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I. Introdution.

Reently, Pollard broke a signature sheme suggested by Ong, Shnorr, and Shamir

[OSS℄. His interesting method involved �nding a solution (x; y) to the ongruene

x

2

�Dy

2

� k (mod N); (1)

where N is a omposite number with unknown fatorization.

I �rst heard of Pollard's algorithm during an informal talk by Adi Shamir in late April,

1984. At the time, the method seemed very mysterious to me, and I didn't see where the

motivation ame from. Also, there seemed to be several points whose justi�ation was

skimpy (due, no doubt, to the informality of the presentation.) I have spent some time

�lling in the missing details.

Pollard's algorithm for solving (1) has yet to appear in print. Sine it ontains several

lever ideas, at least one of whih an be used to solve other problems [Sha2℄, it seemed

worthwhile to given a reasonably detailed exposition, and an analysis of the expeted

running time. I do this below.

I have made some small modi�ations to the algorithm as presented by Shamir, so if

there are any mistakes, they are my fault.

II. Sketh of the algorithm.

Equation (1) above, though it doesn't look it, really is the most general seond degree

equation in two variables. This is well-known to people who play with quadrati forms;

here's how to see it:

Take the general seond degree equation

ax

2

+ bxy + y

2

+ dx+ ey + f = 0; (2)

1



we want to rewrite it in the form

u

2

�Dt

2

= B: (3)

First, onsider (2) as an equation in x and omplete the square. We �nd

(2ax + by + d)

2

= (by + d)

2

� 4a(y

2

+ ey + f)

Now expand the right side and de�ne D = b

2

� 4a (the ubiquitous disriminant!); g =

bd� 2ae, and h = d

2

� 4af . If we now write

t = 2ax+ by + d

we have

t

2

= Dy

2

+ 2gy + h:

Now multiply this last equation through by D and omplete the square to get

(Dy + g)

2

= Dt

2

+ g

2

�Dh

Now if we put u = Dy + g and B = g

2

�Dh, we are done.

Note that solutions to (3) provide solutions to (2), sine

y =

u� g

D

; x =

t� by � d

2a

:

For example, see [Leg℄.

Eri Bah notes that this result is a speial ase of the well-known theorem from

algebrai geometry, whih states that every rational urve of genus 0 is isomorphi; i. e.,

there exists a 1-1 polynomial map taking you from one to the other.

The next thing to note is that

x

2

�Dy

2

� k (mod p); (4)

k 6= 0, an be solved in random polynomial time if p is a prime. The basi idea is that the

values of x

2

�Dy

2

are in fat equally distributed among the p� 1 nonzero residue lasses

(mod p). Thus for any k there must be roughly p pairs (x; y) that give a solution to (4).

On the other hand, there are no more than two solutions x to (4) for any partiular value
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of y; hene (4) must be solvable for about p=2 di�erent values of y. Thus we an hoose y

at random and then try to solve

x

2

� k +Dy

2

(mod p)

using any randompolynomial time algorithm for square roots (mod p), for example, the one

in [AMM℄. We sueed about half the time, so this algorithm runs in random polynomial

time. All the details are given in [Sha℄.

One we have a solution to (4), we an \lift" it to a solution (mod p

e

) using Hensel's

method, or a quadrati lifting proedure.

(It would be nie if we ould generalize this method to work in the ase where p = N

is omposite. Unfortunately, it requires extration of a square root (mod N), and this is

as hard as fatoring N .)

Thus we see that it is easy to solve

x

2

�Dy

2

� k (mod N) (5)

if we know the fatorization of N , sine we an solve the ongruene modulo eah prime

power and then ombine the results using the Chinese remainder theorem (CRT).

But how do we solve (5) if we don't know the fatorization of N? There are four basi

ideas (proofs will be given in setion III):

Lemma 1.

The produt of two numbers, eah of the form x

2

�Dy

2

, an also be written in that

form...and the same thing holds for the quotient.

Lemma 2.

The substitution u = xy

�1

; v = y

�1

transforms an equation of the form

x

2

�Dy

2

� k (mod N)

to one of the form

u

2

� kv

2

� D (mod N):

Phrased in another way, the roles of k and D are interhangeable.

Lemma 3.

Given a solution r to the ongruene

x

2

� D (mod m);
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we an �nd (in polynomial time) integers u and v suh that

u

2

�Dv

2

= �m

where � �

1

4

+

q

4jDj

3

.

Lemma 4.

It is easy to �nd solutions to

x

2

� y

2

� k (mod N):

Given these basi ideas, Pollard's algorithm may be stated as follows:

P1. Find, by probabilisti prime tests, a small prime p � k (mod N) suh that D is

a quadrati residue of p.

P2. Solve x

2

�D � 0 (mod p) using any random polynomial time square-root algo-

rithm.

P3. Use Lemma 3 to �nd u; v suh that u

2

�Dv

2

= �p. Suppose we ould solve

w

2

�Dz

2

� � (mod N):

Then we would have

(u

2

�Dv

2

)(w

2

�Dz

2

)

�1

� p � k (mod N)

and by Lemma 1, the left side is of the proper form. Then we'd be done!

P4. But how do we solve

w

2

�Dz

2

� � (mod N) ?

That's easy: we use Lemma 2 to interhange the roles of D and �. Now we have a

ongruene with muh smaller oeÆients; we solve it (reursively) and interhange D and

� again. Our only worry is that we might not be able to solve the ongruene at the

\bottom" of the reursion{ but Lemma 4 says we an!

Pollard's terri� idea is step 1{the step that gets us started. And in fat, this is the

step that's the hardest to analyze.

In the next setion, we sketh the proofs of these four lemmas.
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III. Proofs of the lemmas.

Proof of Lemma 1.

To prove the produt rule, we have

(x

2

�Dy

2

)(w

2

�Dz

2

) = (xw +Dyz)

2

�D(yw + xz)

2

: (6)

Of ourse, this an be veri�ed just by multiplying out both sides, but it would be nie to

see where the motivation omes from. In fat, it omes from onsidering expressions of the

form a = x+ y

p

D. De�ne the onjugate of a, �a, by �a = x� y

p

D. Then put

N(a) = a�a = x

2

�Dy

2

:

Then equation (6) is just the statement that the norm is multipliative, i. e.

N(x + y

p

D)N(w + z

p

D) = N((x + y

p

D)(w + z

p

D)):

To prove the quotient result, it suÆes to show that the inverse of x

2

�Dy

2

an be

written in the same form. In stating Lemma 1, we deliberately glossed over the question

of what sort of struture we are working with (i.e. ring, �eld, or what?). In any event, if

x

2

�Dy

2

is invertible, and a = (x

2

�Dy

2

)

�1

, then by taking norms of

(x + y

p

D)

�1

= xa � ya

p

D

we �nd

(x

2

�Dy

2

)

�1

= (xa)

2

�D(ya)

2

:

Proof of Lemma 2.

Left to the reader.

Proof of Lemma 3.

Lemma 3 is very interesting; it relates ongruenes (mod m) to the solution of equa-

tions in integers. Uspensky and Heaslet, in their 1939 book [UH℄, attribute it to Lagrange.

Indeed, most of the ideas in Lemma 3 an be found in the 1769 paper of Lagrange [Lag℄.
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The basi idea is sort of a suessive redution of the modulus m. Let us put x

0

= r

and m

0

=m; then we have

x

2

0

�D � 0 (mod m

0

);

hene

x

2

0

�D =m

1

m

0

for some integer m

1

. Now redue x

0

(mod m

1

) and all the result x

1

. (In fat, let x

1

be the absolutely least residue; thus x

1

an be negative, and we have jx

1

j <

1

2

jm

1

j.) It is

easily veri�ed that

x

2

1

�D � 0 (mod m

1

);

so again we have

x

2

1

�D =m

2

m

1

for some integer m

2

.

Continuing in this fashion, we get an initially dereasing sequene jm

i

j. But notie

that if jm

i

j is small ompared to jDj, then jm

i+1

j > jm

i

j. Hene there is a limit to this

dereasing behavior. In fat, sine

m

i+1

=

x

2

i

�D

m

i

we see that

jm

i+1

j �

jm

i

j

4

+

jDj

jm

i

j

: (7)

From this, it easily follows that the jm

i

j derease as long as jm

i

j >

q

4

3

jDj.

Thus eventually we �nd

x

2

n

�D = m

n+1

m

n

with m

n+1

�

q

4

3

jDj. Now put � =m

n+1

and de�ne a sequene A

i

suh that

(A

i

x

i

�A

i+1

m

i

)

2

�DA

2

i

= �m

i

: (8)

Clearly A

n

= 1 and A

n+1

= 0; it an be veri�ed that the reurrene

A

i�1

= A

i+1

+

x

i�1

� x

i

m

i

A

i

(ontinued frations!) solves (8). For the grubby details, see [UH℄.
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(We will see in setion VI that it is possible to dispense with the sequene A

i

.)

It remains to see that this redution proedure runs quikly. From equation (7) we

see that as long as jm

i

j >

q

4

3

jDj we have

jm

i+1

j �

jm

i

j

4

+

r

3

4

jDj:

It is easy to prove by indution that

jm

i+n

j �

jm

i

j

4

n

+

4

3

r

3

4

jDj =

jm

i

j

4

n

+

r

4

3

jDj:

Now set i = 0 and hoose n = 1+ log

4

m

0

and we see that jm

n

j <

1

4

+

q

4

3

jDj.

Proof of Lemma 4.

First, onsider the ongruene

x

2

� y

2

� k (mod N):

We may assumeN is odd, for otherwise we an solve the equation for 2



and N=2



and put

the results together using the Chinese remainder theorem, as disussed above in setion II.

Let r equal k or k +N , whihever is odd. Then it is easy to see

(

r + 1

2

)

2

� (

r � 1

2

)

2

= r � k (mod N):

The ongruene

x

2

+ y

2

� k (mod N) (9)

is just a little harder. One way is to examine k, k +N , k + 2N : : : suessively until you

�nd a prime p = k + iN of the form 4j + 1. Then

x

2

+ y

2

= p

an be solved using the random polynomial time algorithm in [Sha℄. The resulting pair

(x; y) is learly also a solution to (9). Unfortunately, it seems diÆult to prove that this

method runs in polynomial time. A di�erent method, whih an be given a rigorous proof

of running time, is desribed in [Sha℄.
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IV. Formal Statement of the Algorithm & Running Time.

funtion Pollard(D;k;N) returns(x; y);

redue D and k to their absolutely least residues (mod N);

if D = 0 or k = 0 then output \Cannot solve!" and stop;

else if N is even then write N = 2

a

�  and solve the ongruene

for 2

a

and ; then ombine the results using the CRT;

else if gd(k, N) 6= 1 or gd(D, N) 6= 1 then

write N as the produt of two non-trivial fators, and solve for eah

fator; then ombine the results using the CRT;

else if �D is an integer square, D = �b

2

then

begin

Use Lemma 4 to solve 

2

� d

2

� k(mod N);

return(, db

�1

)

end;

else if jkj < jDj then

begin f interhange roles of k and dg

(; d) := Pollard(k;D;N);

return(d

�1

, d

�1

)

end;

else begin

p := k;

notfound := true;

while (notfound) do

if p > 0 and p is prime and D is a quadrati residue (mod p)

then notfound := false

else p := p+N ;

use Lemma 3 to �nd �, u, and v suh that u

2

�Dv

2

= �p;

(w; z) := Pollard(D;�;N); fhere's the reursive allg

use Lemma 1 to write x

2

�Dy

2

� (u

2

�Dv

2

)(w

2

�Dz

2

)

�1

;

return(x; y);

end;

end;
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Veri�ation is left to the reader.

Let us attempt to estimate the running time of the funtion Pollard. The hardest

thing to estimate is how long it will take to �nd the suitable prime numbers ongruent to

k (mod N). There is a heuristi argument, due to Wagsta�, that if p is the smallest prime

ongruent to k (mod N), then \usually"

p � '(N) logN log'(N):

He olleted statistis to support this onjeture. (See [Wag℄ for the heuristi argument

and related onjetures by other authors.) Sine D is a quadrati residue of approximately

half of all primes, it seems reasonable to assume the following

Conjeture.

The smallest prime p that is ongruent to k (mod N) for whih D is a quadrati

residue (mod p) is O(N(logN)

2

).

Thus, assuming the truth of this onjeture, we need to look at O((logN)

2

) numbers

before we �nd a prime p of the requisite form.

We have shown that eah appliation of Lemma 3 takes fewer than 1+ log

4

jDj steps.

What's left to do is estimate the number of reursive alls in the funtion Pollard.

Sine one appliation of Lemma 3 redues k to

1

4

+

q

4

3

jDj, we only need O(log log jDj)

iterations to get to the \bottom" of the reursion.

Thus, assuming the truth of the onjeture, we see that the running time is approxi-

mately

O((logN)(log logN)M(N)) +O((logN)

2

(log logN)P (N))

where M(N) is the time required to multiply or divide integers (mod N) and P (N) is the

time required to test a number of magnitude N for primality. If we use probabilisti prime

tests, and hek the results of our probabilisti square-root algorithm, then the algorithm

runs in random polynomial time. Note that we an hek the result to make sure it is

orret; hene the algorithm never returns an inorret result.

V. An Example.

Consider solving the ongruene

x

2

� 2345y

2

� 5521 (mod 8023):
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The �rst step is to �nd a prime ongruent to 5521 (mod 8023). We're luky here,

sine 5521 is prime. And we're still lukier, beause we �nd that 2345

2760

� 1 (mod 5521),

so 2345 is a quadrati residue (mod 5521). Now we run the algorithm of Lemma 3. We

need to solve x

2

0

� 2345 (mod 5521). We easily �nd x

0

= 812. Following Lemma 3, we

�nd suessively

x

2

0

� 2345 =m

1

m

0

= 119 � 5521

x

1

� x

0

(mod m

1

) � �21

x

2

1

� 2345 =m

2

m

1

= �16 � 119:

We stop here, sine jm

2

j is suÆiently small.

Now let's �nd the A's: we get A

2

= 0, A

1

= 1, and A

0

= �7. From equation (8),

with i = 0, we �nd

163

2

� 2345 � 7

2

= �16 � 5521: (10)

Now it remains to solve

w

2

� 2345z

2

� �16 (mod 8023): (11)

Let's swith the roles of 2345 and �16 using Lemma 2. We get the new equation 

2

+16d

2

�

2345 (mod 8023). But now we an pull out the square fator 16 to get



2

+ (4d)

2

� 2345:

This an be solved by Lemma 4, as follows:

We are looking for a prime p of the form 4t+1 with p � 2345 (mod 8023). Eventually

we �nd p = 66529. Running the algorithm in [Sha1℄, we �nd

252

2

+ 55

2

= 66529:

Thus  = 252 and 4d = 55. Thus d = 6031. Now we have the solution to (11):

w = d

�1

= 4978, z = d

�1

= 4668. Use Lemma 1 to write

(4978

2

� 2345 � 4668

2

)

�1

= 6709

2

� 2345 � 1714

2

;

and multiply by (10) to get

1088

2

� 2345 � 5425

2

� 5521 (mod 8023);

as desired.
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VI. More observations.

It is atually possible to dispense with the omputation of the A

i

in Lemma 3. All we

really need to do is ontinue the algorithm until m

k

is suÆiently small. At this point we

have the equations

x

2

0

�D =m

1

m

0

;

x

2

1

�D =m

2

m

1

;

x

2

2

�D =m

3

m

2

; :::

x

2

n

�D =m

n+1

m

n

.

Now, writing (e; f) for e

2

�Df

2

, we multiply the above equations together to get

(x

0

; 1)(x

1

; 1) � � � (x

n

; 1) =m

0

m

2

1

m

2

2

� � �m

2

n

m

n+1

:

If a = m

1

m

2

� � �m

n

, then this an be rewritten as

(a

�1

; 0)(x

0

; 1)(x

1

; 1) � � � (x

n

; 1) � k� (mod N);

sine m

0

= p � k (mod N) and m

n+1

= �. Using Lemma 1, we an ombine all the forms

on the left side of the ongruene. Now it suÆes to solve u

2

�Dv

2

� �, as before.

(In fat, this is the way Shamir presented the algorithm.)

Another point: in the ourse of this algorithm, we frequently ompute inverses (mod

N). In pratie, we may oasionally enounter the ase where we must alulate a

�1

but

a has a non-trivial gd with N . This is not a problem, sine if it ours, we an split N as

the produt of two non-trivial fators and run the algorithm on both piees; then put the

results together using the Chinese remainder theorem.

VII. How to view the redution of Lemma 3 as a lattie problem.

It's possible to view the redution of Lemma 3 as a lattie problem! Suppose we want

to write

x

2

+Dy

2

= �p

where D > 0 and � is as small as possible. Bring the \D" inside the square; then the

equation beomes

x

2

+ (

p

Dy)

2

= �p:

Now the left side looks like the norm of some vetor!
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A simple example should make this lear. Suppose we want to solve

x

2

+ 264y

2

= � � 997

for x and y, where � is as small as possible. Compute a square root a of �264 in ZZ

p

; we

�nd a � �428. Now onsider the lattie in R

2

generated by the rows of

�

428

p

264

997 0

�

:

Find a redued basis: we get

�

5 7

p

264

141 �2

p

264

�

:

This shows that

5

2

+ 264 � 7

2

= � � 997

and we have � = 13.

We an even use Minkowski's inequality to improve the onstant 4=3 from Lemma 3;

we �nd that we an write

x

2

+Dy

2

= � � p

with � <

4

�

p

D.

Now let's onsider the ase whereD < 0. We annot use the method of the above para-

graph diretly sine

p

D is imaginary. Instead, we use the same trik that was employed

in [Sha℄, and onvert a lattie problem over ZZ[i℄ to one over ZZ.

A simple example should make this lear. Suppose we want to solve

x

2

� 667480y

2

= � � 738121

for x and y, where � is as small as possible. Compute a square root a of 667480 in ZZ

p

; we

�nd a = �63657. Now onsider the lattie in R[i℄ generated by the rows of

�

63657 i

p

667480

738121 0

�

:

Convert this to a lattie over R using the standard isomorphism

a + bi,

�

a b

�b a

�

;
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we get

0

B

�

63657 0 0

p

667480

0 63657 �

p

667480 0

738121 0 0 0

0 738121 0 0

1

C

A

:

At this point, we ould use a basis redution algorithm to �nd a shortest vetor in this

lattie; we would obtain the new matrix

0

B

�

12131 0 0 �23

p

667480

0 12131 23

p

667480 0

�25763 0 0 �12

p

667480

0 25763 12

p

667480 0

1

C

A

:

This implies that a solution is x = 12131, y = �23 and indeed we �nd

12131

2

� 667480 � 23

2

= �279 � 738121:

An easier solution is obtained if we note that the matrix above an be deomposed

into two 2-dimensional piees. If we apply basis redution to

�

63657

p

667480

738121 0

�

we get

�

12131 �23

p

667480

�25763 �12

p

667480

�

whih, of ourse, gives us the same solution found above.

VIII. Postsript.

After this report was written, I reeived the preprint [Pol℄ in whih he disusses his

algorithm. A paper is being written by Shnorr et al. on new versions of the signature

sheme whih seem harder than the original OSS sheme.
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