
Decision Algorithms for Fibonacci-Automatic Words,
III: Enumeration and Abelian Properties

Chen Fei Du1, Hamoon Mousavi1, Luke Schaeffer2, and Jeffrey Shallit1

April 10, 2015

Abstract

We continue our study the class of Fibonacci-automatic words. These are infinite
sequences whose nth term is defined in terms of a finite-state function of the Fibonacci
representation of n. In this paper, we show how enumeration questions (such as the
number of squares) can be decided purely mechanically, using a decision procedure.
We also examine abelian properties of these sequences.

1 Introduction

In two previous papers [15, 10], we studied the ramifications of a decision procedure for the
Fibonacci-automatic sequences. These are sequences (an)n≥0 generated by finite automata
that take, as input the Fibonacci (or Zeckendorf) representation of n and output an. In
this paper we show that we can also use this decision procedure to solve two other kinds
of problems dealing with these sequences: enumeration of the number of factors obeying
various properties, and questions involving abelian properties.

Our implementation of the decision procedure is called Walnut, and is available for free
download at

https://www.cs.uwaterloo.ca/~shallit/papers.html .
Recall that every integer n ≥ 0 can be uniquely represented in the form

∑
2≤i≤j aiFi,

where aj = 1 and aiai+1 = 0 for 2 ≤ i < j. We define (n)F to be the binary string
ajaj−1 · · · a2 (starting with the most significant digit). Similarly, for a word w = b1b2 · · · bj
we define its interpretation in “base Fibonacci” [w]F =

∑
1≤i≤j aiFj+2−i.

1School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
cfdu@uwaterloo.ca, sh2mousa@uwaterloo.ca, shallit@uwaterloo.ca .

2Computer Science and Artificial Intelligence Laboratory, The Stata Center, MIT Building 32, 32 Vassar
Street, Cambridge, MA 02139 USA; lrschaeffer@gmail.com .

1

2 Enumeration

Mimicking the base-k ideas in [6], we can also mechanically enumerate many aspects of
Fibonacci-automatic sequences. We do this by encoding the factors having the property
in terms of paths of an automaton. This gives the concept of Fibonacci-regular sequence
as previously studied in [1]. Roughly speaking, a sequence (a(n))n≥0 taking values in N is
Fibonacci-regular if the set of sequences

{(a([xw]F)w∈Σ∗
2

: x ∈ Σ∗2}

is finitely generated. Here we assume that a([xw]F) evaluates to 0 if xw contains the string
11. Every Fibonacci-regular sequence (a(n))n≥0 has a linear representation of the form
(u, µ, v) where u and v are row and column vectors, respectively, and µ : Σ2 → Nd×d is
a matrix-valued morphism, where µ(0) = M0 and µ(1) = M1 are d × d matrices for some
d ≥ 1, such that

a(n) = u · µ(x) · v
whenever [x]F = n. The rank of the representation is the integer d. As an example, we
exhibit a rank-6 linear representation for the sequence a(n) = n+ 1:

u = [1 2 2 3 3 2]

M0 =


1 1 0 0 0 0
0 0 0 0 0 0
0 1 0 1 1 0
0 0 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0



M1 =


0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 0 1 0 0


v = [1 0 0 0 0 0]T .

This can be proved by a simple induction on the claim that

u ·µ(x) = [xF + 1 (1x)F + 1 (10x)F −xF (100x)F −xF (101x)F − (1x)F (1001x)F − (101x)F]

for strings x.
Recall that if x is an infinite word, then the subword complexity function ρx(n) counts

the number of distinct factors of length n. Then, in analogy with [6, Thm. 27], we have

Theorem 1. If x is Fibonacci-automatic, then the subword complexity function of x is
Fibonacci-regular.

2

Using our implementation, we can obtain a linear representation of the subword com-
plexity function for f . To do so, we use the predicate

{(n, i)F : ∀i′ < i f [i..i+ n− 1] 6= f [i′..i′ + n− 1]},

which expresses the assertion that the factor of length n beginning at position i has never
appeared before. Then, for each n, the number of corresponding i gives ρf (n). When we do
this for f , we get the following linear representation (u′, µ′, v′) of rank 10:

u′ = [0 0 0 1 0 0 0 0 0 0]

M ′
0 =



0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0



M ′
1 =



0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


v′ = [1 0 1 1 1 1 1 1 1 1]T

To show that this computes the function n + 1, it suffices to compare the values of the
linear representations (u, µ, v) and (u′, µ′, v′) for all strings of length ≤ 10 + 6 = 16 (using
[2, Corollary 3.6]). After checking this, we have reproved the following classic theorem of
Morse and Hedlund [14]:

Theorem 2. The subword complexity function of f is n+ 1.

We now turn to a result of Fraenkel and Simpson [11]. They computed the exact number
of squares appearing in the finite Fibonacci words Xn; this was previously estimated by [8].

There are two variations: we could count the number of distinct squares in Xn, or what
Fraenkel and Simpson called the number of “repeated squares” in Xn (i.e., the total number
of occurrences of squares in Xn).

3

To solve this using our approach, we generalize the problem to consider any length-n
prefix of Xn, and not simply the prefixes of length Fn.

We can easily write down predicates for these. The first represents the number of distinct
squares in f [0..n− 1]:

Lds := {(n, i, j)F : (j ≥ 1) and (i+ 2j ≤ n) and f [i..i+ j − 1] = f [i+ j..i+ 2j − 1]

and ∀i′ < i f [i′..i′ + 2j − 1] 6= f [i..i+ 2j − 1]}.

This predicate asserts that f [i..i + 2j − 1] is a square occurring in f [0..n − 1] and that
furthermore it is the first occurrence of this particular string in f [0..n− 1].

The second represents the total number of occurrences of squares in f [0..n− 1]:

Ldos := {(n, i, j)F : (j ≥ 1) and (i+ 2j ≤ n) and f [i..i+ j − 1] = f [i+ j..i+ 2j − 1]}.

This predicate asserts that f [i..i+ 2j − 1] is a square occurring in f [0..n− 1].
We apply our method to the second example, leaving the first to the reader. Let b(n)

denote the number of occurrences of squares in f [0..n− 1]. First, we use our method to find
a DFA M accepting Ldos. This (incomplete) DFA has 27 states.

Next, we compute matrices M0 and M1, indexed by states of M , such that (Ma)k,l counts
the number of edges (corresponding to the variables i and j) from state k to state l on the
digit a of n. We also compute a vector u corresponding to the initial state of M and a vector
v corresponding to the final states of M . This gives us the following linear representation of
the sequence b(n): if x = a1a2 · · · at is the Fibonacci representation of n, then

b(n) = uMa1 · · ·Matv, (1)

which, incidentally, gives a fast algorithm for computing b(n) for any n.
Now let B(n) denote the number of square occurrences in the finite Fibonacci word Xn.

This corresponds to considering the Fibonacci representation of the form 10n−2; that is,

4

B(n+ 1) = b([10n−1]F). The matrix M0 is the following 27× 27 array

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0


(2)

and has minimal polynomial

X4(X − 1)2(X + 1)2(X2 −X − 1)2.

It now follows from the theory of linear recurrences that there are constants c1, c2, . . . , c8

such that

B(n+ 1) = (c1n+ c2)αn + (c3n+ c4)βn + c5n+ c6 + (c7n+ c8)(−1)n

for n ≥ 3, where α = (1 +
√

5)/2, β = (1−
√

5)/2 are the roots of X2 −X − 1. We can find
these constants by computing B(4), B(5), . . . , B(11) (using Eq. (1)) and then solving for the
values of the constants c1, . . . , c8.

5

When we do so, we find

c1 =
2

5
c2 = − 2

25

√
5− 2

c3 =
2

5
c4 =

2

25

√
5− 2

c5 = 1 c6 = 1

c7 = 0 c8 = 0

A little simplification, using the fact that Fn = (αn − βn)/(α− β), leads to

Theorem 3. Let B(n) denote the number of square occurrences in Xn. Then

B(n+ 1) =
4

5
nFn+1 −

2

5
(n+ 6)Fn − 4Fn−1 + n+ 1

for n ≥ 3.

This statement corrects a small error in Theorem 2 in [11] (the coefficient of Fn−1 was
wrong; note that their F and their Fibonacci words are indexed differently from ours), which
was first pointed out to us by Kalle Saari.

In a similar way, we can count the cube occurrences in Xn. Using analysis exactly like
the square case, we easily find

Theorem 4. Let C(n) denote the number of cube occurrences in the Fibonacci word Xn.
Then for n ≥ 3 we have

C(n) = (d1n+ d2)αn + (d3n+ d4)βn + d5n+ d6

where

d1 =
3−
√

5

10
d2 =

17

50

√
5− 3

2

d3 =
3 +
√

5

10
d4 = −17

50

√
5− 3

2
d5 = 1 d6 = −1.

We now turn to a question of Chuan and Droubay. Let us consider the prefixes of f . For
each prefix of length n, form all of its n shifts, and let us count the number of these shifts
that are palindromes; call this number d(n). (Note that in the case where a prefix is a power,
two different shifts could be identical; we count these with multiplicity.)

Chuan [7, Thm. 7, p. 254] proved

Theorem 5. For i > 2 we have d(Fi) = 0 iff i ≡ 0 (mod 3).

6

Proof. Along the way we actually prove a lot more, characterizing d(n) for all n, not just
those n equal to a Fibonacci number.

We start by showing that d(n) takes only three values: 0, 1, and 2. To do this, we
construct an automaton accepting the language

{(n, i)F : (0 ≤ i < n) ∧ f [i..n− 1]f [0..i− 1] is a palindrome }.

From this we construct the linear representation (u,M0,M1, v) of d(n) as discussed above;
it has rank 27.

The range of c is finite if the monoid M = 〈M0,M1〉 is finite. This can be checked with
a simple queue-based algorithm, and M turns out to have cardinality 151. From these a
simple computation proves

{uMv : M ∈M} = {0, 1, 2},

and so our claim about the range of c follows.
Now that we know the range of c we can create predicates P0(n), P1(n), P2(n) asserting

that (a) there are no length-n shifts that are palindromes (b) there is exactly one shift that
is a palindrome and (c) more than one shift is a palindrome, as follows:

P0 : ¬∃i, (0 ≤ i < n), f [i..n− 1]f [0..i− 1] is a palindrome

P1 : ∃i, (0 ≤ i < n), f [i..n−1]f [0..i−1] is a palindrome and ¬∃j 6= i(0 ≤ j < n), f [j..n−1]f [0..j−1]

P2 : ∃i, j, 0 ≤ i < j < nf [i..n− 1]f [0..i− 1] and f [j..n− 1]f [0..j − 1] are both palindromes

For each one, we can compute a finite automaton characterizing the Fibonacci representations
of those n for which d(n) equals, respectively, 0, 1, and 2.

For example, we computed the automaton corresponding to P0, and it is displayed in
Figure 1 below.

7

0

4

[1]

25

[0]

1

[1]29

[0]

2

[0]

[1]

3

[1]

13

[0]

8

[0]

5

12

[0]

6

[1]31

[0]

7

20

[1]

30

[0]

[1]

[0]

9

14

[0]

22

[1]

10

[0]

11

[1]

15

[0]

26

[0]

27

[1]

[1]24

[0]

[1]

28

[0] [0]

19

[1]

16

[0]

17

[0]

18 [0]

23

[1]

[0]

[0]

21

[1]

[0]

[0]

[0]

[0]

[1]

[1]

[0]

[0]

[1]

[0]

[0]

[1]

[0]

[1]

[1]

[0]

[0] [1]

Figure 1: Automaton accepting lengths of prefixes for which no shifts are palindromes

By tracing the path labeled 10∗ starting at the initial state labeled 18, we see that the
“finality” of the states encountered is ultimately periodic with period 3, proving Theorem 5.

To finish this section, we reprove a result concerning maximal repetitions in f . Let p(x)
denote the length of the least period of x. If x = a0a1 · · · , by x[i..j] we mean aiai+1 · · · aj.
Following Kolpakov and Kucherov [13], we say that f [i..i+ n− 1] is a maximal repetition if

(a) p(f [i..i+ n− 1]) ≤ n/2;

(b) p(f [i..i+ n− 1]) < p(f [i..i+ n]);

8

(c) If i > 0 then p(f [i..i+ n− 1]) < p(f [i− 1..i+ n− 1]).

They proved the following result on the number mr(Fn) of occurrences of maximal repe-
titions in the prefix of f of length Fn:

Theorem 6. For n ≥ 5 we have mr(Fn) = 2Fn−2 − 3.

Proof. We create an automaton for the language

{(n, i, j)F : 0 ≤ i ≤ j < n and f [i..j] is a maximal repetition of f [0..n− 1]},

using the predicate

(i ≤ j) ∧ (j < n) ∧ ∃p with 1 ≤ p ≤ (j + 1− i)/2 such that

((∀k ≤ j − i− p f [i+ k] = f [i+ k + p]) ∧
(i ≥ 1) =⇒ (∀q with 1 ≤ q ≤ p ∃` ≤ j − i− q + 1 f [i− i+ `] 6= f [i− 1 + `+ q]) ∧
(j + 1 ≤ n− 1) =⇒ (∀r with 1 ≤ r ≤ p ∃m ≤ j + 1− r − i f [i+m] 6= f [i+m+ r])).

Here the second line of the predicate specifies that there is a period p of f [i..j] corresponding
to a repetition of exponent at least 2. The third line specifies that no period q of f [i− 1..j]
(when this makes sense) can be ≤ p, and the fourth line specifies that no period r of f [i..j+1]
(when j + 1 ≤ n− 1) can be ≤ p.

From the automaton we deduce a linear representation (u, µ, v) of rank 59. Since (Fn)F =
10n−2, it suffices to compute the minimal polynomial of M0 = µ(0). When we do this, we
discover it is X4(X2−X−1)(X−1)2(X+1)2. It follows from the theory of linear recurrences
that

mr(Fn) = e1α
n + e2β

n + e3n+ e4 + (e5n+ e6)(−1)n

for constants e1, e2, e3, e4, e5, e6 and n ≥ 6. When we solve for e1, . . . , e6 by using the first
few values of mr(Fn) (computed from the linear representation or directly) we discover that
e1 = (3

√
5− 5)/5, e2 = (−3

√
5− 5)/5, e3 = e5 = e6 = 0, and e4 = −3. From this the result

immediately follows.

In fact, we can prove even more.

Theorem 7. For n ≥ 0 the difference mr(n+ 1)−mr(n) is either 0 or 1. Furthermore there
is a finite automaton with 10 states that accepts (n)F precisely when mr(n+ 1)−mr(n) = 1.

Proof. Every maximal repetition f [i..j] of f [0..n− 1] is either a maximal repetition of f [0..n]
with j ≤ n− 1, or is a maximal repetition with j = n− 1 that, when considered in f [0..n],
can be extended one character to the right to become one with j = n. So the only maximal
repetitions of f [0..n] not (essentially) counted by mr(n) are those such that

f [i..n] is a maximal repetition of f [0..n] and

f [i..n− 1] is not a maximal repetition of f [0..n− 1]. (3)

9

We can easily create a predicate asserting this latter condition, and from this obtain the
linear representation of mr(n+ 1)−mr(n):

u = [0 0 0 0 0 1 0 0 0 0 0 0]

µ(0) =



0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0



µ(1) =



0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0


v = [0 0 0 0 1 0 0 0 1 0 0 1]

We now use the trick we previously used for the proof of Theorem 5; the monoid generated
by µ(0) and µ(1) has size 61 and for each matrix M in this monoid we have uMv ∈ {0, 1}.
It follows that mr(n+ 1)−mr(n) ∈ {0, 1} for all n ≥ 0.

Knowing this, we can now build an automaton accepting those n for which there exists
an i for which (3) holds. When we do so we get the automaton depicted below in Figure 2.

10

0
3[1]

6

[0]

1

[0]

8

[1]

2[0] 5
[1]

[0]

4[1]

9

[0]

7
[0]

[0]
[1]

[1] [0]

[0]

[0]

[1]

Figure 2: Automaton accepting (n)F such that mr(n+ 1)−mr(n) = 1

3 Abelian properties

Our decision procedure does not apply, in complete generality, to abelian properties of infinite
words. This is because there is no obvious way to express assertions like ψ(x) = ψ(x′) for
two factors x, x′ of an infinite word. (Here ψ : Σ∗ → N|Σ| is the Parikh map that sends
a word to the number of occurrences of each letter.) Indeed, in the 2-automatic case it is
provable that there is at least one abelian property that is inexpressible [16, §5.2].

However, the special nature of the Fibonacci word f allows us to mechanically prove some
assertions involving abelian properties. In this section we describe how we did this.

By an abelian square of order n we mean a factor of the form xx′ where ψ(x) = ψ(x′),
where n = |x|. In a similar way we can define abelian cubes and higher powers.

We start with the elementary observation that f is defined over the alphabet {0, 1}.
Hence, to understand the abelian properties of a factor x it suffices to know |x| and |x|0.
Next, we observe that the map that sends n to an := |f [0..n − 1]|0 (that is, the number of
0’s in the length-n prefix of f), is actually synchronized (see [5, 3, 4, 12]). That is, there
is a DFA accepting the Fibonacci representation of the pairs (n, an). In fact we have the
following

Theorem 8. Suppose the Fibonacci representation of n is e1e2 · · · ei. Then an = [e1e2 · · · ei−1]F+
ei.

11

Proof. First, we observe that an easy induction on m proves that |Xm|0 = Fm−1 for m ≥ 2.
We will use this in a moment.

The theorem’s claim is easily checked for n = 0, 1. We prove it for Fm+1 ≤ n < Fm+2 by
induction on m. The base case is m = 1, which corresponds to n = 1.

Now assume the theorem’s claim is true for m − 1; we prove it for m. Write (n)F =
e1e2 · · · em. Then, using the fact that f [0..Fm+2 − 1] = Xm+2 = Xm+1Xm, we get

|f [0..n− 1]|0 = |f [0..Fm+1 − 1]|0 + |f [Fm+1..n− 1]|0
= |Xm+1|0 + |f [0..n− 1− Fm+1]|0
= Fm + |f [0..n− 1− Fm+1|0
= Fm + [e2 · · · em−1]F + em

= [e1 · · · em−1]F + em,

as desired.

In fact, the synchronized automaton for (n, an)F is given in the following diagram:

1

[0, 0]
3

[1, 0]

4

[1, 1]

[0, 1]

[1, 1]

5

[0, 0]

[1, 0]

6[0, 0]

[0, 1] 7
[1, 1]

[1, 0]

[0, 1]

Figure 3: Automaton accepting (n, an)F

Here the missing state numbered 2 is a “dead” state that is the target of all undrawn
transitions.

The correctness of this automaton can be checked using our prover. Letting ZC(x, y)
denote 1 if (x, y)F is accepted, it suffices to check that

1. ∀x ∃y ZC(x, y) = 1 (that is, for each x there is at least one corresponding y accepted);

2. ∀x ∀y ∀z (ZC(x, y) = ZC(x, z)) =⇒ y = z (that is, for each x at most one corre-
sponding y is accepted);

12

3. ∀x ∀y ((ZC(x, y) = 1) ∧ (f [x] = 1)) =⇒ (ZC(x+ 1, y + 1) = 1);

4. ∀x ∀y ((ZC(x, y) = 1) ∧ (f [x] = 0)) =⇒ (ZC(x+ 1, y) = 1);

Another useful automaton computes, on input n, i, j the function

FAB(n, i, j) := |f [i..i+ n− 1]|0 − |f [j..j + n− 1]|0 = ai+n − ai − aj+n + aj.

From the known fact that the factors of f are “balanced” we know that FAB takes only the
values −1, 0, 1. This automaton can be deduced from the one above. However, we calculated
it by “guessing” the right automaton and then verifying the correctness with our prover.

The automaton for FAB(n, i, j) has 30 states, numbered from 1 to 30. Inputs are in Σ3
2.

The transitions, as well as the outputs, are given in the table below.

13

q [0, 0, 0] [0, 0, 1] [0, 1, 0] [0, 1, 1] [1, 0, 0] [1, 0, 1] [1, 1, 0] [1, 1, 1] τ(q)
1 1 2 3 4 4 5 6 7 0
2 8 1 9 3 3 4 10 6 0
3 11 12 1 2 2 13 4 5 0
4 14 11 8 1 1 2 3 4 0
5 15 11 16 1 1 2 3 4 1
6 17 18 8 1 1 2 3 4 −1
7 19 18 16 1 1 2 3 4 0
8 1 2 3 4 4 20 6 21 0
9 11 12 1 2 2 22 4 20 0
10 18 23 1 2 2 13 4 5 −1
11 1 2 3 4 4 5 24 25 0
12 8 1 9 3 3 4 26 24 0
13 16 1 27 3 3 4 10 6 1
14 1 2 3 4 4 20 24 28 0
15 2 13 4 5 5 20 25 28 −1
16 2 13 4 5 5 20 7 21 −1
17 3 4 10 6 6 21 24 28 1
18 3 4 10 6 6 7 24 25 1
19 4 5 6 7 7 21 25 28 0
20 15 14 16 8 8 1 9 3 1
21 19 17 16 8 8 1 9 3 0
22 16 8 27 9 9 3 29 10 1
23 9 3 29 10 10 6 26 24 1
24 17 18 14 11 11 12 1 2 −1
25 19 18 15 11 11 12 1 2 0
26 18 23 11 12 12 30 2 13 −1
27 12 30 2 13 13 22 5 20 −1
28 19 17 15 14 14 11 8 1 0
29 18 23 1 2 2 22 4 20 −1
30 16 1 27 3 3 4 26 24 1

Table 1: Automaton to compute FAB

Once we have guessed the automaton, we can verify it as follows:

1. ∀i ∀j FAB[0][i][j] = 0. This is the basis for an induction.

2. Induction steps:

• ∀i ∀j ∀n (f [i+ n] = f [j + n]) =⇒ (FAB[n][i][j] = FAB[n+ 1][i][j]).

• ∀i ∀j ∀n ((f [i+ n] = 0) ∧ (f [j + n] = 1)) =⇒ (((FAB[n][i][j] = −1) ∧ (FAB[n+
1][i][j] = 0)) ∨ ((FAB[n][i][j] = 0) ∧ (FAB[n+ 1][i][j] = 1)))

14

• ∀i ∀j ∀n ((f [i + n] = 0) ∧ (f [j + n] = 1)) =⇒ (((FAB[n][i][j] = 1) ∧ (FAB[n +
1][i][j] = 0)) ∨ ((FAB[n][i][j] = 0) ∧ (FAB[n+ 1][i][j] = −1))).

As the first application, we prove

Theorem 9. The Fibonacci word f has abelian squares of all orders.

Proof. We use the predicate
∃i (FAB[n][i][i+ n] = 0).

The resulting automaton accepts all n ≥ 0. The total computing time was 141 ms.

Cummings and Smyth [9] counted the total number of all occurrences of (nonempty)
abelian squares in the Fibonacci words Xi. We can do this by using the predicate

(k > 0) ∧ (i+ 2k ≤ n) ∧ (FAB[k][i][i+ k] = 0),

using the techniques in Section 2 and considering the case where n = Fi.
When we do, we get a linear representation of rank 127 that counts the total number

w(n) of occurrences of abelian squares in the prefix of length n of the Fibonacci word.
To recover the Cummings-Smyth result we compute the minimal polynomial of the matrix

M0 corresponding to the predicate above. It is

x4(x− 1)(x+ 1)(x2 + x+ 1)(x2 − 3x+ 1)(x2 − x+ 1)(x2 + x− 1)(x2 − x− 1).

This means that w(Fn), that is, w evaluated at 10n−2 in Fibonacci representation, is a
linear combination of the roots of this polynomial to the n’th power (more precisely, the
(n− 2)th, but this detail is unimportant). The roots of the polynomial are

−1, 1, (−1± i
√

3)/2, (3±
√

5)/2, (1± i
√

3)/2, (−1±
√

5)/2, (1±
√

5)/2.

Solving for the coefficients as we did in Section 2 we get

Theorem 10. For all n ≥ 0 we have

w(Fn) = c1

(
3 +
√

5

2

)n

+ c1

(
3−
√

5

2

)n

+ c2

(
1 +
√

5

2

)n

+ c2

(
1−
√

5

2

)n

+

c3

(
1 + i

√
3

2

)n

+ c3

(
1− i

√
3

2

)n

+ c4

(
−1 + i

√
3

2

)n

+ c4

(
−1− i

√
3

2

)n

+ c5(−1)n,

where

c1 = 1/40

c2 = −
√

5/20

c3 = (1− i
√

3)/24

c4 = i
√

3/24

c5 = −2/15,

15

and here x denotes complex conjugate. Here the parts corresponding to the constants c3, c4, c5

form a periodic sequence of period 6.

Next, we turn to what is apparently a new result. Let h(n) denote the total number of
distinct factors (not occurrences of factors) that are abelian squares in the Fibonacci word
Xn.

In this case we need the predicate

(k ≥ 1) ∧ (i+ 2k ≤ n) ∧ (FAB[k][i][i+ k] = 0) ∧ (∀j < i (∃t < 2k (f [j + t] 6= f [i+ t]))).

We get the minimal polynomial

x4(x+ 1)(x2 + x+ 1)(x2 − 3x+ 1)(x2 − x+ 1)(x2 + x− 1)(x2 − x− 1)(x− 1)2.

Using the same technique as above we get

Theorem 11. For n ≥ 2 we have h(n) = a1c
n
1 + · · ·+ a10c

n
10 where

a1 = (−2 +
√

5)/20

a2 = (−2−
√

5)/20

a3 = (5−
√

5)/20

a4 = (5 +
√

5)/20

a5 = 1/30

a6 = −5/6

a7 = (1/12)− i
√

3/12

a8 = (1/12) + i
√

3/12

a9 = (1/6) + i
√

3/12

a10 = (1/6)− i
√

3/12

and

c1 = (3 +
√

5)/2

c2 = (3−
√

5)/2

c3 = (1 +
√

5)/2

c4 = (1−
√

5)/2

c5 = −1

c6 = 1

c7 = (1/2) + i
√

3/2

c8 = (1/2)− i
√

3/2

c9 = (−1/2) + i
√

3/2

c10 = (−1/2)− i
√

3/2.

16

For another new result, consider counting the total number a(n) of distinct factors of
length 2n of the infinite word f that are abelian squares.

This function is rather erratic. The following table gives the first few values:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
a(n) 1 3 5 1 9 5 5 15 3 13 13 5 25 9 15 25 1 27 19 11

We use the predicate

(n ≥ 1) ∧ (FAB[n][i][i+ n] = 0) ∧ (∀j < i (∃t < 2n (f [j + t] 6= f [i+ t]))).

to create the matrices and vectors.

Theorem 12. a(n) = 1 infinitely often and a(n) = 2n − 1 infinitely often. More precisely
a(n) = 1 iff (n)F = 1 or (n)F = (100)i101 for i ≥ 0, and a(n) = 2n − 1 iff (n)F = 10i for
i ≥ 0.

Proof. For the first statement, we create a DFA accepting those (n)F for which a(n) = 1,
via the predicate

∀i ∀j ((FAB[n][i][i+ n] = 0) ∧ (FAB[n][j][j + n] = 0)) =⇒ (∀t < 2n (f [j + t] = f [i+ t])).

The resulting 6-state automaton accepts the set specified.
For the second result, we first compute the minimal polynomial of the matrix M0 of the

linear representation. It is x5(x− 1)(x+ 1)(x2−x− 1). This means that, for n ≥ 5, we have
a(Fn) = c1 + c2(−1)n + c3α

n + c4β
n where, as usual, α = (1 +

√
5)/2 and β = (1 −

√
5)/2.

Solving for the constants, we determine that a(Fn) = 2Fn − 1 for n ≥ 2, as desired.
To show that these are the only cases for which a(n) = 2n−1, we use a predicate that says

that there are not at least three different factors of length 2n that are not abelian squares.
Running this through our program results in only the cases previously discussed.

Finally, we turn to abelian cubes. Unlike the case of squares, some orders do not appear
in f .

Theorem 13. The Fibonacci word f contains, as a factor, an abelian cube of order n iff
(n)F is accepted by the automaton below.

17

0

[0]

1

[1]

2

[0]

3

[0] 4

[1]

5

[0]

6
[1]

7

[0]

[0]

[1]

[0]

[0] 8
[1]

9[0]
[1]

10
[0]

[0]

[1]

Figure 4: Automaton accepting orders of abelian cubes in f

Theorem 8 has the following interesting corollary.

Corollary 14. Let h : {0, 1}∗ → ∆∗ be an arbitrary morphism such that h(01) 6= ε. Then
h(f) is an infinite Fibonacci-automatic word.

Proof. From Theorem 8 we see that there is a predicate ZC(n, n′) which is true if n′ =
|f [0..n−1]|0 and false otherwise, and this predicate can be implemented as a finite automaton
taking the inputs n and n′ in Fibonacci representation.

Suppose h(0) = w and h(1) = x. Now, to show that h(f) is Fibonacci-automatic, it
suffices to show that, for each letter a ∈ ∆, the language of “fibers”

La = {(n)F : (h(f))[n] = a}

is regular.
To see this, we write a predicate for the n in the definition of La, namely

∃q ∃r0 ∃r1 ∃m (q ≤ n < q + |h(f [m])|) ∧ ZC(m, r0) ∧ (r0 + r1 = m)∧
(r0|w|+ r1|x| = q) ∧ ((f [m] = 0 ∧ w[n− q] = a) ∨ (f [m] = 1 ∧ x[n− q] = a)).

Notice that the predicate looks like it uses multiplication, but this multiplication can be
replaced by repeated addition since |w| and |x| are constants here.

Unpacking this predicate we see that it asserts the existence of m, q, r0, and r1 having
the meaning that

• the n’th symbol of h(f) lies inside the block h(f [m]) and is in fact the (n−q)’th symbol
in the block (with the first symbol being symbol 0)

• f [0..m− 1] has r0 0’s in it

• f [0..m− 1] has r1 1’s in it

18

• the length of h(f [0..m− 1]) is q

Since everything in this predicate is in the logical theory (N,+, <, F) where F is the
predicate for the Fibonacci word, the language La is regular.

Remark 15. Notice that everything in this proof goes through for other numeration systems,
provided the original word has the property that the Parikh vector of the prefix of length n
is synchronized.

4 Acknowledgments

We thank Kalle Saari for bringing our attention to the small error in [11]. We thank Narad
Rampersad and Michel Rigo for useful suggestions.

References

[1] J.-P. Allouche, K. Scheicher, and R. F. Tichy. Regular maps in generalized number
systems. Math. Slovaca 50 (2000), 41–58.

[2] J. Berstel and C. Reutenauer. Noncommutative Rational Series with Applications, Vol.
137 of Encylopedia of Mathematics and Its Applications. Cambridge University Press,
2011.

[3] A. Carpi and V. D’Alonzo. On the repetitivity index of infinite words. Internat. J.
Algebra Comput. 19 (2009), 145–158.

[4] A. Carpi and V. D’Alonzo. On factors of synchronized sequences. Theoret. Comput.
Sci. 411 (2010), 3932–3937.

[5] A. Carpi and C. Maggi. On synchronized sequences and their separators. RAIRO
Inform. Théor. App. 35 (2001), 513–524.

[6] E. Charlier, N. Rampersad, and J. Shallit. Enumeration and decidable properties of
automatic sequences. Internat. J. Found. Comp. Sci. 23 (2012), 1035–1066.

[7] W.-F. Chuan. Symmetric Fibonacci words. Fibonacci Quart. 31 (1993), 251–255.

[8] M. Crochemore. An optimal algorithm for computing the repetitions in a word. Inform.
Process. Lett. 12 (1981), 244–250.

[9] L. J. Cummings and W. F. Smyth. Weak repetitions in strings. J. Combin. Math.
Combin. Comput. 24 (1997), 33–48.

[10] C. F. Du, H. Mousavi, L. Schaeffer, and J. Shallit. Decision algorithms for Fibonacci-
automatic words, II: Related sequences and avoidability. Submitted, 2015.

19

[11] A. S. Fraenkel and J. Simpson. The exact number of squares in Fibonacci words.
Theoret. Comput. Sci. 218 (1999), 95–106.

[12] D. Goc, L. Schaeffer, and J. Shallit. The subword complexity of k-automatic sequences
is k-synchronized. In M.-P. Béal and O. Carton, editors, DLT 2013, Vol. 7907 of Lecture
Notes in Computer Science, pp. 252–263. Springer-Verlag, 2013.

[13] R. Kolpakov and G. Kucherov. On maximal repetitions in words. In G. Ciobanu and
G. Păun, editors, Fundamentals of Computation Theory: FCT ’99, Vol. 1684 of Lecture
Notes in Computer Science, pp. 374–385. Springer-Verlag, 1999.

[14] M. Morse and G. A. Hedlund. Symbolic dynamics II. Sturmian trajectories. Amer. J.
Math. 62 (1940), 1–42.

[15] H. Mousavi, L. Schaeffer, and J. Shallit. Decision algorithms for Fibonacci-automatic
words, I: Basic results. Submitted, 2015.

[16] L. Schaeffer. Deciding properties of automatic sequences. Master’s thesis, University of
Waterloo, 2013.

20

