Number-Theoretic Functions Which Are Equivalent to Number of Divisors

Jeffrey Shallit
Department of Computer Science
University of Chicago
Chicago, IL 60637

Adi Shamir*
Applied Mathematics Department
The Weizmann Institute of Science
Rehovot 76100

Israel

Key Words and Phrases

number of divisors, Mobius function, prime factorization.

Abstract.

Let d(n) denote the number of positive integral divisors of n. In this paper we show that the M&bius
function, u(N), can be computed by a single call to an oracle for d(n). We also show that any function that
depends solely on the exponents in the prime factorization of N can be computed by at most log, N calls to
an oracle for d(N).

* Presently visiting Department of Computer Science, University of Chicago.

1

The problem of computational equivalence between various number-theoretic problems has received
considerable attention in the last few years (see [4] for a motivation from cryptography, and [1] for recent
results concerning sums of divisors).

In this note, we prove that the problem of computing the number of divisors d(N) of N is equivalent to
the problem of computing the multiset

e(N)={e1,e2,...,€x}

of exponents in the prime factorization of V:

N = plel .. .pkek (1)

where the p; are distinct primes and the e; are positive integers.
Given e(N), it is straightforward to compute d(N) as

d(N) = (ex + 1)(ea + 1)+ (e + 1), (2)

(e. g. [2]). The other direction is a bit harder, since d(N) may be factorized in many ways and thus the e;
cannot be directly recovered from d(N).

Before describing the general case, it is instructive to consider the problem of determining whether or
not a number is squarefree; i. e. are all the e; equal to one? A necessary condition for squarefreeness is that
d(N) be a power of 2, but this is not sufficient since, for example, p3¢” also satisifies this condition. To solve
this problem, we compute d(N9~1) instead of d(/V), where the prime ¢ is approximately log, N. Then N9=1
has approximately (log, N)2 bits and its computation can be done in polynomial time. We have:
Theorem 1.

Let q be a prime such that ¢ — 1 > logy N. Then N is squarefree iff d(N9=1) = ¢" for some k > 1.
Proof.

If N is given by equation (1), then

k
AN =T[(1 + (g = Des).
i=1

When N is squarefree, all the e; are 1 and therefore d(N9~1) = ¢*. Conversely, assume that d(N¢~!) = ¢/
for some j. Then each term of the form 1 4 (¢ — 1)e; must also be a power of ¢q. However, since all the e;
are at most log, N, we have 1 + (¢ — 1)e; < ¢*. The remaining possibility, that (¢ — 1)e; + 1 = ¢, implies
e,=1foralll <:<k. N
Corollary.

The Moébius function

(N) = 0, if N is not squarefree;
H - (—l)k, if N is squarefree and divisible by k distinct primes.

can be computed quickly with a single call to the d(N) oracle.
Proof.
If N is squarefree, then the power of ¢ that divides d(N¢~!) determines the value of k. B

We now state the main result of this note.
Theorem 2.
The two problems
i) computing d(N) and
ii) computing e(N)
are equivalent under a polynomial time deterministic Turing reduction.
Proof.

The reduction from d(N) to e(N) follows immediately from equation (2). We present a reduction in the
other direction, which is a refinement of the proof of Theorem 1.

The main idea in this reduction is as follows: let f(z) be the polynomial which has ey, eq,...,e; as its
zeroes, i. e.

JX)=(X —e)(X —ez) (X —ex) = XF —co X1 oo (=) Fesn. (3)

Suppose we could determine the coefficients co, ¢1,...,cy—1; then by factoring f we could determine the e;.

Of course, we don’t actually have to factor f since we know the roots are integers < log, /N, and thus we
can find them quickly by exhaustive search.

Let ¢ be a prime number. Then
k

d(N?) = J](gei +1)

i=1
= (-1)¢" f(~1/q)
=cr_1q" +ep_ag" T o Feog + 1. (4)

If ¢ is larger than each of the coefficients of f(X), then we can consider d(N9) to be a number written in
base ¢, and easily recover the coefficients cg, ¢y, ...,cx_1.

The simplest way to read off the coefficients of f(X) is to choose ¢ larger than max;<;<x—1¢;. Unfortu-
nately, this naive approach does not give a polynomial-time algorithm, for it requires us to compute d(N?)
with ¢ roughly as big as V. If ¢ is this big, we cannot compute N? or even express it in time polynomial in
logy N.

Instead we evaluate equation (4) for many different small values of ¢, and then recover the coefficients
c¢; one by one, using the Chinese remainder theorem.

The algorithm presented below takes as input a positive integer N and an oracle for d(n). It produces
the multiset S = {e1,e9,...,ex} of exponents in the prime factorization of N.

Algorithm A.
Al. [Initialize]. Set S := 0, B := (logy N)(1 + log, log, N) .
A2. [Choose set of primes P.]
P := a set of primes ¢ with 2B < ¢ < 3.3B, of cardinality

not exceeding [log, V7.

for each ¢ € P do compute and store d(N?);
A3. [Infer the coefficients of f(x)].

Set k:= —1;
repeat begin
ki=k+1;

A(N9)=1= F1 ¢ it
for each ¢ € P do di[q] := (V%) qgf:u q :

Compute ¢; using the Chinese remainder theorem

and the congruences ¢ = di[g] (mod q)
end;
until ¢; = 0;
define f(z) := 2% —coz* "1 .-+ (—l)kck_l;
A4. [Factor f(x)].
for i := 1 to [log, V| do
begin
b; := exponent of highest power of x — ¢ that divides f(z);
S := 5 U{b; copies of i}

end

Lemma 3.
Algorithm A is correct and runs in time polynomial in log, N. It uses only logy, N oracle calls.
Proof.
Let p be a prime, let N be given by equation (1), and let ¢g, ¢y, ..., cx—1 be as in equation (4) above. Tt
is easy to see that
) 10g2 N log, N 1+log, log, N
¢ < <% log, N> (logy N) <N .
First we show that the product over all primes in @ is sufficiently large to represent each coefficient of f(X).
If Q has [log, N elements, then it is clear that the product is sufficiently large, since each member of
Q is larger than 2log, N.
Now suppose) has fewer than [log, N elements. We must show that

H p>]\71+log2 log, N‘

2B<p<3.3B
p prime

It clearly suffices to show

E log, p > (logy N)(1 + log, log, V). (5)
2B<p<3.3B
p prime

We do this for all N “sufficiently large”. By a theorem of Rosser and Schoenfeld [3] we have

84r < Y log.p< 1.01624x

p<w
p prime

for « > 101.
Hence we find
> logyp > (logy €)(2.7728 — 2.03248B) > B

2B<p<3.3B
p prime

and the truth of equation (5) easily follows from our choice of B in step Al.

Thus we see that in step A2 we use at most log, N calls to the oracle for d(n). Now step A3 is completed
correctly by equation (4) above. Tt is clear that the algorithm runs in polynomial time. This completes the
proof of Lemma 3. B

Thus we have completed the proof of Theorem 2. B

Corollary.
Let N be as in equation (1). Define

Q(N)=e1+ex3+---+e.
Then Q(N) can be computed in one call to an oracle for d(N).

Proof.
Let ¢ be a prime > logy N. Then

Corollary.
Let g, h be integers with h # 0. Define

rg.n(IN) = (ge1 + h)(gez + h) -+~ (ger + h)
Then the problem of computing rg 5 (N) is equivalent to the problem of computing e(N).

4

The proof is left to the reader.
Open Question: can e(/N) be computed from one call to the oracle for d(n)? Of course, we require that

the argument to the oracle be of size polynomial in log, V.

Acknowledgements.
We are pleased to acknowledge conversations with Eric Bach and Manuel Blum.

Thanks also go to the referee for suggesting several improvements in the exposition.

References

[1] Eric Bach, Gary Miller, and Jeffrey Shallit, Sums of divisors, perfect numbers, and factoring, Proc.
16th Ann. ACM Symp. on Theory of Computing, Association for Computing Machinery, New York, 1984,

183-190.

[2] William J. LeVeque, Fundamentals of Number Theory, Addison-Wesley, Reading, Massachusetts,
1977.

[3] J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers,
Ill. Journ. Math. 6 (1962) 64-94.

[4] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and public key
cryptosystems, Comm. ACM 21 (1978) 120-126.

