An Exposition of Pollard’s Algorithm for Quadratic Congruences

Jeffrey Shallit
Department of Computer Science
Unwwversity of Chicago
Chicago, IL 60637

I. Introduction.

Recently, Pollard broke a signature scheme suggested by Ong, Schnorr, and Shamir

[OSS]. His interesting method involved finding a solution (x,y) to the congruence
x> —Dy* =k (mod N), (1)

where N is a composite number with unknown factorization.

I first heard of Pollard’s algorithm during an informal talk by Adi Shamir in late April,
1984. At the time, the method seemed very mysterious to me, and I didn’t see where the
motivation came from. Also, there seemed to be several points whose justification was
skimpy (due, no doubt, to the informality of the presentation.) I have spent some time

filling in the missing details.

Pollard’s algorithm for solving (1) has yet to appear in print. Since it contains several
clever ideas, at least one of which can be used to solve other problems [Sha2], it seemed
worthwhile to given a reasonably detailed exposition, and an analysis of the expected

running time. I do this below.

I have made some small modifications to the algorithm as presented by Shamir, so if

there are any mistakes, they are my fault.

II. Sketch of the algorithm.

Equation (1) above, though it doesn’t look it, really is the most general second degree
equation in two variables. This is well-known to people who play with quadratic forms;

here’s how to see it:

Take the general second degree equation

axz—l—bxy—l—cyz—l—dx—l—ey—l—f:(); (2)

1

we want to rewrite it in the form

u® — Dt* = B. (3)

First, consider (2) as an equation in « and complete the square. We find

(2ax + by + d)* = (by + d)* — da(cy® + ey + f)

Now expand the right side and define D = b* — 4ac (the ubiquitous discriminant!); g =
bd — 2ae, and h = d* — 4af. If we now write

t=2axr+by+d

we have

t* = Dy* + 29y + h.

Now multiply this last equation through by D and complete the square to get
(Dy+g)" = Dt* + ¢4° — Dh

Now if we put v = Dy + ¢ and B = ¢?> — Dh, we are done.

Note that solutions to (3) provide solutions to (2), since

u—g x:t—by—d

D’ 2a
For example, see [Leg].

Eric Bach notes that this result is a special case of the well-known theorem from
algebraic geometry, which states that every rational curve of genus 0 is isomorphic; 1. e.,
there exists a 1-1 polynomial map taking you from one to the other.

The next thing to note is that
x? — Dy?* =k (mod p), (4)

k # 0, can be solved in random polynomial time if p is a prime. The basic idea is that the
values of #? — Dy? are in fact equally distributed among the p — 1 nonzero residue classes
(mod p). Thus for any k there must be roughly p pairs (x,y) that give a solution to (4).

On the other hand, there are no more than two solutions x to (4) for any particular value

2

of y; hence (4) must be solvable for about p/2 different values of y. Thus we can choose y

at random and then try to solve
x> =k + Dy* (mod p)

using any random polynomial time algorithm for square roots (mod p), for example, the one
in [AMM]. We succeed about half the time, so this algorithm runs in random polynomial

time. All the details are given in [Sha).

Once we have a solution to (4), we can “lift” it to a solution (mod p°) using Hensel’s

method, or a quadratic lifting procedure.

(It would be nice if we could generalize this method to work in the case where p = N
is composite. Unfortunately, it requires extraction of a square root (mod N), and this is

as hard as factoring N.)

Thus we see that it is easy to solve
x> — Dy* =k (mod N) (5)

if we know the factorization of N, since we can solve the congruence modulo each prime

power and then combine the results using the Chinese remainder theorem (CRT).

But how do we solve (5) if we don’t know the factorization of N7 There are four basic

ideas (proofs will be given in section III):
Lemma 1.

The product of two numbers, each of the form #? — Dy?, can also be written in that
form...and the same thing holds for the quotient.

Lemma 2.

1

The substitution v = 2y~ !;v = y~! transforms an equation of the form

x> — Dy* =k (mod N)

to one of the form

u?* —kv> =D (mod N).
Phrased in another way, the roles of k and D are interchangeable.

Lemma 3.

Given a solution r to the congruence

x> =D (mod m),

we can find (in polynomial time) integers v and v such that

u? — Dv? = \m

Lemma 4.

It is easy to find solutions to

2+t = (mod N).

Given these basic ideas, Pollard’s algorithm may be stated as follows:

P1. Find, by probabilistic prime tests, a small prime p = k (mod N) such that D is

a quadratic residue of p.

P2. Solve > — D = 0 (mod p) using any random polynomial time square-root algo-

rithm.

P3. Use Lemma 3 to find u, v such that u? — Dv? = Ap. Suppose we could solve
w? — Dz*> =X (mod N).

Then we would have

-1

(u* — Dv*)(w? —Dz*) =p=k (mod N)

and by Lemma 1, the left side is of the proper form. Then we’d be done!

P4. But how do we solve
w?—Dz* =)\ (mod N) 7

That’s easy: we use Lemma 2 to interchange the roles of D and A. Now we have a
congruence with much smaller coefficients; we solve it (recursively) and interchange D and
A again. Our only worry is that we might not be able to solve the congruence at the
“bottom” of the recursion— but Lemma 4 says we can!

Pollard’s terrific idea is step 1-the step that gets us started. And in fact, this is the
step that’s the hardest to analyze.

In the next section, we sketch the proofs of these four lemmas.

4

II1. Proofs of the lemmas.

Proof of Lemma 1.

To prove the product rule, we have
(2* — Dy*)(w® — D2?) = (2w + Dyz)2 — D(yw + :1:2)2. (6)

Of course, this can be verified just by multiplying out both sides, but it would be nice to
see where the motivation comes from. In fact, it comes from considering expressions of the

form a = x + yv/D. Define the conjugate of a, @, by @ = ¥ — yv/D. Then put

Then equation (6) is just the statement that the norm is multiplicative, i. e.

N(z +yVD)N(w + VD) = N((« + yvD)(w + 2VD)).

To prove the quotient result, it suffices to show that the inverse of 2 — Dy? can be
written in the same form. In stating Lemma 1, we deliberately glossed over the question

of what sort of structure we are working with (i.e. ring, field, or what?). In any event, if

x? — Dy? is invertible, and a = (2? — Dyz)_l, then by taking norms of

(x + y\/ﬁ)_1 = ra — yaV'D

we find
(+* = Dy*)”" = (2a)’ — D(ya)*. ®

Proof of Lemma 2.

Left to the reader. M

Proof of Lemma 3.

Lemma 3 is very interesting; it relates congruences (mod m) to the solution of equa-
tions in integers. Uspensky and Heaslet, in their 1939 book [UH], attribute it to Lagrange.
Indeed, most of the ideas in Lemma 3 can be found in the 1769 paper of Lagrange [Lag).

5

The basic idea is sort of a successive reduction of the modulus m. Let us put @g = r
and mg = m; then we have

22— D=0 (mod my);

hence

:l:(z)—D = mymg

for some integer m;. Now reduce xg (mod mq) and call the result z;. (In fact, let
be the absolutely least residue; thus ¥ can be negative, and we have |o1| < §|my|.) It is

easily verified that
so again we have

for some integer ms.

Continuing in this fashion, we get an initially decreasing sequence |m;|. But notice
that if |m;| is small compared to |D|, then |m;4q1| > |m;|. Hence there is a limit to this

decreasing behavior. In fact, since

2 —D
m;4+1 = ‘
we see that
m; D
i < ml 1D -
4 [my

From this, it easily follows that the |m;| decrease as long as |m;| > 1/5|D|.

Thus eventually we find

2
r, —D=mypim,

with m,4q1 < %|D|. Now put A = m, 41 and define a sequence A; such that

(A — Ajym;)® — DA? = Am. (8)
Clearly A, =1 and A,,11 = 0; it can be verified that the recurrence

Li—1 — 4
Aian=Aipn + ——

?

A;

(continued fractions!) solves (8). For the grubby details, see [UH].

6

(We will see in section VI that it is possible to dispense with the sequence A;.)

It remains to see that this reduction procedure runs quickly. From equation (7) we

see that as long as |m;| > 4/3|D| we have

i < —|D|.
M| < 1 +\/4| |

It is easy to prove by induction that

lm;| 4 /3 || 4
N P il By iy T 2\D.
ol < 2 Py = bl

Now set ¢ = 0 and choose n = 1 4 log, mo and we see that |m,| < + +,/3/D. ®

Proof of Lemma 4.
First, consider the congruence
2 —y* =k (mod N).

We may assume N is odd, for otherwise we can solve the equation for 2¢ and N/2¢ and put

the results together using the Chinese remainder theorem, as discussed above in section II.

Let r equal k or k + N, whichever is odd. Then it is easy to see

(I 5 =r =k (mod N)

The congruence

2?4 y2 = (mod N) (9)

is just a little harder. One way is to examine k, k + N, k + 2N ... successively until you
find a prime p = k + ¢N of the form 45 + 1. Then

can be solved using the random polynomial time algorithm in [Sha]. The resulting pair
(x,y) is clearly also a solution to (9). Unfortunately, it seems difficult to prove that this
method runs in polynomial time. A different method, which can be given a rigorous proof
of running time, is described in [Sha]. W

IV. Formal Statement of the Algorithm & Running Time.
function Pollard(D, k, N) returns(z,y);

reduce D and k to their absolutely least residues (mod N);

if D =0 or k =0 then output “Cannot solve!” and stop;

else if IV is even then write N = 2% - ¢ and solve the congruence
for 2* and ¢; then combine the results using the CRT;

else if ged(k, N) # 1 or ged(D, N) # 1 then

write N as the product of two non-trivial factors, and solve for each

factor; then combine the results using the CRT;

else if £D is an integer square, D = +b* then
begin
Use Lemma 4 to solve ¢? & d*> = k(mod N);
return(c, db™1)

end;

else if |k| < |D| then
begin { interchange roles of k and d}
(¢,d) := Pollard(k, D, N);
return(cd™!, d1)

end;

else begin
pi=k
not found := true;

while (notfound) do

if p > 0 and p is prime and D is a quadratic residue (mod p)

then not found := false
else p:=p+ N;
use Lemma 3 to find A, u, and v such that u* — Dv? = Ap;
(w, z) := Pollard(D, A, N); {here’s the recursive call}
use Lemma 1 to write #* — Dy? = (u? — Dv?)(w? — Dz?)
return(z,y);

end;

end:

Verification is left to the reader.

Let us attempt to estimate the running time of the function Pollard. The hardest
thing to estimate is how long it will take to find the suitable prime numbers congruent to
k (mod N). There is a heuristic argument, due to Wagstaff, that if p is the smallest prime
congruent to k (mod N), then “usually”

p = p(N)log Nlog p(N).

He collected statistics to support this conjecture. (See [Wag] for the heuristic argument
and related conjectures by other authors.) Since D is a quadratic residue of approximately

half of all primes, it seems reasonable to assume the following
Conjecture.

The smallest prime p that is congruent to k (mod N) for which D is a quadratic
residue (mod p) is O(N(log N)?).

Thus, assuming the truth of this conjecture, we need to look at O((log N)z) numbers

before we find a prime p of the requisite form.
We have shown that each application of Lemma 3 takes fewer than 1+ log, |D| steps.

What’s left to do is estimate the number of recursive calls in the function Pollard.
Since one application of Lemma 3 reduces k to 1 + 1/5|D|, we only need O(log log |D|)
iterations to get to the “bottom” of the recursion.

Thus, assuming the truth of the conjecture, we see that the running time is approxi-
mately

O((log N)(log log N)M(N)) + O((log N)*(loglog N)P(N))

where M(N) is the time required to multiply or divide integers (mod N) and P(N) is the
time required to test a number of magnitude N for primality. If we use probabilistic prime
tests, and check the results of our probabilistic square-root algorithm, then the algorithm
runs in random polynomial time. Note that we can check the result to make sure it is
correct; hence the algorithm never returns an incorrect result.

V. An Example.

Consider solving the congruence
®? — 2345y® = 5521 (mod 8023).

9

The first step is to find a prime congruent to 5521 (mod 8023). We're lucky here,
since 5521 is prime. And we're still luckier, because we find that 234527° = 1 (mod 5521),
so 2345 is a quadratic residue (mod 5521). Now we run the algorithm of Lemma 3. We
need to solve z2 = 2345 (mod 5521). We easily find g = 812. Following Lemma 3, we

find successively
x3 — 2345 = mymo = 119 - 5521
1 = 2o (mod my) = —21

x? — 2345 = mamy = —16 - 119.
We stop here, since |ms| is sufficiently small.

Now let’s find the A’s: we get A, =0, Ay = 1, and Ag = —7. From equation (8),
with ¢« = 0, we find
163% — 2345 - 7* = —16 - 5521. (10)

Now it remains to solve
w? — 23452 = —16 (mod 8023). (11)

Let’s switch the roles of 2345 and —16 using Lemma 2. We get the new equation ¢*+16d* =
2345 (mod 8023). But now we can pull out the square factor 16 to get

¢ + (4d)” = 2345.

This can be solved by Lemma 4, as follows:

We are looking for a prime p of the form 4t + 1 with p = 2345 (mod 8023). Eventually
we find p = 66529. Running the algorithm in [Shal], we find

2522 4+ 552 = 66529.

Thus ¢ = 252 and 4d = 55. Thus d = 6031. Now we have the solution to (11):
w=cd ! = 4978, » = d~! = 4668. Use Lemma 1 to write

(49787 — 2345 - 46682) " = 67092 — 2345 - 17142,
and multiply by (10) to get
1088% — 2345 - 5425% = 5521 (mod 8023),

as desired.

10

VI. More observations.

It is actually possible to dispense with the computation of the A; in Lemma 3. All we
really need to do is continue the algorithm until my, is sufficiently small. At this point we
have the equations

x5 —D = mimo;
—D =maomy;
x5 —D =mgma; ...

o — D =mypim,.

Now, writing (e, f) for e — Df?, we multiply the above equations together to get
(w0, 1)(w1,1) -+ (xp, 1) = momim3 - - mimp 1.
If a = myms---my, then this can be rewritten as
(@', 0) (2o, 1)(21,1) -+ (2p,1) = kX (mod N),
since mg = p = k (mod N) and m,41 = A. Using Lemma 1, we can combine all the forms

on the left side of the congruence. Now it suffices to solve u? — Dv? = \, as before.

(In fact, this is the way Shamir presented the algorithm.)

Another point: in the course of this algorithm, we frequently compute inverses (mod
N). In practice, we may occasionally encounter the case where we must calculate a=! but
a has a non-trivial gcd with N. This is not a problem, since if it occurs, we can split N as
the product of two non-trivial factors and run the algorithm on both pieces; then put the
results together using the Chinese remainder theorem.

VII. How to view the reduction of Lemma 3 as a lattice problem.

It’s possible to view the reduction of Lemma 3 as a lattice problem! Suppose we want
to write

¥+ Dy* = \p

where D > 0 and A is as small as possible. Bring the “D” inside the square; then the
equation becomes

x4+ (\/Ey)2 = Ap.

Now the left side looks like the norm of some vector!

11

A simple example should make this clear. Suppose we want to solve
x4+ 264y = X - 997

for x and y, where X is as small as possible. Compute a square root a of —264 in Z,; we

find a = £428. Now consider the lattice in R? generated by the rows of

428 /264
997 0 '

Find a reduced basis: we get

) 7264
141 —2+/264) °

This shows that
52 +264- 7% = X-997

and we have A = 13.

We can even use Minkowski’s inequality to improve the constant 4/3 from Lemma 3;
we find that we can write

x2+Dy2:/\-p
With/\<%\/ﬁ.

Now let’s consider the case where D < 0. We cannot use the method of the above para-

graph directly since /D is imaginary. Instead, we use the same trick that was employed

in [Shal], and convert a lattice problem over Z[i] to one over Z.

A simple example should make this clear. Suppose we want to solve

x? — 667480y = X\ - 738121

for x and y, where X is as small as possible. Compute a square root a of 667480 in Z,; we
find a = £63657. Now consider the lattice in R[i] generated by the rows of

63657 11/667480
738121 0 '

Convert this to a lattice over R using the standard isomorphism

. (a b)
a+b & ;
—b a

12

we get

63657 0 0 V667480
0 63657 —+/667480 0
738121 0 0 0
0 738121 0 0

At this point, we could use a basis reduction algorithm to find a shortest vector in this
lattice; we would obtain the new matrix

12131 0 0 —231/667480
0 12131 23+/667480 0

—25763 0 0 —12/667480
0 25763 12/667480 0

This implies that a solution is * = 12131, y = —23 and indeed we find

121312 — 667480 - 232 = —279 - 738121.

An easier solution is obtained if we note that the matrix above can be decomposed
into two 2-dimensional pieces. If we apply basis reduction to

63657 /667480
738121 0

we get

—25763 —124/667480

which, of course, gives us the same solution found above.

(12131 —23x/667480>

VIII. Postscript.

After this report was written, I received the preprint [Pol] in which he discusses his
algorithm. A paper is being written by Schnorr et al. on new versions of the signature
scheme which seem harder than the original OSS scheme.

References

13

[AMM] L. Adleman, K. Manders, and G. Miller, On taking roots in finite fields, 18th
FOCS, 1977.

[Lag] Joseph Louis Lagrange, Sur la solution des problemes indéterminés du second
degré, Mémoires de I’Académie royale des Sciences et Belles-Lettres de Berlin, 23 (1769);
reprinted in Oeuvres de Lagrange, V. II (Gauthier-Villars, Paris) 1868, pp. 377-535.

[Leg] Adrien-Marie Legendre, Zahlentheorie, Leipzig (1893) 32-33.

[OSS] H. Ong, C. P. Schnorr, and A. Shamir, An efficient signature scheme based on
quadratic equations, Proc. 16th ACM Symp. Theor. Comput. (1984) 208-216.

[Pol] J. M. Pollard, Solution of #? + ky* = m (mod n), with application to digital
signatures, typed ms., July, 1984.

[Sha] J. Shallit, Random polynomial time algorithms for sums of squares, University

of Chicago, Department of Computer Science, Technical Report 85-001, January, 1985.

[UH] J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill,
1939.

[Wag] Samuel S. Wagstaff, Jr., Greatest of the least primes in arithmetic progressions
having a given modulus, Math. Comp. 33 (1979) 1073-1080.

October 22, 1984

1st Revision: October 28, 1984
2nd Revision: October 31, 1984
3rd Revision: November 12, 1984

14

