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Abstrat.

Let d(n) denote the number of positive integral divisors of n. In this paper we show that the M�obius

funtion, �(N ), an be omputed by a single all to an orale for d(n). We also show that any funtion that

depends solely on the exponents in the prime fatorization of N an be omputed by at most log

2

N alls to

an orale for d(N ).

* Presently visiting Department of Computer Siene, University of Chiago.
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The problem of omputational equivalene between various number-theoreti problems has reeived

onsiderable attention in the last few years (see [4℄ for a motivation from ryptography, and [1℄ for reent

results onerning sums of divisors).

In this note, we prove that the problem of omputing the number of divisors d(N ) of N is equivalent to

the problem of omputing the multiset

e(N ) = fe

1

; e

2

; : : : ; e

k

g

of exponents in the prime fatorization of N :

N = p

1

e

1

� � �p

k

e

k

(1)

where the p

j

are distint primes and the e

j

are positive integers.

Given e(N ), it is straightforward to ompute d(N ) as

d(N ) = (e

1

+ 1)(e

2

+ 1) � � � (e

k

+ 1); (2)

(e. g. [2℄). The other diretion is a bit harder, sine d(N ) may be fatorized in many ways and thus the e

i

annot be diretly reovered from d(N ).

Before desribing the general ase, it is instrutive to onsider the problem of determining whether or

not a number is squarefree; i. e. are all the e

i

equal to one? A neessary ondition for squarefreeness is that

d(N ) be a power of 2, but this is not suÆient sine, for example, p

3

q

7

also satisi�es this ondition. To solve

this problem, we ompute d(N

q�1

) instead of d(N ), where the prime q is approximately log

2

N . Then N

q�1

has approximately (log

2

N )

2

bits and its omputation an be done in polynomial time. We have:

Theorem 1.

Let q be a prime suh that q � 1 > log

2

N . Then N is squarefree i� d(N

q�1

) = q

k

for some k � 1.

Proof.

If N is given by equation (1), then

d(N

q�1

) =

k

Y

i=1

(1 + (q � 1)e

i

):

When N is squarefree, all the e

i

are 1 and therefore d(N

q�1

) = q

k

. Conversely, assume that d(N

q�1

) = q

j

for some j. Then eah term of the form 1 + (q � 1)e

i

must also be a power of q. However, sine all the e

i

are at most log

2

N , we have 1 + (q � 1)e

i

< q

2

. The remaining possibility, that (q � 1)e

i

+ 1 = q, implies

e

i

= 1 for all 1 � i � k.

Corollary.

The M�obius funtion

�(N ) =

�

0; if N is not squarefree;

(�1)

k

; if N is squarefree and divisible by k distint primes.

an be omputed quikly with a single all to the d(N ) orale.

Proof.

If N is squarefree, then the power of q that divides d(N

q�1

) determines the value of k.

We now state the main result of this note.

Theorem 2.

The two problems

i) omputing d(N ) and

ii) omputing e(N )

are equivalent under a polynomial time deterministi Turing redution.

Proof.
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The redution from d(N ) to e(N ) follows immediately from equation (2). We present a redution in the

other diretion, whih is a re�nement of the proof of Theorem 1.

The main idea in this redution is as follows: let f(x) be the polynomial whih has e

1

; e

2

; : : : ; e

k

as its

zeroes, i. e.

f(X) = (X � e

1

)(X � e

2

) � � � (X � e

k

) = X

k

� 

0

X

k�1

+ � � �+ (�1)

k



k�1

: (3)

Suppose we ould determine the oeÆients 

0

; 

1

; : : : ; 

k�1

; then by fatoring f we ould determine the e

j

.

Of ourse, we don't atually have to fator f sine we know the roots are integers � log

2

N , and thus we

an �nd them quikly by exhaustive searh.

Let q be a prime number. Then

d(N

q

) =

k

Y

i=1

(qe

i

+ 1)

= (�1)

k

q

k

f(�1=q)

= 

k�1

q

k

+ 

k�2

q

k�1

+ � � �+ 

0

q + 1: (4)

If q is larger than eah of the oeÆients of f(X), then we an onsider d(N

q

) to be a number written in

base q, and easily reover the oeÆients 

0

; 

1

; : : : ; 

k�1

.

The simplest way to read o� the oeÆients of f(X) is to hoose q larger than max

1�i�k�1



i

. Unfortu-

nately, this naive approah does not give a polynomial-time algorithm, for it requires us to ompute d(N

q

)

with q roughly as big as N . If q is this big, we annot ompute N

q

or even express it in time polynomial in

log

2

N .

Instead we evaluate equation (4) for many di�erent small values of q, and then reover the oeÆients



j

one by one, using the Chinese remainder theorem.

The algorithm presented below takes as input a positive integer N and an orale for d(n). It produes

the multiset S = fe

1

; e

2

; : : : ; e

k

g of exponents in the prime fatorization of N .

Algorithm A.

A1. [Initialize℄. Set S := ;, B := (log

2

N )(1 + log

2

log

2

N ) .

A2. [Choose set of primes P .℄

P := a set of primes q with 2B � q � 3:3B, of ardinality

not exeeding dlog

2

Ne.

for eah q 2 P do ompute and store d(N

q

);

A3. [Infer the oeÆients of f(x)℄.

Set k := �1;

repeat begin

k := k + 1;

for eah q 2 P do d

k

[q℄ :=

d(N

q

)�1�

P

k�1

j=0



j

q

j+1

q

k+1

;

Compute 

k

using the Chinese remainder theorem

and the ongruenes 

k

� d

k

[q℄ (mod q)

end;

until 

k

= 0;

de�ne f(x) := x

k

� 

0

x

k�1

+ � � �+ (�1)

k



k�1

;

A4. [Fator f(x)℄.

for i := 1 to blog

2

N do

begin

b

i

:= exponent of highest power of x� i that divides f(x);

S := S [ fb

i

opies of ig

end
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Lemma 3.

Algorithm A is orret and runs in time polynomial in log

2

N . It uses only log

2

N orale alls.

Proof.

Let p be a prime, let N be given by equation (1), and let 

0

; 

1

; : : : ; 

k�1

be as in equation (4) above. It

is easy to see that



j

<

�

log

2

N

1

2

log

2

N

�

(log

2

N )

log

2

N

< N

1+log

2

log

2

N

:

First we show that the produt over all primes in Q is suÆiently large to represent eah oeÆient of f(X).

If Q has dlog

2

Ne elements, then it is lear that the produt is suÆiently large, sine eah member of

Q is larger than 2 log

2

N .

Now suppose Q has fewer than dlog

2

Ne elements. We must show that

Y

2B<p�3:3B

p prime

p > N

1+log

2

log

2

N

:

It learly suÆes to show

X

2B<p�3:3B

p prime

log

2

p > (log

2

N )(1 + log

2

log

2

N ): (5)

We do this for all N \suÆiently large". By a theorem of Rosser and Shoenfeld [3℄ we have

:84x <

X

p�x

p prime

log

e

p < 1:01624x

for x � 101.

Hene we �nd

X

2B<p�3:3B

p prime

log

2

p > (log

2

e)(2:772B � 2:03248B) > B

and the truth of equation (5) easily follows from our hoie of B in step A1.

Thus we see that in step A2 we use at most log

2

N alls to the orale for d(n). Now step A3 is ompleted

orretly by equation (4) above. It is lear that the algorithm runs in polynomial time. This ompletes the

proof of Lemma 3.

Thus we have ompleted the proof of Theorem 2.

Corollary.

Let N be as in equation (1). De�ne


(N ) = e

1

+ e

2

+ � � �+ e

k

:

Then 
(N ) an be omputed in one all to an orale for d(N ).

Proof.

Let q be a prime > log

2

N . Then


(N ) =

d(N

q

)� 1

q

mod q:

Corollary.

Let g; h be integers with h 6= 0. De�ne

r

g;h

(N ) = (ge

1

+ h)(ge

2

+ h) � � � (ge

k

+ h)

Then the problem of omputing r

g;h

(N ) is equivalent to the problem of omputing e(N ).
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The proof is left to the reader.

Open Question: an e(N ) be omputed from one all to the orale for d(n)? Of ourse, we require that

the argument to the orale be of size polynomial in log

2

N .
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