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Abstra
t.

Let d(n) denote the number of positive integral divisors of n. In this paper we show that the M�obius

fun
tion, �(N ), 
an be 
omputed by a single 
all to an ora
le for d(n). We also show that any fun
tion that

depends solely on the exponents in the prime fa
torization of N 
an be 
omputed by at most log

2

N 
alls to

an ora
le for d(N ).

* Presently visiting Department of Computer S
ien
e, University of Chi
ago.
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The problem of 
omputational equivalen
e between various number-theoreti
 problems has re
eived


onsiderable attention in the last few years (see [4℄ for a motivation from 
ryptography, and [1℄ for re
ent

results 
on
erning sums of divisors).

In this note, we prove that the problem of 
omputing the number of divisors d(N ) of N is equivalent to

the problem of 
omputing the multiset

e(N ) = fe

1

; e

2

; : : : ; e

k

g

of exponents in the prime fa
torization of N :

N = p

1

e

1

� � �p

k

e

k

(1)

where the p

j

are distin
t primes and the e

j

are positive integers.

Given e(N ), it is straightforward to 
ompute d(N ) as

d(N ) = (e

1

+ 1)(e

2

+ 1) � � � (e

k

+ 1); (2)

(e. g. [2℄). The other dire
tion is a bit harder, sin
e d(N ) may be fa
torized in many ways and thus the e

i


annot be dire
tly re
overed from d(N ).

Before des
ribing the general 
ase, it is instru
tive to 
onsider the problem of determining whether or

not a number is squarefree; i. e. are all the e

i

equal to one? A ne
essary 
ondition for squarefreeness is that

d(N ) be a power of 2, but this is not suÆ
ient sin
e, for example, p

3

q

7

also satisi�es this 
ondition. To solve

this problem, we 
ompute d(N

q�1

) instead of d(N ), where the prime q is approximately log

2

N . Then N

q�1

has approximately (log

2

N )

2

bits and its 
omputation 
an be done in polynomial time. We have:

Theorem 1.

Let q be a prime su
h that q � 1 > log

2

N . Then N is squarefree i� d(N

q�1

) = q

k

for some k � 1.

Proof.

If N is given by equation (1), then

d(N

q�1

) =

k

Y

i=1

(1 + (q � 1)e

i

):

When N is squarefree, all the e

i

are 1 and therefore d(N

q�1

) = q

k

. Conversely, assume that d(N

q�1

) = q

j

for some j. Then ea
h term of the form 1 + (q � 1)e

i

must also be a power of q. However, sin
e all the e

i

are at most log

2

N , we have 1 + (q � 1)e

i

< q

2

. The remaining possibility, that (q � 1)e

i

+ 1 = q, implies

e

i

= 1 for all 1 � i � k.

Corollary.

The M�obius fun
tion

�(N ) =

�

0; if N is not squarefree;

(�1)

k

; if N is squarefree and divisible by k distin
t primes.


an be 
omputed qui
kly with a single 
all to the d(N ) ora
le.

Proof.

If N is squarefree, then the power of q that divides d(N

q�1

) determines the value of k.

We now state the main result of this note.

Theorem 2.

The two problems

i) 
omputing d(N ) and

ii) 
omputing e(N )

are equivalent under a polynomial time deterministi
 Turing redu
tion.

Proof.
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The redu
tion from d(N ) to e(N ) follows immediately from equation (2). We present a redu
tion in the

other dire
tion, whi
h is a re�nement of the proof of Theorem 1.

The main idea in this redu
tion is as follows: let f(x) be the polynomial whi
h has e

1

; e

2

; : : : ; e

k

as its

zeroes, i. e.

f(X) = (X � e

1

)(X � e

2

) � � � (X � e

k

) = X

k

� 


0

X

k�1

+ � � �+ (�1)

k




k�1

: (3)

Suppose we 
ould determine the 
oeÆ
ients 


0

; 


1

; : : : ; 


k�1

; then by fa
toring f we 
ould determine the e

j

.

Of 
ourse, we don't a
tually have to fa
tor f sin
e we know the roots are integers � log

2

N , and thus we


an �nd them qui
kly by exhaustive sear
h.

Let q be a prime number. Then

d(N

q

) =

k

Y

i=1

(qe

i

+ 1)

= (�1)

k

q

k

f(�1=q)

= 


k�1

q

k

+ 


k�2

q

k�1

+ � � �+ 


0

q + 1: (4)

If q is larger than ea
h of the 
oeÆ
ients of f(X), then we 
an 
onsider d(N

q

) to be a number written in

base q, and easily re
over the 
oeÆ
ients 


0

; 


1

; : : : ; 


k�1

.

The simplest way to read o� the 
oeÆ
ients of f(X) is to 
hoose q larger than max

1�i�k�1




i

. Unfortu-

nately, this naive approa
h does not give a polynomial-time algorithm, for it requires us to 
ompute d(N

q

)

with q roughly as big as N . If q is this big, we 
annot 
ompute N

q

or even express it in time polynomial in

log

2

N .

Instead we evaluate equation (4) for many di�erent small values of q, and then re
over the 
oeÆ
ients




j

one by one, using the Chinese remainder theorem.

The algorithm presented below takes as input a positive integer N and an ora
le for d(n). It produ
es

the multiset S = fe

1

; e

2

; : : : ; e

k

g of exponents in the prime fa
torization of N .

Algorithm A.

A1. [Initialize℄. Set S := ;, B := (log

2

N )(1 + log

2

log

2

N ) .

A2. [Choose set of primes P .℄

P := a set of primes q with 2B � q � 3:3B, of 
ardinality

not ex
eeding dlog

2

Ne.

for ea
h q 2 P do 
ompute and store d(N

q

);

A3. [Infer the 
oeÆ
ients of f(x)℄.

Set k := �1;

repeat begin

k := k + 1;

for ea
h q 2 P do d

k

[q℄ :=

d(N

q

)�1�

P

k�1

j=0




j

q

j+1

q

k+1

;

Compute 


k

using the Chinese remainder theorem

and the 
ongruen
es 


k

� d

k

[q℄ (mod q)

end;

until 


k

= 0;

de�ne f(x) := x

k

� 


0

x

k�1

+ � � �+ (�1)

k




k�1

;

A4. [Fa
tor f(x)℄.

for i := 1 to blog

2

N
 do

begin

b

i

:= exponent of highest power of x� i that divides f(x);

S := S [ fb

i


opies of ig

end
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Lemma 3.

Algorithm A is 
orre
t and runs in time polynomial in log

2

N . It uses only log

2

N ora
le 
alls.

Proof.

Let p be a prime, let N be given by equation (1), and let 


0

; 


1

; : : : ; 


k�1

be as in equation (4) above. It

is easy to see that




j

<

�

log

2

N

1

2

log

2

N

�

(log

2

N )

log

2

N

< N

1+log

2

log

2

N

:

First we show that the produ
t over all primes in Q is suÆ
iently large to represent ea
h 
oeÆ
ient of f(X).

If Q has dlog

2

Ne elements, then it is 
lear that the produ
t is suÆ
iently large, sin
e ea
h member of

Q is larger than 2 log

2

N .

Now suppose Q has fewer than dlog

2

Ne elements. We must show that

Y

2B<p�3:3B

p prime

p > N

1+log

2

log

2

N

:

It 
learly suÆ
es to show

X

2B<p�3:3B

p prime

log

2

p > (log

2

N )(1 + log

2

log

2

N ): (5)

We do this for all N \suÆ
iently large". By a theorem of Rosser and S
hoenfeld [3℄ we have

:84x <

X

p�x

p prime

log

e

p < 1:01624x

for x � 101.

Hen
e we �nd

X

2B<p�3:3B

p prime

log

2

p > (log

2

e)(2:772B � 2:03248B) > B

and the truth of equation (5) easily follows from our 
hoi
e of B in step A1.

Thus we see that in step A2 we use at most log

2

N 
alls to the ora
le for d(n). Now step A3 is 
ompleted


orre
tly by equation (4) above. It is 
lear that the algorithm runs in polynomial time. This 
ompletes the

proof of Lemma 3.

Thus we have 
ompleted the proof of Theorem 2.

Corollary.

Let N be as in equation (1). De�ne


(N ) = e

1

+ e

2

+ � � �+ e

k

:

Then 
(N ) 
an be 
omputed in one 
all to an ora
le for d(N ).

Proof.

Let q be a prime > log

2

N . Then


(N ) =

d(N

q

)� 1

q

mod q:

Corollary.

Let g; h be integers with h 6= 0. De�ne

r

g;h

(N ) = (ge

1

+ h)(ge

2

+ h) � � � (ge

k

+ h)

Then the problem of 
omputing r

g;h

(N ) is equivalent to the problem of 
omputing e(N ).
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The proof is left to the reader.

Open Question: 
an e(N ) be 
omputed from one 
all to the ora
le for d(n)? Of 
ourse, we require that

the argument to the ora
le be of size polynomial in log

2

N .
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