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1 Introdu
tion

Re
reations involving the de
imal digits of primes have a long history. To give just a few

examples, without trying to be exhaustive, Yates [8℄ studied the \repunits", whi
h are primes

with base-10 representation of the form 111 � � � 1. Caldwell and Dubner [3℄ studied the \near-

repunits", whi
h are primes of n de
imal digits 
ontaining n � 1 ones and 1 zero. Card [4℄

introdu
ed prime numbers su
h as 37337999, in whi
h every nonempty pre�x is also a

prime; he 
alled them \snowball" primes. These were later studied by Angell & Godwin

[1℄ and Caldwell [2℄, who 
alled them \right-trun
atable" primes. They also studied the

\left-trun
atable" primes, su
h as 4632647, in whi
h every nonempty suÆx is prime. Kahan

and Weintraub [6℄ gave a list of all the left-trun
atable primes. Huestis [5℄ introdu
ed the

\re
ursively laminar primes".

In this note, I dis
uss an apparently new problem on the de
imal digits of primes | but

one inspired from a 
lassi
al theorem in formal language theory.

To begin with, here is some notation. I'll use the letters w; x; y; z to represent strings

of digits. If w is a string of digits, then by [w℄ I mean the integer that w represents when

interpreted as a number in base 10. To distinguish a number itself from the digits of its base-

10 representation, I'll use the \typewriter type" font to denote strings, like this: 352148 is

the base-10 representation of the integer 352148.

Given two strings w and x, I'll 
all w a subsequen
e of x if I 
an obtain w by deleting

some number of digits from x. Note that I 
an, if I 
hoose, delete no digits at all, and that

the digits I delete need not be 
onse
utive. If w is a subsequen
e of x, then I write w � x.

For example, 514 is a subsequen
e of 352148, and I write 514� 352148. Note that ��w for

all w, where � is the empty string.

Now given two strings w and x, I say they are 
omparable if either w � x or x � w (or

both). They are in
omparable if they are not 
omparable. For example, the strings 352148

�
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and 8217 are in
omparable. A 
lassi
al theorem of formal language theory states that every

set of pairwise in
omparable strings is �nite [7, Thm. 6.1.2℄. At �rst sight this theorem

is hard to believe, sin
e we may make a set of pairwise in
omparable strings as large as we

want. For example, all the strings of length 20 are pairwise in
omparable, and there are

more than a million of them! And nothing prevents us from repla
ing 20 with 30 or 100 or

1000. Nevertheless, the result is true, and in fa
t the proof is not that hard, although we do

not give it here.

Given any set of strings S we 
an de�ne the set M(S) its minimal elements. A string w

is minimal for S if whenever x 2 S and x � w, then x = w. It is easy to see that the set

M(S) is pairwise in
omparable, and hen
e it must always be �nite, no matter what S is.

The set M(S) has the following pleasant property: for every string w in S, there is some

subset of the digits of w that 
an be removed to obtain a string in M(S). Furthermore, the

set M(S) is the smallest subset of S with this property.

All this raises the obvious question of determining M(S) for some 
lassi
ally interesting

sets S. In this note we determine M(S) when S = PRIMES, the set of prime numbers

expressed in base 10.

We have the following theorem.

Theorem 1 If S = PRIMES= f2; 3; 5; 7; 11; 13; 17; 19; 23; : : :g, then

M(S) = f2; 3; 5; 7; 11; 19; 41;61;89;409;449; 499; 881;991;6469;6949; 9001;9049;

9649; 9949; 60649; 666649;946669; 60000049; 66000049; 66600049g:

In other words, every prime number has the property that one 
an delete some number

of its de
imal digits (possibly none) to obtain some prime appearing in the list above.

Before we give the proof, we introdu
e a little more notation. We use juxtaposition of

strings to denote 
on
atenation, so that, for example,

f1; 2gf3; 4g = f13; 14; 23; 24g:

If a is a digit, we write a

n

to denote the 
on
atenation

n

z }| {

aa � � � a. Finally, we use the notation

� to denote any number of repetitions of members of a set in any order, so that, for example,

f1; 2gf3; 4g

�

= f1; 2; 13; 14; 23;24;133;134; 143; 144;233;234; 243; 244;1333; : : :g:

Now we are ready to prove Theorem 1.

Proof. First, the reader should verify that (a) all of the numbers in the statement of the

theorem are indeed primes and (b) no proper subsequen
e of digits of any member of M(S)

is prime. (Note that 1 is not a prime number.)

Now let x 2 PRIMES. If x is of length 1, then x 2 f2; 3; 5; 7g, so x 2 M(S). Hen
e

assume x is a member of PRIMES of length 2 or more. In this 
ase the last digit of x must

lie in f1; 3; 7; 9g. If this last digit is 3 or 7, then 3� x or 7� x, respe
tively. Hen
e we may

assume x ends in 1 or 9.
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Case 1: x ends in 1.

If x = y1, and y 
ontains a digit in f2; 3; 5; 7g, then (respe
tively) then x has a subse-

quen
e in M(S). Also, if y 
ontains 1, 4, or 6, then (respe
tively) 11�x, 41�x, or 61�x.

Hen
e we may assume that y 2 f8; 9gf0; 8; 9g

�

.

Case 1a: x begins with 8.

In this 
ase we 
an write x = 8z1. If 9� z, then 89� x. If 8� z, then 881� x.

Hen
e x 2 80

�

1. But then, sin
e the sum of the digits of x is 9, [x℄ is divisible by 3,

so [x℄ 
annot be prime.

Case 1b: x begins with 9.

In this 
ase we 
an write x = 9z1. If 9� z, then 991� x. If z 
ontains two 0's,

then 9001� x. If z 
ontains two 8's, then 881� x. Thus we may assume z 
ontains

no 9's, and either zero or one 0, and either zero or one 8. The remaining possibilities

are therefore x 2 f91; 901; 981; 9081;9801g, and all of these numbers are 
omposite.

Case 2: x ends with 9.

If x = y9, and one of f2; 3; 5; 7g is in y, then x 
ontains a subsequen
e in M(S). If

1 � y or 8 � y, then (respe
tively) 19 � x or 89 � x. Hen
e we may assume that x 2

f4; 6; 9gf0; 4; 6;9g

�

9. If x 
ontains no 4's, then [x℄ is divisible by 3 sin
e the sum of its digits

is divisible by 3, and hen
e [x℄ 
annot be prime. On the other hand, if x 
ontains at least

two 4's, then 449� x. Hen
e we may assume that x 
ontains exa
tly one 4.

Case 2a: x starts with 4.

Then x = 4z9. If 9�z, then 499�x. If 0�z, then 409�x. Hen
e we may assume

x 2 46

�

9. But then [x℄ is divisible by 7, sin
e for i � 0 we have 7 � [6

i

7℄ = [4 6

i

9℄.

Case 2b: x starts with 6.

Then we may write x = 6y4z9, where y; z 2 f0; 6; 9g

�

. If 6� z, then 6469� x. If

0� z, then 409� x. If 9� z, then 499� x. Hen
e we may assume z is empty.

If 9� y, then 6949� x. Hen
e we may assume x = 6y49, where y 2 f0; 6g

�

.

If 06� y, then 60649� x. Hen
e we may assume y 2 6

�

0

�

.

If 666 � y, then 666649� x. If 00000� y, then 60000049� x. Hen
e we may

assume y 2 f�; 6; 66gf�; 0; 00;000; 0000g. There are twelve 
orresponding possibilities

for x, and of these only 66000049 and 66600049 denote primes.

Case 2
: x starts with 9.

Then we may write x = 9y4z9, where y; z 2 f0; 6; 9g

�

.

If 0� y, then 9049� x. If 6� y, then 9649� x. If 9� y, then 9949� x. If 0� z,

then 409� x. If 9� z, then 499� x.

Hen
e we may assume x 2 946

�

9. If x 
ontains three or more 6's, then 946669�x.

Hen
e we may assume x 
ontains zero, one, or two 6's. But the numbers 949, 9469,

and 94669 are all 
omposite.

This 
ompletes the proof.
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In the same fashion we 
an 
ompute the minimal elements of

COMPOSITES= f4; 6; 8; 9; 10; 12;14;15;16;18; : : :g:

Theorem 2 If S = COMPOSITES, then

M(S) = f4; 6; 8; 9; 10;12;15; 20; 21; 22; 25; 27;30;32;33;35; 50; 51; 52; 55; 57;70;

72; 75; 77; 111;117;171; 371; 711;713;731g:

Proof. The proof is similar to that of Theorem 1, and is left to the reader.

Although we know M(S) is always �nite, no matter what S is, in some 
ases it 
an be

very diÆ
ult to 
ompute M(S). For example, we have the following

Conje
ture 3 If S = POWERS-OF-2= f1; 2; 4; 8; 16; 32; 64; : : :g, then

M(S) = f1; 2; 4; 8; 65536g:

This 
onje
ture seems very diÆ
ult to resolve at present. It would follow if we knew, for

example, that every power of 16 greater than 65536 
ontains a digit in the set f1; 2; 4; 8g.

The reader may enjoy trying to 
ompute M(S) for some other 
lassi
al sets, su
h as the

squares in base 10, or 
omputing the minimal elements of the primes expressed in bases other

than 10.
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