift" it to a solution (mod p

e

) using Hensel's

method, or a quadrati
 lifting pro
edure.

(It would be ni
e if we 
ould generalize this method to work in the 
ase where p = N

is 
omposite. Unfortunately, it requires extra
tion of a square root (mod N), and this is

as hard as fa
toring N .)

Thus we see that it is easy to solve

x

2

�Dy

2

� k (mod N) (5)

if we know the fa
torization of N , sin
e we 
an solve the 
ongruen
e modulo ea
h prime

power and then 
ombine the results using the Chinese remainder theorem (CRT).

But how do we solve (5) if we don't know the fa
torization of N? There are four basi


ideas (proofs will be given in se
tion III):

Lemma 1.

The produ
t of two numbers, ea
h of the form x

2

�Dy

2

, 
an also be written in that

form...and the same thing holds for the quotient.

Lemma 2.

The substitution u = xy

�1

; v = y

�1

transforms an equation of the form

x

2

�Dy

2

� k (mod N)

to one of the form

u

2

� kv

2

� D (mod N):

Phrased in another way, the roles of k and D are inter
hangeable.

Lemma 3.

Given a solution r to the 
ongruen
e

x

2

� D (mod m);
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we 
an �nd (in polynomial time) integers u and v su
h that

u

2

�Dv

2

= �m

where � �

1

4

+

q

4jDj

3

.

Lemma 4.

It is easy to �nd solutions to

x

2

� y

2

� k (mod N):

Given these basi
 ideas, Pollard's algorithm may be stated as follows:

P1. Find, by probabilisti
 prime tests, a small prime p � k (mod N) su
h that D is

a quadrati
 residue of p.

P2. Solve x

2

�D � 0 (mod p) using any random polynomial time square-root algo-

rithm.

P3. Use Lemma 3 to �nd u; v su
h that u

2

�Dv

2

= �p. Suppose we 
ould solve

w

2

�Dz

2

� � (mod N):

Then we would have

(u

2

�Dv

2

)(w

2

�Dz

2

)

�1

� p � k (mod N)

and by Lemma 1, the left side is of the proper form. Then we'd be done!

P4. But how do we solve

w

2

�Dz

2

� � (mod N) ?

That's easy: we use Lemma 2 to inter
hange the roles of D and �. Now we have a


ongruen
e with mu
h smaller 
oeÆ
ients; we solve it (re
ursively) and inter
hange D and

� again. Our only worry is that we might not be able to solve the 
ongruen
e at the

\bottom" of the re
ursion{ but Lemma 4 says we 
an!

Pollard's terri�
 idea is step 1{the step that gets us started. And in fa
t, this is the

step that's the hardest to analyze.

In the next se
tion, we sket
h the proofs of these four lemmas.
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III. Proofs of the lemmas.

Proof of Lemma 1.

To prove the produ
t rule, we have

(x

2

�Dy

2

)(w

2

�Dz

2

) = (xw +Dyz)

2

�D(yw + xz)

2

: (6)

Of 
ourse, this 
an be veri�ed just by multiplying out both sides, but it would be ni
e to

see where the motivation 
omes from. In fa
t, it 
omes from 
onsidering expressions of the

form a = x+ y

p

D. De�ne the 
onjugate of a, �a, by �a = x� y

p

D. Then put

N(a) = a�a = x

2

�Dy

2

:

Then equation (6) is just the statement that the norm is multipli
ative, i. e.

N(x + y

p

D)N(w + z

p

D) = N((x + y

p

D)(w + z

p

D)):

To prove the quotient result, it suÆ
es to show that the inverse of x

2

�Dy

2


an be

written in the same form. In stating Lemma 1, we deliberately glossed over the question

of what sort of stru
ture we are working with (i.e. ring, �eld, or what?). In any event, if

x

2

�Dy

2

is invertible, and a = (x

2

�Dy

2

)

�1

, then by taking norms of

(x + y

p

D)

�1

= xa � ya

p

D

we �nd

(x

2

�Dy

2

)

�1

= (xa)

2

�D(ya)

2

:

Proof of Lemma 2.

Left to the reader.

Proof of Lemma 3.

Lemma 3 is very interesting; it relates 
ongruen
es (mod m) to the solution of equa-

tions in integers. Uspensky and Heaslet, in their 1939 book [UH℄, attribute it to Lagrange.

Indeed, most of the ideas in Lemma 3 
an be found in the 1769 paper of Lagrange [Lag℄.

5



The basi
 idea is sort of a su

essive redu
tion of the modulus m. Let us put x

0

= r

and m

0

=m; then we have

x

2

0

�D � 0 (mod m

0

);

hen
e

x

2

0

�D =m

1

m

0

for some integer m

1

. Now redu
e x

0

(mod m

1

) and 
all the result x

1

. (In fa
t, let x

1

be the absolutely least residue; thus x

1


an be negative, and we have jx

1

j <

1

2

jm

1

j.) It is

easily veri�ed that

x

2

1

�D � 0 (mod m

1

);

so again we have

x

2

1

�D =m

2

m

1

for some integer m

2

.

Continuing in this fashion, we get an initially de
reasing sequen
e jm

i

j. But noti
e

that if jm

i

j is small 
ompared to jDj, then jm

i+1

j > jm

i

j. Hen
e there is a limit to this

de
reasing behavior. In fa
t, sin
e

m

i+1

=

x

2

i

�D

m

i

we see that

jm

i+1

j �

jm

i

j

4

+

jDj

jm

i

j

: (7)

From this, it easily follows that the jm

i

j de
rease as long as jm

i

j >

q

4

3

jDj.

Thus eventually we �nd

x

2

n

�D = m

n+1

m

n

with m

n+1

�

q

4

3

jDj. Now put � =m

n+1

and de�ne a sequen
e A

i

su
h that

(A

i

x

i

�A

i+1

m

i

)

2

�DA

2

i

= �m

i

: (8)

Clearly A

n

= 1 and A

n+1

= 0; it 
an be veri�ed that the re
urren
e

A

i�1

= A

i+1

+

x

i�1

� x

i

m

i

A

i

(
ontinued fra
tions!) solves (8). For the grubby details, see [UH℄.
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(We will see in se
tion VI that it is possible to dispense with the sequen
e A

i

.)

It remains to see that this redu
tion pro
edure runs qui
kly. From equation (7) we

see that as long as jm

i

j >

q

4

3

jDj we have

jm

i+1

j �

jm

i

j

4

+

r

3

4

jDj:

It is easy to prove by indu
tion that

jm

i+n

j �

jm

i

j

4

n

+

4

3

r

3

4

jDj =

jm

i

j

4

n

+

r

4

3

jDj:

Now set i = 0 and 
hoose n = 1+ log

4

m

0

and we see that jm

n

j <

1

4

+

q

4

3

jDj.

Proof of Lemma 4.

First, 
onsider the 
ongruen
e

x

2

� y

2

� k (mod N):

We may assumeN is odd, for otherwise we 
an solve the equation for 2




and N=2




and put

the results together using the Chinese remainder theorem, as dis
ussed above in se
tion II.

Let r equal k or k +N , whi
hever is odd. Then it is easy to see

(

r + 1

2

)

2

� (

r � 1

2

)

2

= r � k (mod N):

The 
ongruen
e

x

2

+ y

2

� k (mod N) (9)

is just a little harder. One way is to examine k, k +N , k + 2N : : : su

essively until you

�nd a prime p = k + iN of the form 4j + 1. Then

x

2

+ y

2

= p


an be solved using the random polynomial time algorithm in [Sha℄. The resulting pair

(x; y) is 
learly also a solution to (9). Unfortunately, it seems diÆ
ult to prove that this

method runs in polynomial time. A di�erent method, whi
h 
an be given a rigorous proof

of running time, is des
ribed in [Sha℄.
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IV. Formal Statement of the Algorithm & Running Time.

fun
tion Pollard(D;k;N) returns(x; y);

redu
e D and k to their absolutely least residues (mod N);

if D = 0 or k = 0 then output \Cannot solve!" and stop;

else if N is even then write N = 2

a

� 
 and solve the 
ongruen
e

for 2

a

and 
; then 
ombine the results using the CRT;

else if g
d(k, N) 6= 1 or g
d(D, N) 6= 1 then

write N as the produ
t of two non-trivial fa
tors, and solve for ea
h

fa
tor; then 
ombine the results using the CRT;

else if �D is an integer square, D = �b

2

then

begin

Use Lemma 4 to solve 


2

� d

2

� k(mod N);

return(
, db

�1

)

end;

else if jkj < jDj then

begin f inter
hange roles of k and dg

(
; d) := Pollard(k;D;N);

return(
d

�1

, d

�1

)

end;

else begin

p := k;

notfound := true;

while (notfound) do

if p > 0 and p is prime and D is a quadrati
 residue (mod p)

then notfound := false

else p := p+N ;

use Lemma 3 to �nd �, u, and v su
h that u

2

�Dv

2

= �p;

(w; z) := Pollard(D;�;N); fhere's the re
ursive 
allg

use Lemma 1 to write x

2

�Dy

2

� (u

2

�Dv

2

)(w

2

�Dz

2

)

�1

;

return(x; y);

end;

end;
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Veri�
ation is left to the reader.

Let us attempt to estimate the running time of the fun
tion Pollard. The hardest

thing to estimate is how long it will take to �nd the suitable prime numbers 
ongruent to

k (mod N). There is a heuristi
 argument, due to Wagsta�, that if p is the smallest prime


ongruent to k (mod N), then \usually"

p � '(N) logN log'(N):

He 
olle
ted statisti
s to support this 
onje
ture. (See [Wag℄ for the heuristi
 argument

and related 
onje
tures by other authors.) Sin
e D is a quadrati
 residue of approximately

half of all primes, it seems reasonable to assume the following

Conje
ture.

The smallest prime p that is 
ongruent to k (mod N) for whi
h D is a quadrati


residue (mod p) is O(N(logN)

2

).

Thus, assuming the truth of this 
onje
ture, we need to look at O((logN)

2

) numbers

before we �nd a prime p of the requisite form.

We have shown that ea
h appli
ation of Lemma 3 takes fewer than 1+ log

4

jDj steps.

What's left to do is estimate the number of re
ursive 
alls in the fun
tion Pollard.

Sin
e one appli
ation of Lemma 3 redu
es k to

1

4

+

q

4

3

jDj, we only need O(log log jDj)

iterations to get to the \bottom" of the re
ursion.

Thus, assuming the truth of the 
onje
ture, we see that the running time is approxi-

mately

O((logN)(log logN)M(N)) +O((logN)

2

(log logN)P (N))

where M(N) is the time required to multiply or divide integers (mod N) and P (N) is the

time required to test a number of magnitude N for primality. If we use probabilisti
 prime

tests, and 
he
k the results of our probabilisti
 square-root algorithm, then the algorithm

runs in random polynomial time. Note that we 
an 
he
k the result to make sure it is


orre
t; hen
e the algorithm never returns an in
orre
t result.

V. An Example.

Consider solving the 
ongruen
e

x

2

� 2345y

2

� 5521 (mod 8023):
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The �rst step is to �nd a prime 
ongruent to 5521 (mod 8023). We're lu
ky here,

sin
e 5521 is prime. And we're still lu
kier, be
ause we �nd that 2345

2760

� 1 (mod 5521),

so 2345 is a quadrati
 residue (mod 5521). Now we run the algorithm of Lemma 3. We

need to solve x

2

0

� 2345 (mod 5521). We easily �nd x

0

= 812. Following Lemma 3, we

�nd su

essively

x

2

0

� 2345 =m

1

m

0

= 119 � 5521

x

1

� x

0

(mod m

1

) � �21

x

2

1

� 2345 =m

2

m

1

= �16 � 119:

We stop here, sin
e jm

2

j is suÆ
iently small.

Now let's �nd the A's: we get A

2

= 0, A

1

= 1, and A

0

= �7. From equation (8),

with i = 0, we �nd

163

2

� 2345 � 7

2

= �16 � 5521: (10)

Now it remains to solve

w

2

� 2345z

2

� �16 (mod 8023): (11)

Let's swit
h the roles of 2345 and �16 using Lemma 2. We get the new equation 


2

+16d

2

�

2345 (mod 8023). But now we 
an pull out the square fa
tor 16 to get




2

+ (4d)

2

� 2345:

This 
an be solved by Lemma 4, as follows:

We are looking for a prime p of the form 4t+1 with p � 2345 (mod 8023). Eventually

we �nd p = 66529. Running the algorithm in [Sha1℄, we �nd

252

2

+ 55

2

= 66529:

Thus 
 = 252 and 4d = 55. Thus d = 6031. Now we have the solution to (11):

w = 
d

�1

= 4978, z = d

�1

= 4668. Use Lemma 1 to write

(4978

2

� 2345 � 4668

2

)

�1

= 6709

2

� 2345 � 1714

2

;

and multiply by (10) to get

1088

2

� 2345 � 5425

2

� 5521 (mod 8023);

as desired.
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VI. More observations.

It is a
tually possible to dispense with the 
omputation of the A

i

in Lemma 3. All we

really need to do is 
ontinue the algorithm until m

k

is suÆ
iently small. At this point we

have the equations

x

2

0

�D =m

1

m

0

;

x

2

1

�D =m

2

m

1

;

x

2

2

�D =m

3

m

2

; :::

x

2

n

�D =m

n+1

m

n

.

Now, writing (e; f) for e

2

�Df

2

, we multiply the above equations together to get

(x

0

; 1)(x

1

; 1) � � � (x

n

; 1) =m

0

m

2

1

m

2

2

� � �m

2

n

m

n+1

:

If a = m

1

m

2

� � �m

n

, then this 
an be rewritten as

(a

�1

; 0)(x

0

; 1)(x

1

; 1) � � � (x

n

; 1) � k� (mod N);

sin
e m

0

= p � k (mod N) and m

n+1

= �. Using Lemma 1, we 
an 
ombine all the forms

on the left side of the 
ongruen
e. Now it suÆ
es to solve u

2

�Dv

2

� �, as before.

(In fa
t, this is the way Shamir presented the algorithm.)

Another point: in the 
ourse of this algorithm, we frequently 
ompute inverses (mod

N). In pra
ti
e, we may o

asionally en
ounter the 
ase where we must 
al
ulate a

�1

but

a has a non-trivial g
d with N . This is not a problem, sin
e if it o

urs, we 
an split N as

the produ
t of two non-trivial fa
tors and run the algorithm on both pie
es; then put the

results together using the Chinese remainder theorem.

VII. How to view the redu
tion of Lemma 3 as a latti
e problem.

It's possible to view the redu
tion of Lemma 3 as a latti
e problem! Suppose we want

to write

x

2

+Dy

2

= �p

where D > 0 and � is as small as possible. Bring the \D" inside the square; then the

equation be
omes

x

2

+ (

p

Dy)

2

= �p:

Now the left side looks like the norm of some ve
tor!
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A simple example should make this 
lear. Suppose we want to solve

x

2

+ 264y

2

= � � 997

for x and y, where � is as small as possible. Compute a square root a of �264 in ZZ

p

; we

�nd a � �428. Now 
onsider the latti
e in R

2

generated by the rows of

�

428

p

264

997 0

�

:

Find a redu
ed basis: we get

�

5 7

p

264

141 �2

p

264

�

:

This shows that

5

2

+ 264 � 7

2

= � � 997

and we have � = 13.

We 
an even use Minkowski's inequality to improve the 
onstant 4=3 from Lemma 3;

we �nd that we 
an write

x

2

+Dy

2

= � � p

with � <

4

�

p

D.

Now let's 
onsider the 
ase whereD < 0. We 
annot use the method of the above para-

graph dire
tly sin
e

p

D is imaginary. Instead, we use the same tri
k that was employed

in [Sha℄, and 
onvert a latti
e problem over ZZ[i℄ to one over ZZ.

A simple example should make this 
lear. Suppose we want to solve

x

2

� 667480y

2

= � � 738121

for x and y, where � is as small as possible. Compute a square root a of 667480 in ZZ

p

; we

�nd a = �63657. Now 
onsider the latti
e in R[i℄ generated by the rows of

�

63657 i

p

667480

738121 0

�

:

Convert this to a latti
e over R using the standard isomorphism

a + bi,

�

a b

�b a

�

;
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we get

0

B

�

63657 0 0

p

667480

0 63657 �

p

667480 0

738121 0 0 0

0 738121 0 0

1

C

A

:

At this point, we 
ould use a basis redu
tion algorithm to �nd a shortest ve
tor in this

latti
e; we would obtain the new matrix

0

B

�

12131 0 0 �23

p

667480

0 12131 23

p

667480 0

�25763 0 0 �12

p

667480

0 25763 12

p

667480 0

1

C

A

:

This implies that a solution is x = 12131, y = �23 and indeed we �nd

12131

2

� 667480 � 23

2

= �279 � 738121:

An easier solution is obtained if we note that the matrix above 
an be de
omposed

into two 2-dimensional pie
es. If we apply basis redu
tion to

�

63657

p

667480

738121 0

�

we get

�

12131 �23

p

667480

�25763 �12

p

667480

�

whi
h, of 
ourse, gives us the same solution found above.

VIII. Posts
ript.

After this report was written, I re
eived the preprint [Pol℄ in whi
h he dis
usses his

algorithm. A paper is being written by S
hnorr et al. on new versions of the signature

s
heme whi
h seem harder than the original OSS s
heme.
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