On the Maximum Number of Distinct Factors of a Binary String

Jeffrey Shallit §
Department of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1
Canada
shallit@graceland.waterloo.edu

Abstract.
In this note we prove that a binary string of length n can have no more than $2^{k+1}-1+$ $\binom{n-k+1}{2}$ distinct factors, where k is the unique integer such that $2^{k}+k-1 \leq n<2^{k+1}+k$. Furthermore, we show that for each n, this bound is actually achieved. The proof uses properties of the de Bruijn graph.
§ Research supported in part by an NSERC operating grant.

I. Introduction.

Let w be a string of 0 's and 1's, i.e. $w \in(0+1)^{*}$. We say that $z \in(0+1)^{*}$ is a factor of w if there exist $x, y \in(0+1)^{*}$ such that

$$
w=x z y
$$

In analogy with the function that counts the number of divisors of a positive integer n, define $d(w)$ to be the total number of distinct factors of the string w. For example, $d(10110)=12$, as its set of factors is given by

$$
\{\epsilon, 0,1,01,10,11,011,101,110,0110,1011,10110\} .
$$

Note that we count ϵ, the empty string, as a factor of every string.
In this note we discuss the maximum order of $d(w)$.

II. The Main Results.

Theorem 1. Let $|w|=n$. Then

$$
\begin{aligned}
d(w) & \leq \sum_{0 \leq i \leq n} \min \left(2^{i}, n-i+1\right) \\
& =\binom{n-k+1}{2}+2^{k+1}-1,
\end{aligned}
$$

where k is the unique integer such that $2^{k}+k-1 \leq n<2^{k+1}+k$.
Proof.
The first inequality is clear, as there are precisely $n-i+1$ possible factors of length i, of which at most 2^{i} can be distinct.

To see the second equality, note that if $2^{k}+k-1 \leq n<2^{k+1}+k$, then $2^{k} \leq n-k+1$ and $2^{k+1}>n-k$. Hence

$$
\begin{aligned}
\sum_{0 \leq i \leq n} \min \left(2^{i}, n-i+1\right) & =\sum_{0 \leq i \leq k} 2^{i}+\sum_{k<i \leq n}(n-i+1) \\
& =2^{k+1}-1+\binom{n-k+1}{2} .
\end{aligned}
$$

This completes the proof.
Theorem 2. The upper bound in Theorem 1 is actually attained for all n.
To prove Theorem 2, we use the de Bruijn graph B_{k}. This graph was apparently first studied by Flye-Sainte Marie in 1894 [FSM]. Good [G] and de Bruijn [B] independently rediscovered the graph in 1946. A more accessible reference is Bondy and Murty [BM, pp.

181-183] or van Lint [L, pp. 82-92]. For a survey of results on this graph until 1982, see Fredricksen [F].

Recall that B_{k} is a directed graph with 2^{k} vertices $\{0,1\}^{k}$, and 2^{k+1} directed edges with labels $\{0,1\}^{k+1}$. There is a directed edge from the head vertex, labeled $a_{1} a_{2} \cdots a_{k}$, to the tail vertex, labeled $b_{1} b_{2} \cdots b_{k}$, iff $a_{2} \cdots a_{k}=b_{1} \cdots b_{k-1}$. In this case the edge is labeled $a_{1} a_{2} \cdots a_{k} b_{k}$.

For example, below is the de Bruijn graph B_{3} :

A chain is an alternating sequence of distinct edges and possibly non-distinct vertices, $v_{1}, e_{2}, v_{2}, \ldots, e_{j}, v_{j}$, where $v_{i}, 2 \leq i \leq j$, is the tail of e_{i} and $v_{i}, 1 \leq i \leq j-1$, is the head of e_{i+1}. If $v_{1}=v_{j}$, this is a closed chain. A closed chain with distinct vertices (other than $v_{1}=v_{j}$) is a cycle. The length of a chain is the number of edges it contains.

We need the following lemma:

Lemma 3.

For each i with $2^{k} \leq i \leq 2^{k+1}$, the graph B_{k} contains a closed chain of length k that visits every vertex at least once.

Note that for $i=2^{k}$, this is a Hamiltonian cycle, and for $i=2^{k+1}$, this is an Eulerian tour.

Proof.

This theorem can be derived from results in a paper of Yoeli [Y], although it is not explicitly stated there.

Yoeli proved the following theorems:

Theorem A.

If B_{k} has a cycle of length i, then it has a closed chain of length $i+2^{k}$.

Theorem B.

B_{k} contains a cycle of length i for any $i, 0<i \leq 2^{k}$.
Combining these two theorems, we see that B_{k} has a closed chain of any length between 2^{k} and 2^{k+1}. However, it remains to see there exists such a chain that visits every
vertex of B_{k}. Yoeli's proof of Theorem A does in fact construct a closed chain that visits every vertex of B_{k}. Since this is nowhere stated in his paper, we briefly go through the argument.

Yoeli proves the following three lemmas:
Lemma 4. B_{k} is strongly connected.
Define a P-set of cycles of B_{k} to be a set of vertex-disjoint cycles covering all the vertices. (Each cycle must have at least one edge; thus a P-set of B_{k} has 2^{k} edges.)

Lemma 5.

Let C be a cycle of B_{k}. Then there exists a P-set of cycles of B_{k} including no edge of C.

Lemma 6.

Let C^{\prime} and $C^{\prime \prime}$ be vertex-disjoint cycles of B_{k} and let $e=(u, v)$ be an edge with u in C^{\prime} and v in $C^{\prime \prime}$. Then there is an edge e^{\prime} from v 's predecessor in $C^{\prime \prime}$ to u 's predecessor in C^{\prime}, and a cycle on the vertex set of $C^{\prime} \cup C^{\prime \prime}$ can be formed using edges of $C^{\prime} \cup C^{\prime \prime}$ together with e and e^{\prime}.

Now we can complete the proof of Lemma 3, following the proof Yoeli gave for his Theorem A.

Let C be a cycle in B_{k} of length i. By Lemma 5 there exists a P-set of cycles P_{1} of B_{k} including no edge of C. Let H_{1} be the subgraph of B_{k} formed by the edges of P_{1} and C. If the underlying undirected graph of H_{1} consists of more than one connected component, then by Lemma 4 there must be an edge e in B_{k} joining two components of H_{1}. Edge e must join two vertex disjoint cycles D^{\prime} and $D^{\prime \prime}$ in P_{1}, where no edge of H_{1} goes between D^{\prime} and $D^{\prime \prime}$. Applying Lemma 6 to combine D^{\prime} and $D^{\prime \prime}$, we obtain a P-set of cycles P_{2} including no edge of C, and such that $H_{2}=C \cup P_{2}$ has one fewer connected component. Continuing in this fashion leads to a connected subgraph H_{r}, consisting of $C \cup P_{r}$, where P_{r} is a P-set. Since H_{r} is connected, with each vertex's in-degree equal to its out-degree, H_{r} has an Eulerian tour. This provides a closed chain of length $2^{k}+i$ visiting all vertices.

Using Yoeli's result we can construct a string that achieves the upper bound:

Proof of Theorem 2.

Let n be given, and let k be the unique integer such that $2^{k}+k-1 \leq n<2^{k+1}+k$. Consider the de Bruijn graph B_{k}. By Lemma 3 there exists a closed chain C of length $n-(k-1)$ traversing each vertex in B_{k} and repeating no edges. Take the string formed by the k letters of the vertex label of the first vertex in C, followed by the last letter in the labels of all subsequent edges in C. The result is a string of length n, and we claim it is the desired one.

Now this closed chain visits every vertex of B_{k}; hence w contains all factors of length k, and hence all factors of lengths $0,1,2, \ldots k-1$.

On the other hand, the chain C does not repeat any edge, so all the factors of length $k+1$ are distinct. Hence so are all the factors of lengths $k+2, k+3, \ldots, n$, since any two factors of the same length must differ in the first $k+1$ positions.

Thus we see

$$
d(w)=\sum_{0 \leq i \leq k} 2^{i}+\sum_{k<i \leq n} n-i+1,
$$

and so the upper bound is achieved.

An Example.

Let $n=14$. Then $k=3$ and $n-(k-1)=12$. Looking at B_{3}, we see there is a closed chain of length 12 , as follows (listing only the vertices):

$$
\begin{gathered}
000 \rightarrow 001 \rightarrow 010 \rightarrow 100 \rightarrow 001 \rightarrow 011 \rightarrow 110 \rightarrow \\
101 \rightarrow 011 \rightarrow 111 \rightarrow 110 \rightarrow 100 \rightarrow 000 .
\end{gathered}
$$

This corresponds to the string 000100110111000 of length 14 . It has $15+66=81$ distinct factors, which is the maximum possible for any binary string of length 14.

III. Acknowledgments.

I am most grateful to M. Mendès France for having suggested the problem.
I would like to thank A. Rosenberg for suggesting the article of Yoeli, and T. Leighton for suggesting I speak to A. Rosenberg.

Finally, I would like to express many thanks to A. Lubiw, who provided the proof of Lemma 3.

References

[B] N. G. de Bruijn, A combinatorial problem, Nederl. Akad. Wetensch. Proc. 49 (1946), 758-764.
[BM] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan, 1976.
[F] H. Fredricksen, A survey of full length nonlinear shift register cycle algorithms, SIAM Review 24 (1982), 195-221.
[FSM] C. Flye-Sainte Marie, Solution to problem number 58, L'Intermédiaire des Mathématiciens 1 (1894), 107-110.
[G] I. J. Good, Normally recurring decimals, J. London Math. Soc. 21 (1946), 167-169.
[L] J. H. van Lint, Combinatorial Theory Seminar, Eindhoven University of Technology, Lecture Notes in Mathematics \# 382, Springer-Verlag, 1974.
[Y] M. Yoeli, Binary ring sequences, Amer. Math. Monthly 69 (1962), 852-855.

