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Abstract

We consider the computational complexity of some problems dealing with matrix

rank. Let E; S be subsets of a commutative ring R. Let x

1

; x

2

; : : : ; x

t

be variables.

Given a matrix M = M(x

1

; x

2

; : : : ; x

t

) with entries chosen from E [ fx

1

; x

2

; : : : ; x

t

g,

we want to determine

maxrank

S

(M) = max

(a

1

;a

2

;:::;a

t

)2S

t

rank M(a

1

; a

2

; : : :a

t

)

and

minrank

S

(M) = min

(a

1

;a

2

;:::;a

t

)2S

t

rank M(a

1

; a

2

; : : :a

t

):

There are also variants of these problems that specify more about the structure ofM , or

instead of asking for the minimum or maximum rank, ask if there is some substitution

of the variables that makes the matrix invertible or noninvertible.

Depending on E; S, and on which variant is studied, the complexity of these prob-

lems can range from polynomial-time solvable to random polynomial-time solvable to

NP-complete to PSPACE-solvable to unsolvable.

1 Introduction

We consider the computational complexity of some problems of linear algebra|more specif-

ically, problems dealing with matrix rank.

Our mathematical framework is as follows. If R is a commutative ring, thenM

n

(R) is

the ring of n�n matrices with entries in R. The rows �

i

of a matrix are linearly independent

over R if

P

i

c

i

�

i

= 0 (with c

i

2 R) implies c

i

= 0 for all i, and similarly for the columns.

�
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The determinant of M = (a

ij

)

1�i;j�n

is de�ned by

detM =

X

P=(i

1

;i

2

;:::;i

n

)

(sgnP )a

1;i

1

a

2;i

2

� � � a

n;i

n

;

where

P =

 

1 2 � � � n

i

1

i

2

� � � i

n

!

is a permutation of f1; 2; : : : ; ng. A matrix is invertible over R if and only if its determinant

is invertible over R [10].

The rank of a matrix M is the maximum number of linearly independent rows. Rank

can also be de�ned as the maximum number of linearly independent columns, and it is well-

known [10] that these two de�nitions coincide. We denote the rank of M as rank M . An

n� n matrix is invertible i� its rank is n.

A k � k submatrix of M is the array formed by the elements in k speci�ed rows and

columns; the determinant of such a submatrix is called a k � k minor. The rank of M can

also be de�ned as the maximum size of an invertible minor.

The problems we consider are along the following lines: let E;S be two subsets of R. We

are given an n�nmatrixM =M(x

1

; x

2

; : : : ; x

t

) with entries chosen fromE [ fx

1

; x

2

; : : : ; x

t

g,

where the x

i

are distinct variables. We want to compute

maxrank

S

(M) = max

(a

1

;a

2

;:::;a

t

)2S

t

rank M(a

1

; a

2

; : : : ; a

t

) (1)

minrank

S

(M) = min

(a

1

;a

2

;:::;a

t

)2S

t

rank M(a

1

; a

2

; : : : ; a

t

): (2)

Evidently there is no need to distinguish between column rank and row rank in this

de�nition. We do not necessarily demand that we be able to exhibit the actual t-tuple that

achieves the maximum or minimum rank.

One operation that we will frequently use in this paper is taking a list of matrices

M

1

;M

2

; : : : ;M

k

and constructing a large matrixM by placing each of theM

i

consecutively on

the main diagonal, and zeroes elsewhere. For the result we writeM = diag(M

1

;M

2

; : : : ;M

k

).

In this case, we have

detM =

Y

1�i�k

detM

i

; (3)

minrank

S

(M) �

X

1�i�k

minrank

S

(M

i

); (4)

maxrank

S

(M) �

X

1�i�k

maxrank

S

(M

i

): (5)

We will show that, depending on the arrangement of the variables in M , and on the sets

E;S, the complexity of the minrank and maxrank problems ranges from being in P to being

unsolvable.

There are several reasons for studying these problems. First, the problems seem | to

us, at least | natural questions in linear algebra. Second, a version of the minrank problem

is very closely related to determining the minimum rank rational series that approximates a

2



given formal power series to a given order; see [7, 16] and Section 15 of the present paper.

Third, the maxrank problem is related to the problem of matrix rigidity which has recently

received much attention [17, 6, 11], and may help explain why good bounds on matrix rigidity

are hard to obtain.

2 Some examples

Before describing our complexity results, we illustrate the minrank and maxrank problems

with some examples. First, consider the matrix

M =

2

6

4

x

1

x

2

2

4 x

1

4

0 0 x

3

3

7

5

:

Then minrank(M) = 1, attained at (x

1

; x

2

; x

3

) = (2; 1; 0). Also, maxrank(M) = 3, attained

at (x

1

; x

2

; x

3

) = (2; 2; 1).

Note that both minrank

S

(M) and maxrank

S

(M) may depend on S. For example, if

S = Q and

M =

"

1 x

x 2

#

then minrank

S

(M) = 2, while if S = R then minrank

S

(M) = 1, as can easily be seen by

taking x =

p

2. Similarly if S = R and

M =

"

1 x

x �2

#

then minrank

S

(M) = 2, while if S = C then minrank

S

(M) = 1, as can be seen by taking

x =

p

2i. Clearly minrank

S

(M) � minrank

S

0

(M) if S � S

0

.

A similar phenomenon occurs for the maxrank problem. For example, if S = GF (2), the

�nite �eld with two elements, and

M =

"

x x

1 x

#

;

then maxrank

S

(M) = 1. On the other hand, if S = GF (4), then maxrank

S

(M) = 2, as can

be seen by taking x = �, where � is a generator of the multiplicative group of S. Clearly

maxrank

S

(M) � maxrank

S

0

(M) if S � S

0

.

3 Summary of Results

Most of our complexity results for the computation of minrank and maxrank are naturally

phrased in terms of the decision problems given in Table 1. We have introduced two special

problems, SING(ularity) and NONSING(ularity), which could possibly be easier than the more

general minrank/maxrank problems.
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Fixed: R, a commutative ring.

E;S � R.

Input: M , an n� n matrix with entries from E [ fx

1

; : : : ; x

t

g.

k, a non-negative integer.

Problem Input Decide

MINRANK M;k min

(a

1

;:::;a

t

)2S

t

rank M(a

1

; : : : a

t

) � k ?

MAXRANK M;k max

(a

1

;:::;a

t

)2S

t

rank M(a

1

; : : : a

t

) � k ?

SING M 9(a

1

; : : : ; a

t

) 2 S

t

such that detM(a

1

; : : : a

t

) = 0 ?

NONSING M 9(a

1

; : : : ; a

t

) 2 S

t

such that detM(a

1

; : : : a

t

) 6= 0 ?

Table 1: Decision problems.

MAXRANK

S E NONSING SING MINRANK

GF (q) f0; 1g � E � GF (q) NP-complete

Z r.e.; undecidable

Q r.e.; NP-hard

R f0; 1g � E � Q RP PSPACE; NP-hard

C

Table 2: Complexity bounds for decision problems.

Table 2 summarizes our results on the complexity of the four decision problems. We put

the problems MAXRANK and NONSING together, since we have not been able to separate their

complexities, although we do not know whether they have the same complexity in general.

We have good evidence that the MINRANK and SING problems do not in general have the

same complexity. Over C , the MINRANK problem is NP-hard (Section 11), whereas SING has

a random polynomial-time solution (Section 5).

The exact value of E is not important for our bounds. All our lower bounds are valid

for E = f0; 1g and all our upper bounds are valid when E is Q or a �nite-dimensional

�eld extension of Q (respectively, when E is GF (q) or a �nite-dimensional �eld extension

of GF (q), when the characteristic is �nite). For the upper bounds, we assume the input

size to be the total number of bits needed to list each separate entry of the matrix M ,

representing numbers using the standard binary representation, representing constants in

a �nite-dimensional algebraic extension by arithmetic modulo an irreducible polynomial,

and representing polynomials by the vectors of their coe�cients. The upper bounds are also

robust in another sense. We can allow entire multivariate polynomials (with coe�cients from

E) in a single entry of the matrix M and still preserve our upper bounds, provided such a

multivariate polynomial is speci�ed by an arithmetic formula using binary multiplication and

binary addition, but no power symbol, so that the representation length of a multivariate

polynomial is at least as large as its degree.

S is signi�cant for the complexity, as shown in Table 2. However, our upper and lower
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MAXRANK

S E NONSING SING MINRANK

GF (q) GF (q) NP

Z r.e.

Q

R Q RP PSPACE

C

Table 3: Upper bounds for decision problems, when each variable occurs exactly once.

bounds for S = C are valid for S being any algebraically closed �eld (if S has �nite charac-

teristic, E must also, of course).

The results of Table 2 fall in three groups according to the proof technique used. The

random polynomial-time upper bounds use a result due to Schwartz [15]. The undecidabil-

ity result for Zuses a combination of Valiant's result that the determinant is universal [18]

and Matiyasevich's proof that Hilbert's Tenth Problem is unsolvable [12]. All the remaining

problems of the result table (those that are not marked either RP or undecidable) are equiv-

alent (under polynomial-time transformations) to deciding the existential �rst-order theory

over the �eld S. The equivalence implies the NP-hardness of all these problems, and lets us

use results by Ierardi [9] and Canny [3] to obtain the PSPACE upper bounds for C and R,

respectively. Since it is presently an open problem whether the existential �rst-order theory

over Q is decidable or not, we suspect it will be di�cult to determine the decidability status

of MINRANK and SING over Q.

We also consider the special case when each variable in the matrix occurs exactly once.

None of our lower bound proofs are valid under this restriction, and we have improved some

of the upper bounds. See Table 3 for a summary. The improved upper bounds all rely on

the determinant polynomial being multi-a�ne when no variable occurs twice. In such a case

the RP-algorithm for singularity over C can be generalized to work for singularity over any

�eld.

For a very special kind of matrix, viz. row-partitionable matrices where each variable

occurs exactly once, we give in Section 15 a polynomial time algorithm for computing the

minimum possible rank. The algorithm works in the case where S is any �eld.

Since minrank is at least NP-hard to compute over Z or a �eld, one might consider

the existence of an e�cient approximation algorithm. Suppose, however, that for some

�xed S (S being Zor a �eld) and E = f0; 1g, there is a polynomial time algorithm that

when given matrix M = M(x

1

; : : : ; x

t

) always returns a vector (a

1

; : : : ; a

t

) 2 S

t

satisfy-

ing rank (M(a

1

; : : : ; a

t

)) � (1 + ") � minrank

S

(M). Then the assumption P 6= NP im-

plies " �

7

1755

� 0:0039886, as we prove in Section 13. The proof uses reduction from

MAXEXACT3SAT; i.e., we use a known nonapproximability result for MAXEXACT3SAT [1] com-

bined with a MAXSNP-hardness proof for the minrank approximation problem.

5



4 Computing maxrank over in�nite �elds

In this section we show how to compute maxrank with a (Monte-Carlo) random polynomial-

time algorithm over any in�nite �eld.

We will also show that to solve the problem for R = S = F , it su�ces to consider the

case R = S =Z, when F contains Z.

Our main tool is the following lemma, adapted from a paper of Schwartz [15]:

Lemma 1 Let p(x

1

; x

2

; : : : ; x

t

) be a multivariate polynomial of total degree at most d which

is not the zero polynomial, and let F be a �eld containing at least 2d distinct elements. Then

if V is any set of 2d distinct elements of F , p(a

1

; a

2

; : : : ; a

t

) = p(a) 6= 0 for at least 50% of

all a 2 V

d

.

Theorem 2 LetM =M(x

1

; x

2

; : : : ; x

t

) be a n�nmatrix with entries in F [ fx

1

; x

2

; : : : ; x

t

g.

Let V � F be a set of at least 2n distinct elements (If Z � F then V = f�n; 1 �

n; : : : ;�1; 0; 1; 2; : : : ; ng may be used). Choose a t-tuple (a

1

; a

2

; : : : ; a

t

) 2 V

t

at random.

Then with probability at least 1=2, we have

maxrank

F

(M) = rank M(a

1

; a

2

; : : : ; a

t

):

Proof. Suppose maxrank

F

(M) = k. Then there exists some t-tuple (a

1

; a

2

; : : : ; a

t

) 2 F

t

such

that rank M(a

1

; a

2

; : : : ; a

t

) = k. Hence, in particular, there must be some k � k minor of

M(a

1

; a

2

; : : : ; a

t

) with nonzero determinant. Consider the corresponding k�k submatrixM

0

of M(x

1

; x

2

; : : : ; x

t

). Then the determinant of M

0

, considered as a multivariate polynomial

p in the indeterminates x

1

; x

2

; : : : ; x

t

, cannot be identically zero (since it is nonzero when

x

1

= a

1

; : : : ; x

t

= a

t

). It now follows from Lemma 1 that p is nonzero for at least half of all

elements of V

t

. Thus for at least half of all these t-tuples (a

1

; a

2

; : : : ; a

t

), the corresponding

k � k minor of M must be nonzero, and hence M(a

1

; a

2

; : : : ; a

t

) has rank at least k. Since

maxrank

F

(M) = k, it follows that rank M(a

1

; a

2

; : : : ; a

t

) = k for at least half of the choices

(a

1

; a

2

; : : : ; a

t

) 2 V

t

.

The theorem implies a random polynomial-time algorithm to compute maxrank

F

(M) over

an in�nite �eld F . Choose r t-tuples of the form (a

1

; a

2

; : : : ; a

t

) independently at random,

and compute rank M(a

1

; a

2

; : : : ; a

t

) for each of them, obtaining ranks b

1

; b

2

; : : : ; b

r

. Then

with probability at least 1 � 2

�r

, we have maxrank

F

(M) = max

1�i�r

b

i

.

It also follows from Theorem 2 that over an in�nite �eld F , the quantity maxrank(M)

cannot change when we consider an extension �eld F

0

with F � F

0

, or when we consider an

in�nite subset S � F . The algorithm runs exactly the same way so long as V � S � F � F

0

.

In particular, if F has characteristic zero, maxrank

F

(M) = maxrank

Z

(M). Therefore the

theorem also implies that the decision problem MAXRANK is in the complexity class RP for

E = Q and Z� S.
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5 The singularity problem over an algebraically closed

�eld

In this section we consider the complexity of the decision problem SING in the case R = S =

F , where F is an algebraically closed �eld. We will show that in this case, SING 2 RP. First,

we prove the following lemmas.

Lemma 3 Let p(x

1

; x

2

; : : : ; x

t

) be a multivariate polynomial over an in�nite �eld F . Then

p is identically zero i� p is the zero polynomial.

Proof. If p is the zero polynomial, then the result is clear.

Otherwise assume p is not the zero polynomial. We prove the result by induction on t,

the number of variables. If t = 1, then p is a univariate polynomial of degree d for some

d � 1. This polynomial has at most d zeroes, and since F is in�nite, p(a) 6= 0 for all but

�nitely many a 2 F .

Now assume the result is true for all t < k; we prove it for t = k. Choose a variable x in

p that occurs with highest degree, say d, and write p as a polynomial in x with multivariate

coe�cients, say p = z

d

x

d

+ � � � + z

1

x + z

0

. Since p is nonconstant, we have d � 1. Now z

d

is a polynomial in k � 1 in variables that is not the zero polynomial; hence by induction z

d

is not identically zero. Choose an assignment to the variables such that z

d

6= 0, and call the

new polynomial q = q(x). Then q is not the zero polynomial, and hence by induction is not

identically zero.

Lemma 4 Let p(x

1

; x

2

; : : : ; x

t

) be a nonconstant multivariate polynomial over a �eld F .

Then if F is algebraically closed, p takes on all values in F .

Proof. We prove the result by induction on t, the number of variables. If t = 1, then p = p(x)

is a nonconstant univariate polynomial. To show p takes on all values in F , consider the

equation p(x)� c = 0 for c 2 F . Since F is algebraically closed, this equation has a solution

x = x

0

, and then p(x

0

) = c. Since c was arbitrary, the result follows.

Now consider the case t > 1. Write p = y

1

+ y

2

+ � � � + y

r

, where each y

i

is a (possibly

constant) monomial of the form a

i

x

e

i1

1

x

e

i2

2

� � �x

e

it

t

. Furthermore, assume that all terms are

collected, so that we never have

i 6= j and (e

i1

; e

i2

; : : : ; e

it

) = (e

j1

; e

j2

; : : : ; e

jt

): (6)

Choose a term y

i

in which some variable, say x, occurs in the form x

e

, and e is as

large as any exponent occurring in any monomial of p. Since p is nonconstant, we must

have e � 1. Now think of p as a polynomial in x with multivariate coe�cients, and write

p = z

e

x

e

+ � � �+ z

1

x+ z

0

, where each z

i

is a polynomial in the remaining variables. We claim

that z

e

is not the zero polynomial; if it were, then (6) would be violated. Hence by Lemma 3

there is some assignment to the variables in z

e

that makes it nonzero. Make this assignment

to all variables in p; the result is a nonconstant polynomial in x, and the argument for t = 1

then applies.
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Theorem 5 If R = S = F , and F is algebraically closed, then SING 2 RP.

Proof. Consider the following algorithm: Let V � F be a set of at least 2n distinct elements

(if Z� F then V = f�n; 1 � n; : : : ;�1; 0; 1; 2; : : : ; ng may be used). Choose r t-tuples a

1

,

a

2

, : : :, a

r

at random from V

t

, and evaluate the determinant detM(a

i

) for 1 � i � r. If at

least two di�erent values are obtained, return \yes". If all the values obtained are the same,

and all are nonzero, return \no". If all the values are the same, and all are zero, return

\yes".

We claim that if there exists a t-tuple a such that detM(a) = 0, then this algorithm

returns the correct result with probability at least 1�1=2

r�1

, while if there is no such t-tuple,

the algorithm always returns the correct result.

To prove the claim, de�ne p(x

1

; x

2

; : : : ; x

t

) = detM(x

1

; x

2

; : : : ; x

t

), a multivariate poly-

nomial. If p is nonconstant, then by Lemma 4 it takes on all values in F , including 0. If p is

constant and nonzero, then it cannot take on the value 0. Finally, if p is constant and zero,

then it clearly takes on the value 0.

It now follows that our algorithm always returns the correct result except possibly when

all the values obtained are the same and nonzero. In this case we return \no", whereas if

we are unlucky the answer could possibly be \yes". However, if the polynomial p is not the

constant polynomial, then the polynomial p � p(a

1

) is nonzero, and by Lemma 1 we know

p(a

i

) 6= p(a

1

) with probability at least 1=2 for 2 � i � r. It follows that the probability of

making an error in this case is bounded by 1=2

r�1

.

6 Universality of the determinant

In this section, we prove a result that underlies all our lower bounds for the singularity and

minrank problems: that any multivariate polynomial is the determinant of a fairly small

matrix. The result was �rst proven by Valiant [18], but since we need a slightly modi�ed

construction and the result is fundamental to our lower bound proofs, we make this paper

self-contained and give the details of the construction.

To state the result, we need a few de�nitions. Let an arithmetic formula F be a well-

formed formula using constants, variables, the unary operator f�g and the binary operators

f+; �g. The length of a formula F (denoted by jF j) is de�ned as the total number of occur-

rences of constants, variables and operators. For example

j3xy � z � 3j = j3 � x � y + (�(z)) + (�(3))j = 11

and

j3(x+ y � 4) + 5zj = j3 � (x+ y + (�(4))) + 5 � zj = 12:

(Note that our de�nition of formula length is not the same as Valiant's.)

Proposition 6 Let R be a commutative ring. Let F be an arithmetic formula using con-

stants from E � R and variables from fx

1

; : : : ; x

t

g.

For some n � jF j+ 2, we may in time n

O(1)

construct an n� n matrix M with entries

from E [ f0; 1g [ fx

1

; : : : ; x

t

g such that p

F

= detM and minrank

R

(M) � n � 1, where p

F

denotes the polynomial described by formula F .
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The series-parallel s-t-graph G

F

with edge weightsFormula F

c 1

x

ts

sVariable x

Constant c

s = s

1

F = �F

1

G

F

1

t

1

t

1

= s

2

s = s

1

F = F

1

� F

2

G

F

2

G

F

1

G

F

2

t = t

1

= t

2

F = F

1

+ F

2

s = s

1

= s

2

G

F

1

t = t

2

t

1

t

1

Figure 1: Inductive construction of G

F

.

Proof. We use a modi�ed version of Valiant's construction [18]. The main di�erence is

that we insist that the rank of the constructed n � n matrix cannot be less than n � 1

under any substitution for the variables. We also consider the negation operation explicitly,

which allows us to avoid the use of negative constants in the formula, when wanted. Our

construction is essentially a modi�cation of Valiant's construction to take care of these extra

requirements combined with a simpli�cation that leads to matrices of somewhat larger size

than Valiant's original construction.

Let a formula F be given. The construction falls in two parts. In the �rst part, we

construct a series-parallel s-t-graph G

F

with edge weights from E [ f1g [ fx

1

; : : : ; x

t

g by

induction on the structure of F as sketched in Figure 1. To such a series-parallel s-t-graph

G

F

, we associate the polynomial

9



p(G

F

) =

X

� is s-t-path in G

F

(�1)

length(�)

�

Y

e an edge of �

weight(e):

By induction in the structure of F , one may verify that p

F

= p(G

F

).

In the second part of the construction, we change G

F

into a cyclic graph G

0

F

by adding

an edge from t to s of weight 1 and adding self-loops with weight 1 to all vertices di�erent

from s. The matrix M = fm

ij

g is simply the weight matrix for G

0

F

; i.e., m

ij

is the weight of

the edge from vertex i to vertex j if it exists and m

ij

= 0 otherwise. The determinant of M

is a sum of monomials, where each monomial is the product of the weights in a speci�c cycle

cover of G

0

F

(with sign �1 depending on the length of the cycles). But because of the special

form of G

0

F

each cycle cover will consist of a number of self-loops (possibly zero) and a single

cycle arising from an s-t-path in G

F

combined with the added edge from t to s. Hence, each

s-t-path in G

F

gives rise to one monomial in detM , and the sign of the monomial will be

�1 if and only if the path has odd length. Thus detM = p(G

F

) = p

F

.

To see the lower bound on minrank, consider the (n� 1) � (n � 1) submatrix M

0

of M

arising from erasing the column and row corresponding to the vertex s. The determinant

of M

0

has one monomial for each cycle cover of G

0

F

� fsg. However, removing the vertex

s breaks all cycles corresponding to paths from s to t in G

F

, but with s removed all the

remaining vertices have a self loop, so there is precisely one cycle cover and it consists

of all the self-loops. Since all the self-loops have weight 1, we �nd that detM

0

= 1, so

minrank

R

(M) � n� 1.

The bound 2+ jp

F

j on the size of G

F

arises because the graph G

F

has in addition to the

vertices s and t at most one vertex for each application of a rewrite rule from Figure 1.

Figure 2 illustrates the construction given in this proof on a speci�c example.

7 The singularity problem over the integers

In this section we prove that the decision problem SING is unsolvable for S = Zand E =

f0; 1g.

Theorem 7 (Undecidability of SING over Z)

Given a matrix M =M(x

1

; : : : ; x

t

) with entries from f0; 1g [ fx

1

; : : : ; x

t

g, it is undecid-

able whether there exist a

1

; : : : ; a

t

2Zsuch that detM(a

1

; : : : ; a

t

) = 0

Proof. We reduce from Hilbert's Tenth Problem [12]. An instance of Hilbert's Tenth Problem

is a Diophantine equation p(x

1

; : : : ; x

t

) = 0, where p is a multivariate polynomial with

integer coe�cients. We construct a formula for p using only +;�; �; 0; 1 in addition to

the indeterminates by replacing each integer constant c � 2 having binary representation

c =

P

l

i=0

b

i

2

i

with the formula

b

0

+ (1 + 1)[b

1

+ (1 + 1)[b

2

+ (1 + 1)[b

3

+ � � � + (1 + 1)[b

l

] � � �]]]:

By the construction of Proposition 6, the resulting formula f

p

for the polynomial p(x

1

; : : : ; x

t

)

is turned into a matrix M =M(x

1

; : : : ; x

t

) such that detM(x

1

; : : : ; x

t

) = p(x

1

; : : : ; x

t

). The

assertion of the theorem follows from the undecidability of Hilbert's Tenth Problem.

10



F : x

1

(x

2

� 4x

3

+ x

4

) + x

5

1

1

1

1

1 1

11

1 1

x

1

1

x

2

1

x

5

1

x

4

4

1 x

3

1

1

1

x

1

1

x

2

1

x

5

1

x

4

4

1 x

3

1

1

1

ts

G

F

: s t

1

G

0

F

:

M =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 x

1

0 0 0 0 0 0 0 x

5

0

0 1 1 0 0 0 0 0 0 0 0

0 0 1 x

4

x

2

4 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 1

0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 1 x

3

0 0

0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 1 1

1 0 0 0 0 0 0 0 0 0 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

detM = x

1

(x

2

� 4x

3

+ x

4

) + x

5

Figure 2: Constructing a matrix with speci�ed determinant.
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8 Existential �rst-order theories

In this section, we describe the syntax of existential �rst order theories over �elds and state

some complexity results for the corresponding decision problems. We will apply this later to

our rank problems.

For any �eld F , we have arithmetic operations +; �, constants 0; 1 and equality relation

=. Adding the Boolean operations ^;_;: and the existential quanti�er 9, we get the �rst

order language speci�ed by the following grammar. (Note that we require all quanti�ers to

be collected in a pre�x to the formula, thereby avoiding implicit universal quanti�cation and

alternation of quanti�ers.)

V ::= x

1

j x

2

j x

3

j � � � j x

n

j � � �

C ::= 0 j 1

AT ::= V j C

T ::= AT j (T+ T) j (T � T)

AF ::= T = T

BF ::= AF j (:BF) j (BF ^ BF) j (BF _ BF)

F ::= BF j 9 V F

A sentence is a formula with no free variables (all variables are bound by quanti�ers).

We say that sentence ' is true in the �eld F (the �eld F is a model of the sentence '), if

the sentence evaluates to true, when quanti�cations are interpreted over elements in F, and

arithmetic operations and constants are given the natural interpretations, and we write

F j= ':

For a more formal de�nition of the semantics, see, for example, Enderton [5].

Examples:

GF (2) 6j= 9x: x

2

+ x+ 1 = 0;

Q j= 9x9y: xy = 1 ^ x

2

6= 1;

R 6j= 9x9y: (1� x)y = 1 ^ x(1� y) = 1;

C j= 9z: z

2

+ 1 = 0:

The examples use both squaring and subtraction, which are shorthands for more compli-

cated formulas using f+; �g only. For example,

9x9y: (1� x)y = 1 ^ x(1� y) = 1

is shorthand for

9x9y9x

0

9y

0

: (1 + x

0

)y = 1 ^ x(1 + y

0

) = 1 ^ x+ x

0

= 0 ^ y + y

0

= 0:

For a �eld F , we de�ne the existential theory of F :

ETh(F ) = f' : F j= 'g:

The decision problem for ETh(F ) is: on input ', decide whether F j= '.

12



F Upper bound on ETh(F ) reference

GF (q) NP

Q recursively enumerable

Q

p

doubly exponential space Egidi, 1993 [4]

R PSPACE Canny, 1988 [3]; Renegar, 1992 [14]

C PSPACE Ierardi, 1989 [9]

Table 4: Upper bounds on deciding ETh(F )

Proposition 8 For F being any �xed �eld, ETh(F ) is NP-hard.

Proof. We reduce from 3SAT. Let C be an instance of 3SAT; i.e.,

C � C

1

^ C

2

^ � � � ^ C

k

where C

i

� (l

i1

_ l

i2

_ l

i3

) and l

ij

2 fy

1

; y

2

; : : : ; y

t

g [ fy

1

; y

2

; : : : ; y

t

g. We modify C to be

an arithmetic formula f

C

by replacing each y

i

with the atomic formula x

i

= 1 and replacing

each y

i

with the atomic formula x

i

= 0. Clearly,

C is satis�able i� F j= 9x

1

9x

2

� � � 9x

t

: f

C

:

The NP-hardness follows from the NP-hardness of 3SAT.

The complexity of deciding ETh(F ) seems to depend on the �eld F . Table 4 summarizes

the upper bounds that we are aware of.

ETh(GF (q)) is in NP for any �xed �nite �eld (GF (q)), since one may replace the vari-

ables with nondeterministically chosen �eld elements and evaluate the resulting variable free

formula in polynomial time.

Similarly, ETh(Q) is recursively enumerable, but to the best of our knowledge it is still

an open problem whether ETh(Q) is in fact decidable.

The doubly exponential space bound for the �eld of p-adic numbers, Q

p

(for some �xed

prime p) is proven for a more general theory than the one considered here. It is quite

conceivable that a better bound can be found for our existential sentences.

One may get a PSPACE bound for C as a corollary to the PSPACE bound for R, since

arithmetic in C can be represented by arithmetic on pairs of numbers in R. However, the

proof of Ierardi [9] uses a di�erent technique and holds for any algebraically closed �eld.

9 Decision problems over �nite �elds

In this section, we prove that both the singularity problem and the nonsingularity problem

over a �xed �nite �eld are as hard as deciding the corresponding existential �rst-order theory.

In particular, all four decision problems that we de�ned are NP-hard (and NP-complete).
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F = GF (q) Rewrite rules

Step 1 t(x) = 0 ! t(x)

q�1

= 0

Step 2 :t(x) = 0 ! 1� t(x) = 0

(t

1

(x) = 0) _ (t

2

(x) = 0) ! t

1

(x) � t

2

(x) = 0

(t

1

(x) = 0) ^ (t

2

(x) = 0) ! 1� (1 � t

1

(x)) � (1 � t

2

(x)) = 0

Step 3 t(x) = 0 ! detM

0

(x) = 0

Table 5: Transforming an existential sentence to a singularity problem.

F = GF (q) Rewrite rules

Step 1 t(x) = 0 ! 1� t(x)

q�1

6= 0

Step 2 :t(x) 6= 0 ! 1� t(x) 6= 0

(t

1

(x) 6= 0) _ (t

2

(x) 6= 0) ! 1� (1 � t

1

(x)) � (1 � t

2

(x)) 6= 0

(t

1

(x) 6= 0) ^ (t

2

(x) 6= 0) ! t

1

(x) � t

2

(x) 6= 0

Step 3 t(x) 6= 0 ! detM

00

(x) 6= 0

Table 6: Transforming an existential sentence to a nonsingularity problem

Lemma 9 Let F = GF (q) be a �xed �nite �eld.

Given an existential sentence 9x

1

� � � 9x

t

: '(x

1

; : : : x

t

) of length m, we can in time n

O(1)

construct two n � n matrices M

0

and M

00

with entries from f0; 1g [ fx

1

; : : : ; x

t

g, where

n = O(mq) such that

9x

1

� � � 9x

t

: '(x

1

; : : : x

t

) i� 9(a

1

; : : : ; a

t

) 2 F

t

: detM

0

(a

1

; : : : ; a

t

) = 0

and

9x

1

� � � 9x

t

: '(x

1

; : : : x

t

) i� 9(a

1

; : : : ; a

t

) 2 F

t

: detM

00

(a

1

; : : : ; a

t

) 6= 0:

Proof. To construct matrix M

0

, we modify the unquanti�ed formula ' using the rewriting

rules of Table 5.

Initially, we may assume that each atomic logic formula is on the form t(x) = 0, for

some arithmetic term t(x). In step 1, we use the fact that over the �eld GF (q), the function

x 7! x

q�1

maps 0 to 0 and maps any nonzero number to 1.

Following step 1, we may assume that any arithmetic term takes only values in f0; 1g

under all possible assignments to variables. This assumption should make the correctness of

the three rewrite rules in step 2 obvious.

When no more rewrite rules from step 2 are applicable, we have compressed '(x) to

an equivalent atomic formula t(x) = 0. In step 3, we construct a matrix M

0

such that

detM

0

= t(x) using Proposition 6.

When using the rewriting rules, any arithmetic term occurring on the right hand side of

a rule is an arithmetic formula and should stay a formula; i.e., it should not be expanded

into a sum of monomials, since such a sum could be exponentially large.

The construction of matrixM

00

is completely analogous, using the rewrite rules of Table 6.
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F = Q or R Rewrite rules

Step 1 :(F

1

^ F

2

) ! (:F

1

) _ (:F

2

)

:(F

1

_ F

2

) ! (:F

1

) ^ (:F

2

)

Step 2 :t(x) = 0 ! 1� z � t(x) = 0

Step 3 t(x

0

) = 0 ! t(x

0

)

2

= 0

Step 4 (t

1

(x

0

) = 0) _ (t

2

(x

0

) = 0) ! t

1

(x

0

) � t

2

(x

0

) = 0

(t

1

(x

0

) = 0) ^ (t

2

(x

0

) = 0) ! t

1

(x

0

) + t

2

(x

0

) = 0

Step 5 t(x

0

) = 0 ! detM(x

0

) = 0

Table 7: Transforming an existential sentence to a singularity problem, over Q and R.

Corollary 10 Let F be a �xed �nite �eld GF (q). For S = F and f0; 1g � E � GF (q), the

decision problems MAXRANK, NONSING, MINRANK and SING are all NP-complete.

Proof. Clearly, these problems are in NP, since we may nondeterministically guess an assign-

ment to the variables, and compute the rank of the resulting constant matrix in polynomial

time.

The NP-hardness follows from Lemma 9 combined with Proposition 8.

10 Lower bounds for singularity over Q and R.

In this section, we prove that the singularity problem over either of the �elds Q and R is as

hard as deciding the corresponding existential �rst-order theory. In particular, the problems

are NP-hard.

Lemma 11 Let F be either of the �elds Q or R.

Given an existential sentence 9x

1

� � � 9x

t

: '(x

1

; : : : x

t

) of length m, we can in time n

O(1)

construct an n� n matrix M with entries from f0; 1g [ fx

1

; : : : ; x

t

0

g, where n = O(m) such

that

9x

1

� � � 9x

t

: '(x

1

; : : : x

t

) i� 9(a

1

; : : : ; a

t

0

) 2 F

t

0

: detM(a

1

; : : : ; a

t

0

) = 0:

Proof. The proof is analogous to the proof of Lemma 9, but we handle negation di�erently.

To construct the matrix M , we modify the unquanti�ed formula ' using the rewriting

rules of Table 7.

Steps 3-5 in Table 7 correspond closely to steps 1-3 in Table 5, except that we have no

rule for negation. The �rst two steps of Table 7 serve to remove negation.

In step 1, we use de Morgan's laws to move all negations down so that they are applied

directly to the atomic formulas.

In step 2, we replace each negated atomic formula by an unnegated formula. We introduce

a new variable z for each such atomic formula, which represents the inverse of the term t(x).

These new variables must be existentially quanti�ed.

In step 3, we use the fact that over each of the �elds Q and R, the function x 7! x

2

maps

0 to 0 and maps any nonzero number to a positive number.
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Following step 3, we may assume that any arithmetic term takes only nonnegative values

under all possible assignments to the variables. This assumption should make the correctness

of the two rewrite rules in step 4 obvious.

When no more rewrite rules from step 4 are applicable, we have compressed '(x) to

an equivalent atomic formula t(x

0

) = 0. In step 5, we construct a matrix M such that

detM = t(x

0

) using Proposition 6.

Corollary 12 Let F be one of the �elds Q or R. The decision problem SING for S = F and

E = f0; 1g is NP-hard.

Proof. Immediate from Lemma 11 and Proposition 8.

11 Lower bound for minrank over a �eld

We have just proven for the speci�c �elds GF (q), Q and R that the decision problem SING

is as hard as deciding the corresponding existential �rst order theory. It is unlikely that this

result can be generalized to an arbitrary �eld, since we have found a random polynomial-time

algorithm for SING over C and the existential �rst-order theory is NP-hard over any �eld,

in particular over C . However, only one step in the proofs of Lemmas 9 and 11 does not

seem to generalize to an arbitrary �eld | namely the reduction of a system (conjunction) of

equations to a single equation, which is necessary for encoding a general existential sentence

as a singularity problem. However, we observe that a system of equations can be encoded

as a single minrank problem. In this section, we show that over any �eld the more general

decision problem MINRANK is indeed as hard as the corresponding existential �rst order theory.

Our construction will also lead to an alternative proof for the hardness of the singularity

problem over the �elds GF (q), Q and R.

Lemma 13 Let F be a �eld.

Given an existential sentence 9x

1

� � � 9x

t

: '(x

1

; : : : ; x

t

), of length m, we can in time

m

O(1)

construct an equivalent existential sentence 9x

1

� � � 9x

t

0

:  (x

1

; : : : ; x

t

0

) such that  

contains neither negation nor disjunction; i.e.,  is a conjunction of atomic formulas,

 (x

0

) � p

1

(x

0

) = 0 ^ � � � ^ p

r

(x

0

) = 0

for some arithmetic formulas p

i

, i = 1; : : : r, and

F j= 9x: '(x) i� F j= 9x

0

:  (x

0

):

Proof. First we remove all negations from ', using the rewriting rules of step 1 and 2 in

Table 7, which are valid in any �eld.

Without loss of generality, we may therefore assume that we are given the existential

sentence

9x

1

� � � 9x

t

: '(x

1

; : : : ; x

t

)

where ' is an unquanti�ed formula without negations using variables x

1

; : : : ; x

t

.
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f

i

f

0

i

p

i

(x) = 0 p

i

(x) = z

i

f

j

_ f

k

z

j

� z

k

= z

i

f

j

^ f

k

z

j

� z

k

= z

i

^ z

j

+ z

k

= z

i

Table 8: Subconstruction for elimination of _.

Let ' have s subformulas f

1

; : : : ; f

s

, each of which may be atomic or composite. For

each such subformula f

i

, we introduce a new (existentially quanti�ed) variable z

i

, and we

construct a new formula f

0

i

that is either atomic or the conjunction of two atomic formulas.

The f

0

i

s will be constructed such that

9x

1

� � � 9x

t

: \f

i

is satis�ed"

m

9x

1

� � � 9x

t

9z

1

� � � 9z

t

: \z

i

= 0 and f

0

j

is satis�ed

for all subformulas f

j

of f

i

(including f

i

)".

(7)

If f

1

is the subformula corresponding to the entire formula ', the implications yield

9x : '(x)

m

9x; z: z

1

= 0 ^ f

0

1

(x; z) ^ � � � ^ f

0

s

(x; z):

For each original subformula f

i

the new formula f

0

i

is constructed as described in Table 8.

By induction in the structure of f

i

, one may verify that this construction does satisfy (7),

from which the theorem follows.

Lemma 14 Let F be a �eld.

Given an existential sentence ' of length m, we can in time n

O(1)

construct an integer k

and an n � n matrix with entries from f0; 1g [ fx

1

; x

2

; : : : ; x

t

g, where n = O(m) such that

minrank

F

(M) � k i� F j= ':

Proof. Let an existential sentence be given. First we remove all negations and disjunctions

using the construction of Lemma 13.

Without loss of generality, we may therefore assume that we are given the existential

sentence

9x: p

1

(x) = 0 ^ � � � ^ p

r

(x) = 0

for some arithmetic formulas p

i

, i = 1; : : : r.

By Proposition 6, we may for each p

i

(x

1

; : : : ; x

t

) �nd an n

i

� n

i

matrix M

i

with entries

from f0; 1g [ fx

1

; x

2

; : : : ; x

t

g such that detM

i

= p

i

(x

1

; : : : ; x

t

) and minrank

F

(M

i

) � n

i

� 1.

Let n =

P

r

i=1

n

i

, let k =

P

r

i=1

(n

i

� 1), and construct the n � n matrix M by placing

M

1

; : : : ;M

r

consecutively on the main diagonal and zeroes elsewhere. Clearly, minrank

F

(M) �

k and rank M = k only when all the polynomials p

i

are simultaneously zero; therefore

minrank

F

(M) � k i� F j= '.

17



Corollary 15 Let F be a �eld. The decision problem MINRANK for S = F and E = f0; 1g

is NP-hard.

Proof. Immediate from Lemma 14 and Proposition 8.

Lemma 13 can also be used to give alternative proofs for Lemmas 9 and 11.

Lemma 16 Let an existential sentence 9x

1

� � � 9x

t

: '(x

1

; : : : x

t

) of length m be given.

If F = GF (q) is a �xed �nite �eld, then we can in time n

O(1)

construct two n�n matrices

M

0

and M

00

with entries from f0; 1g [ fx

1

; : : : ; x

t

g, where n = O(mq) such that

F j= 9x

1

� � � 9x

t

: '(x

1

; : : : x

t

) i� 9(a

1

; : : : ; a

t

) 2 F

t

: detM

0

(a

1

; : : : ; a

t

) = 0

and

F j= 9x

1

� � � 9x

t

: '(x

1

; : : : x

t

) i� 9(a

1

; : : : ; a

t

) 2 F

t

: detM

00

(a

1

; : : : ; a

t

) 6= 0:

If F is one of the �elds Q and R then we can in time n

O(1)

construct an n�n matrix M

with entries from f0; 1g [ fx

1

; : : : ; x

t

g, where n = O(m) such that

F j= 9x

1

� � � 9x

t

: '(x

1

; : : : x

t

) i� 9(a

1

; : : : ; a

t

) 2 F

t

: detM(a

1

; : : : ; a

t

) = 0:

Proof. Let an existential sentence be given. First we remove all negations and disjunctions

using the construction of Lemma 13. Without loss of generality, we may therefore assume

that we are given the existential sentence

9x: p

1

(x) = 0 ^ � � � ^ p

r

(x) = 0

for some arithmetic formulas p

i

, i = 1; : : : r.

If F is the �nite �eld GF (q), we use the property that the function x 7! x

q�1

maps 0 to

0 and maps any nonzero number to 1; i.e.,

GF (q) j= 9x: p

1

(x) = 0 ^ � � � ^ p

r

(x) = 0

m

GF (q) j= 9x: 1� (1� p

1

(x)

q�1

) � : : : � (1 � p

r

(x)

q�1

) = 0

m

GF (q) j= 9x: (1� p

1

(x)

q�1

) � : : : � (1� p

r

(x)

q�1

) 6= 0:

If F is one of the �elds Q and R, we use the property that the function x 7! x

2

maps 0

to 0 and maps any nonzero number to a positive number, i.e.,

F j= 9x: p

1

(x) = 0 ^ � � � ^ p

r

(x) = 0

m

F j= 9x: p

1

(x)

2

+ � � �+ p

r

(x)

2

= 0:

One may now construct the matrices with the postulated properties using Lemma 6.
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12 Upper bounds for minrank over a �eld

In this section, we prove that the minrank problem over a �eld is no harder than deciding

the corresponding existential �rst order theory. Combined with our earlier results, this

implies that the decision problem MINRANK is in fact equivalent (under polynomial-time

transformations) to deciding the corresponding existential �rst-order theory. In addition we

inherit the upper bounds of Table 4.

We start by giving the reduction for matrices that use only constants 0 and 1, and

afterwards extend the result to more general constants.

Lemma 17 Let F be a �eld.

Given an n � n matrix M with entries from f0; 1g [ fx

1

; x

2

; : : : ; x

t

g, and some k � n,

we may in time n

O(1)

construct an existential sentence ' such that

minrank

F

(M) � k i� F j= ':

Proof. Given (n � n) matrix M with variables x

1

; x

2

; :::; x

t

and constants from f0; 1g, we

express (in a �rst-order existential sentence) the assertion that some k columns of M span

all columns of M . For this purpose we introduce n new variables y

1

; y

2

; : : : ; y

n

in addition to

the variables already occurring in M . De�ne the modi�ed matrixM

0

, where M

0

ij

= y

j

�M

ij

;

i.e., each column of M

0

is a multiple (possibly zero) of the corresponding column in M .

We also introduce n

2

new variables z

11

; : : : ; z

nn

forming an n � n matrix Z. The assertion

minrank(M) � k is now equivalent to the following assertion: it is possible to choose the

y

j

's and z

ij

's in such a way that at most k of the y

j

's are nonzero and the matrix equation

M

0

� Z =M holds.

Our sentence will be an existential quanti�cation of a conjunction of two formulas. The

�rst one f

1

will assert that at most k of the y

j

's are nonzero, and the second one f

2

will

assert that the matrix equation M

0

� Z =M holds.

Construction of f

1

: We use the elementary symmetric functions de�ned by

�

j

(y

1

; : : : ; y

n

) =

X

A�f1;:::;ng ^ jAj=j

Y

i2A

y

i

;

for j = 1; : : : ; n. These functions satisfy the following property: there are at most k nonzero

y

j

's if and only if

�

k+1

(y

1

; : : : ; y

n

) = 0 ^ �

k+2

(y

1

; : : : ; y

n

) = 0 ^ � � � ^ �

n

(y

1

; : : : ; y

n

) = 0:

The \only if" direction is trivially satis�ed. For the \if" direction one can prove the

result by induction: For the basis of the induction consider �

n

(y

1

; : : : ; y

n

) =

Q

n

i=1

y

i

. If

�

n

(y

1

; : : : ; y

n

) = 0 then, since F contains no zero divisors, we must have some y

i

= 0, and

without loss of generality assume y

n

= 0. Since y

n

= 0, �

n�1

(y

1

; : : : ; y

n

) reduces to

Q

n�1

i=1

y

i

,

and the argument can be repeated to prove that in total at most k of the y

j

's are nonzero.

We need to �nd a short formula expressing that �

j

(y

1

; : : : ; y

n

) = 0. Consider the poly-

nomial p(z; y

1

; y

2

; : : : ; y

n

) = (z + y

1

)(z + y

2

) � � � (z + y

n

) = z

n

+ �

1

(y

1

; : : : ; y

n

)z

n�1

+ � � � +

�

n

(y

1

; : : : ; y

n

). Using this equality, the school method for multiplying out polynomials gives
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an arithmetic circuit of size O(n

3

) that computes �

j

(y

1

; : : : ; y

n

) for all j = 1; : : : ; n simul-

taneously. This circuit can be understood as a straight-line program of length s = O(n

3

)

using the operations f+; �g. Let the atomic formula h

i

be w = u+ v (respectively w = u � v)

if the i'th line of the straight-line program is w  u + v (respectively w  u � v). Without

loss of generality, we may assume that the variables used in the straight-line program are

w

1

; : : : ; w

s

in addition to input variables y

1

; : : : ; y

n

and output variables s

1

; : : : ; s

n

computing

�

1

; : : : ; �

n

. A suitable formula for f

1

is

f

1

� h

1

^ � � � ^ h

s

^ s

k+1

= 0 ^ � � � ^ s

n

= 0:

Construction of f

2

: We need to express that M

0

� Z =M . The ij'th entry in the matrix

product is

P

n

k=1

y

k

M

ik

z

kj

. Therefore construct the atomic formula

g

ij

� y

1

M

i1

z

1j

+ y

2

M

i2

z

2j

+ � � �+ y

n

M

in

z

nj

=M

ij

;

and de�ne

f

2

� g

11

^ g

12

^ � � � ^ g

nn

:

The sentence required by the lemma is thus

minrank

F

(M) � k �

9x

1

� � � 9x

t

9y

1

� � � 9y

n

9z

11

� � � 9z

nn

9w

1

� � � 9w

s

9s

1

� � � 9s

n

: f

1

^ f

2

:

We restricted the constants in our existential sentences to 0 and 1 in order to apply the

upper bounds of Table 4. However, an analogue of Lemma 17 does actually hold for the

minrank problem over matrices containing algebraic constants, because algebraic constants

can be de�ned by short �rst-order sentences.

� Over any �eld, the constant 2 is de�ned by

'(x) � x = 1 + 1:

� Over a �eld with characteristic di�erent from 2, the constant �

3

2

is de�ned by

'(x) � x � (1 + 1) + 1 + 1 + 1 = 0:

� Over R, the constant

p

2 is de�ned by

'(x) � 9y: x � x = 1 + 1 ^ y � y = x

(The last part ensures that we get the positive of the two square roots.)

� Over any �eld, the constant 15 is de�ned by

'(x) � 9y9z9w: x = 1 + y + z + w ^ y = 1 + 1 ^ z = y + y ^ w = z + z

(We use a repeated doubling strategy to make the de�ning formula have length pro-

portional to the usual binary representation of the integer 15.)
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� Over C , the constants i and �i are de�ned by

'(x; y) � x � x+ 1 = 0 ^ y � y + 1 = 0 ^ x+ y = 0

(Note that i and �i can not be de�ned separately, since i alone can only be de�ned

up to conjugation, the only nontrivial isomorphism on C .)

If F is a �eld, de�ne its prime �eld to be the intersection of all sub�elds of F [8, xV.5].

Clearly, the prime �eld underlying C and R is Q, and GF (q) is a �nite-dimensional algebraic

extension of its underlying prime �eld (which is GF (p) for some prime p). For a �eld F let

A

F

be the set of all numbers that are algebraic over the prime �eld underlying F .

Proposition 18 Let P be a prime �eld. Let fe

1

; : : : ; e

t

g � A

P

. Let F be the smallest

extension �eld containing all the constants fe

1

; : : : ; e

t

g. Let a standard representation of F

as a k-dimensional vector space over P (with vector arithmetic de�ned using an irreducible

polynomial) be given. Let the representation of the constants fe

1

; : : : ; e

t

g as vectors of binary

numbers be given.

It is possible to construct an existential �rst order formula '(x

1

; : : : ; x

t

) de�ning fe

1

; : : : ; e

t

g

in time polynomial in the combined bit length of all the constant representations.

Proof. Left to the reader.

The generalization of Lemma 17 is the following.

Lemma 19 Let F be a �eld. Let F

0

be a �nite dimensional algebraic extension of the prime

�eld underlying F . Let E � F

0

(� A

F

).

Given an n � n matrix M with entries from E [ fx

1

; x

2

; : : : ; x

t

g, and some k � n, we

may in time (ns)

O(1)

construct an existential sentence ' such that

minrank

F

(M) � k i� F j= ';

where s denotes the maximum bit length of the representation of an entry in M (using binary

numbers/quotients for prime �eld elements and vectors of these for algebraic numbers).

Proof. Use the construction from the proof of Lemma 17 combined with the construction of

Proposition 18.

Corollary 20 Let F be a �eld. Let F

0

be a �nite dimensional algebraic extension of the

prime �eld underlying F . Let S = F and let f0; 1g � E � F

0

.

The decision problem MINRANK is equivalent (under polynomial-time transformations) to

deciding ETh(F ).

If F is one of the �elds Q or R, then the decision problems SING and MINRANK are

equivalent by polynomial-time transformation.

If F is a �xed p-adic �eld Q

p

, then the decision problem MINRANK is solvable in doubly

exponential space.

If F is one of the �elds R and C then the decision problem MINRANK is in PSPACE.

Proof. Immediate from Lemmas 19, 14, 11 and the bounds cited in Table 4.
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13 Tight approximation of minrank is NP-hard

In this section, we consider the following approximation problem (parametrized with " > 0)

associated with the minrank problem.

(1 + ")-APXMINRANK

Let R be a commutative ring. Let E;S � R.

Input: a matrix M =M(x

1

; : : : ; x

t

) with entries in E [ fx

1

; : : : ; x

r

g.

Output: some a

1

; : : : ; a

t

2 S such that

rank M(a

1

; : : : ; a

t

) � (1 + ") �minrank

S

(M):

We prove that (1 + ")-APXMINRANK is NP-hard for " su�ciently small, when R is Zor a

�eld. The tool will be reduction from the approximation version of EXACT3SAT. Consider

the following problem.

(1� ")-MAXEXACT3SAT

Input: a conjunction of clauses C = C

1

^ � � � ^ C

k

, where each clause contains

exactly three distinct literals C

i

= (l

i1

_ l

i2

_ l

i3

), and each literal is one of the

Boolean variables fy

1

; : : : ; y

r

g or its negation.

For (b

1

; : : : ; b

r

) 2 f0; 1g

r

, let numb(C; b

1

; : : : ; b

r

) be the number of clauses in C

that are satis�ed under the assignment y

i

7! b

i

, and let

maxnumb(C) = max

(b

1

;:::;b

r

)2f0;1g

r

numb(C; b

1

; : : : ; b

r

):

Output: some truth assignment b

1

; b

2

; : : : ; b

r

2 f0; 1g such that

numb(C; b

1

; : : : ; b

r

) � (1 � ") �maxnumb(C):

Proposition 21 For " <

1

27

there is no polynomial-time algorithm for (1�")-MAXEXACT3SAT

unless P = NP.

Proof. See Bellare et al. [1, pages 48�].

To prove the non-approximability of minrank, we need a special type of reduction �rst

de�ned by Papadimitriou and Yannakakis [13]. Since we only use the reduction in a single

case, we specialize the de�nition to the concrete application.

Given E;S � R, MAXEXACT3SAT is said to L-reduce to APXMINRANK with parameters

�; �, if there exist two polynomial time computable functions f and g such that for a given

instance C of MAXEXACT3SAT,
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1. Algorithm f produces matrix M with entries in E [ fx

1

; : : : ; x

t

g such that

minrank

S

(M) � � �maxnumb(C);

2. Given any substitution (a

1

; a

2

; : : : ; a

t

) 2 S

t

for the variables in M , g produces a truth

assignment (b

1

; b

2

; : : : ; b

r

) 2 f0; 1g

r

such that

jmaxnumb(C)� numb(C; b

1

; b

2

; : : : ; b

r

)j � � � jminrank

S

(M)� rank M(a

1

; a

2

; : : : ; a

t

)j:

L-reduction preserves approximability.

Proposition 22 Let E;S � R be given. If MAXEXACT3SAT L-reduces to APXMINRANK with

parameters �; � � 0 and (1 + ")-APXMINRANK has a polynomial time solution then (1 �

��")-MAXEXACT3SAT has a polynomial time solution.

Proof. The polynomial time solution for (1���")-MAXEXACT3SATworks as follows. Given an

instance C(y

1

; : : : ; y

r

) of MAXEXACT3SAT, compute an instance M(x

1

; : : : ; x

t

) of APXMINRANK

using the function f . Find a substitution (a

1

; : : : ; a

t

) for (x

1

; : : : ; x

t

) using the polynomial

time solution for (1 + ")-APXMINRANK, and transform this substitution into a truth assign-

ment (b

1

; : : : ; b

r

) for (y

1

; : : : ; y

r

) using the function g. We verify the (1 � ��") bound by a

computation:

jmaxnumb(C)� numb(C; b

1

; : : : ; b

r

)j � � � jminrank

S

(M)� rank M(a

1

; : : : ; a

t

)j

� �" �minrank

S

M

� ��" �maxnumb(C):

Lemma 23 Let R be a commutative ring without zero divisors, and let f0; 1g � S � R and

E = f0; 1g. MAXEXACT3SAT L-reduces to APXMINRANK with parameters � =

65

7

and � = 1.

Proof. First, we describe the function f . Assume we have an instance of MAXEXACT3SAT,

viz. a conjunction of clauses C = C

1

^ � � � ^ C

k

, where each clause contains three distinct

literals C

i

= (l

i1

_ l

i2

_ l

i3

), and each literal is one of the Boolean variables fy

1

; : : : ; y

r

g or its

negation.

For each clause C

i

, there will be a 12 � 12 matrix M

i

, containing four smaller 3 � 3

matrices down the diagonal and zeroes elsewhere. The four smaller matrices are one for each

of the three variables occurring in the clause and one for the clause itself.

Each Boolean variable y

j

is represented by two arithmetic variables x

j1

and x

j2

. The

variable x

j1

being zero represents y

j

being true, and x

j2

being zero represents y

j

being false.

We can ensure that not both of x

j1

and x

j2

are zero by requiring

x

j1

+ x

j2

= 1 (8)

We allow the case that neither x

j1

nor x

j2

is zero.
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For each of the three variables occurring in a clause, there will be a matrix ensuring (8);

i.e., for s = 1; 2; 3, if l

is

= y

j

or l

is

= y

j

then

A

is

=

2

6

4

1 x

j1

x

j2

1 1 0

1 0 1

3

7

5

The matrix A

is

always has rank at least 2, and has rank exactly 2 when (8) is satis�ed, since

detA

is

= 1� x

j1

� x

j2

.

If C

i

= (y

j

1

_ y

j

2

_ y

j

3

), the fourth matrix will be

B

i

=

2

6

4

x

j

1

1

1 0

0 x

j

2

1

1

0 0 x

j

3

1

3

7

5

(If y

j

occurs in C

i

instead of y

j

, then replace x

j1

with x

j2

in matrix B

i

.)

The matrix B

i

always has rank at least 2, and has rank exactly 2 when x

j

1

1

= 0 or

x

j

2

1

= 0 or x

j

3

1

= 0.

The function f returns the matrix

M = diag(M

1

; : : : ;M

k

); where M

i

= diag(A

i1

; A

i2

; A

i3

; B

i

):

Clearly, f can be computed in polynomial time.

Clearly, minrank

S

(M) � k � (4 � 2) + (k �maxnumb(C)) = 9k �maxnumb(C). We know

that maxnumb(C) �

7k

8

, since the expected fraction of true clauses using a random truth

assignment is at least

7

8

. Combining, we get that

minrank

S

(M) � 9k �maxnumb(C)

� 9 �

8

7

maxnumb(C)�maxnumb(C)

=

65

7

maxnumb(C);

which proves the assertion about �.

We still need to describe the function g. Let a substitution a

11

; a

12

; : : : ; a

r1

; a

r2

2 S

2r

for the arithmetic variables in M be given. Construct a truth assignment b

1

; : : : ; b

r

for the

Boolean variables in C as follows. If a

j1

= 0, then let b

j

= 1, otherwise if a

j2

= 0 then let

b

j

= 0, but if both a

j1

6= 0 and a

j2

6= 0 then let b

j

take an arbitrary value. Clearly, g can be

computed in polynomial time.

If clause C

i

is not satis�ed under the truth assignment b

1

; : : : ; b

r

, then matrix M

i

will

have rank at least 9 under the substitution a

11

; a

12

; : : : ; a

r1

; a

r2

, because either a

j1

= a

j2

= 0

for some variable y

j

occurring in C

i

and then one of A

is

will have rank 3, or matrix B

i

will

have rank 3.

Therefore, k � numb(C; b

1

; : : : ; b

r

) � rank M(a

11

; a

12

; : : : ; a

r1

; a

r2

)� 8k, which combined

with our earlier inequality, minrank

S

(M) � 9k �maxnumb(C), implies

maxnumb(C)� numb(C; b

1

; : : : ; b

r

)

� 9k �minrank

S

(M) + rank M(a

11

; a

12

; : : : ; a

r1

; a

r2

)� k � 8k

= rank M(a

11

; a

12

; : : : ; a

r1

; a

r2

)�minrank

S

(M);
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which proves the assertion about �.

Theorem 24 Let R be a commutative ring without zero divisors, and let f0; 1g � S � R

and E = f0; 1g. For " <

7

1755

� :0039886 there is no polynomial time solution for (1 + ")-

APXMINRANK unless P = NP.

Proof. Combine Propositions 21 and 22 with Lemma 23.

14 The case when each variable occurs exactly once

In previous sections we have been considering matrices M = M(x

1

; x

2

; : : : ; x

t

) with entries

in E [ fx

1

; x

2

; : : : ; x

t

g, and each variable can occur arbitrarily often in M . In this section

and the next, we restrict our attention to matrices where each variable occurs exactly once,

and we call such matrices eveo.

De�nition. A polynomial p(x

1

; x

2

; : : : ; x

t

) is said to be multi-a�ne over a �eld F if, for

every substitution of all variables but one (say x

i

) with �eld elements, the result can be

expressed in the form ax

i

+ b with a; b 2 F .

Alternatively, p is multi-a�ne if every variable occurs with degree 0 or 1 in every term.

For example, 2xyz+3z+4x+5 is multi-a�ne over Q. Note that the determinant of an eveo

matrix is multi-a�ne.

The following lemmas will prove useful. We say that a polynomial p(x

1

; x

2

; : : : ; x

t

) is

identically zero over a �eld F if p(a

1

; a

2

; : : : ; a

t

) = 0 for all a

1

; a

2

; : : : ; a

t

2 F .

Lemma 25 Let p be a multi-a�ne polynomial over a �eld F . Then p is identically zero

over F i� p is the zero polynomial.

Note that this theorem is not necessarily true for polynomials in which variables occur

with higher degree; for example, the polynomial x

2

� x is not the zero polynomial, but is

identically zero over GF (2).

Proof. If p is the zero polynomial, the result is evident.

Now assume p is not the zero polynomial. We will prove by induction on the number of

variables that p is not identically zero. If t = 1, then p(x) = ax+ b, and at least one of a; b

is nonzero. If b is nonzero, then we can set x = 0 to get a nonzero value. If a is nonzero,

then set x = (1� b)=a to get the value 1.

Now assume the result is true for t < k variables; we prove it for t = k variables. Let

p = qx + r, where q; r are multi-a�ne polynomials in k � 1 variables. Then since p is not

the zero polynomial, either q or r must be di�erent from the zero polynomial. By induction.

either q or r takes a nonzero value. Substitute values for the k�1 variables to obtain ax+ b,

where not both a and b are zero. Then, as above, ax+ b takes a non-zero value in F .

Corollary 26 A multi-a�ne polynomial is identically zero over a �eld F i� it is identically

zero over some extension �eld F

0

� F .
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Lemma 27 A multi-a�ne function over a �eld is either constant or takes all values in the

�eld.

Proof. The proof is by induction on d, the number of variables. If d = 1, then p(x) = ax+b.

If p is non-constant, then a 6= 0. Then to get p(x) = c, choose x = (c� b)=a.

Otherwise, p is a function of t � 2 variables. Choose any variable that occurs at least

once, say x. Write p = ax+ b, where a; b are multi-a�ne polynomials in t� 1 variables. The

polynomials a and b cannot be both constant. If a is a constant, choose any assignment of

variables to b, forcing b to take the value b

0

; now set x = (b

0

� c)=a. If a is non-constant,

then by induction it takes on all values in F , so choose an assignment to the variables in a

that makes it nonzero; this can be done by Lemma 25. This assignment of variables gives a

the value a

0

and b the value b

0

, and now set x = (b

0

� c)=a

0

.

Theorem 28 For all �elds F , and all eveo matrices M , we can compute maxrank

F

(M) in

random polynomial time.

Proof. We mimic the proof of Theorem 2. Let M be an n�n eveo matrix. If the �eld F has

at least 2n elements, then the proof goes through essentially unchanged, with V any subset

of F of cardinality 2n. Otherwise, choose an appropriate �eld extension F

0

with at least 2n

elements. By Corollary 26 a minor is not identically zero over F

0

i� it is not identically zero

over F , so we may compute maxrank over F

0

instead of over F .

Now recall the singularity problem.

Theorem 29 If F is a �eld, and M is an eveo matrix, then the decision problem SING is

in the complexity class RP.

Proof. By Lemmas 25 and 27, it is enough to ensure that the determinant detM is not a

nonzero constant polynomial. Mimic the proof of Theorem 5, using Corollary 26, if necessary,

to extend the base �eld.

15 The minrank problem for row-partitionable matri-

ces

In this section we show that the minrank problem is solvable in deterministic polynomial

time if the matrix has a certain special form, in which each variable appears only once and

there is a division between the variable and non-variable entries.

More formally, let M be an m� n matrix with entries chosen from E [ fx

1

; x

2

; : : : ; x

t

g.

We say that M is row-partitionable if

(a) each variable x

i

occurs exactly once in M ; and

(b) for each row i there exists an index k

i

such that a

ij

2 E if 1 � j � k

i

, and a

ij

62 E if

k

i

< j � n.
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As an example, the following matrix is row-partitionable:

M =

2

6

6

6

4

3 7 �2 x

1

x

2

2 4 x

3

x

4

x

5

�3 5 6 2 x

6

7 2 9 1 4

3

7

7

7

5

The main motivation for this subproblem comes from the theory of rational series; for an

introduction to this area, see [2]. Let f be a formal power series in noncommuting variables

over a �eld F . Then f is said to be rational if it can be expressed using the operations sum,

product, and quasi-inverse (the map sending x ! 1=(1 � x)). The series f is said to be

recognizable if the coe�cient of the term corresponding to w (which is written as (f;w)) can

be computed as follows: there is a matrix-valued homomorphism �, a row matrix �, and a

column matrix  such that (f;w) = ��(w). A well-known theorem due to Sch�utzenberger

(e.g., [2, Thm. 6.1]) proves that a formal power series is rational i� it is recognizable. In

this case the dimension of the smallest possible matrix representation (the dimension of

the square matrix �) is an invariant called the rank of the rational series. The following

problem now arises [7, 16]: given a (not necessarily rational) formal power series f , compute

the smallest possible rank R

f

(n) of any rational series agreeing with f on all terms of total

degree at most n.

It can be shown that this number R

f

(n) is equal to the minrank of an associated Hankel-

like matrixM(f; n). More speci�cally, we have R

f

(n) = minrank

F

(M(f; n)), where the rows

of M(f; n) are labeled with words w of length � n, the columns are labeled with words x

of length � n, and the entry in the row corresponding to w and the column corresponding

to x is (f;wx) if jwxj � n, and a unique indeterminate otherwise. It is easy to see that this

particular M(f; n) is row-partitionable.

Consider the following algorithm.

MR(M = (a

ij

)

1�i�m;1�j�n

)

(1) rearrange rows so that k

1

� k

2

� � � � � k

m

;

(2) if there exists u, 1 � u � k

1

such that a

1u

6= 0,

set r 1; T  f1g

else

set r 0; T  ;

(3) for s = 2 to m do

if the vector (a

s1

; a

s2

; : : : ; a

s;k

s

) is not linearly dependent on (a

ij

)

i2T; 1�j�k

s

set r r + 1; T  T [ fsg

(4) return(r)

Theorem 30 Let F be a �eld. Then algorithm MR correctly computes minrank

F

(M) and

uses O(m

3

n) �eld operations.

To prove correctness, we �rst observe that the reordering in step (1) cannot change

minrank

F

(M).

Next, we observe that the following invariants hold before the loop step corresponding

to s is performed:
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(a) for all possible assignments to the variables, the rows in the set T are linearly inde-

pendent;

(b) for each assignment to the variables in the rows of T , there exists an assignment to

the variables in the rows T = f1; 2; : : : ; s � 1g � T such that each of the rows in T is

dependent on a row of T .

These invariants clearly hold after step (2). We now prove by induction on s that they hold

throughout the algorithm.

Suppose the invariants hold up to step s � 1. At step s, we consider row s of M . If

(a

s1

; : : : ; a

s;k

s

) is not dependent on (a

ij

)

i2T; 1�j�k

s

, then for any assignment of the variables

row s of M is not dependent on the rows in T , so by adding s to T we preserve part (a)

of the invariant, and part (b) is una�ected. If, on the other hand, a = (a

s1

; : : : ; a

s;k

s

) is

dependent on M

0

= (a

ij

)

i2T; 1�j�k

s

, then write a as a linear combination of the rows of M

0

.

We can then assign the variables in row s of M appropriately so that the entire row s is a

linear combination of the rows of T . Then part (b) of the invariant is preserved, and part

(a) is una�ected. This completes the proof of correctness.

To complete the proof of the theorem, it su�ces to observe that we can test to see if row

s is dependent on rows of T in at most O(m

2

n) �eld operations, and this step is performed

at most m times.

References

[1] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs and non-approximability | towards

tight results (3rd revision). Report Series 1995, Revision 02 of ECCC TR95-024, Electronic

Colloqium on Computational Complexity, http://www.eccc.uni-trier.de/eccc/, Decem-

ber 1995. Earlier results appeared in Proc. 36th Ann. Symp. Found. Comput. Sci. (1995),

422{431.

[2] J. Berstel and C. Reutenauer. Rational Series and Their Languages, Vol. 12 of EATCS Mono-

graphs on Theoretical Computer Science. Springer-Verlag, 1988.

[3] J. Canny. Some algebraic and geometric computations in PSPACE. In Proc. Twentieth ACM

Symp. Theor. Comput., pp. 460{467, 1988.

[4] L. Egidi. The complexity of the theory of p-adic numbers. In Proc. 34th Ann. Symp. Found.

Comput. Sci., pp. 412{421, 1993.

[5] H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.

[6] J. Friedman. A note on matrix rigidity. Combinatorica 13 (1993), 235{239.

[7] C. Hespel. Approximation de s�eries formelles par des s�eries rationnelles. RAIRO Inform.

Th�eor. 18 (1984), 241{258.

[8] T. W. Hungerford. Algebra, Vol. 73 of Graduate Texts in Mathematics. Springer-Verlag, 1987.

[9] D. Ierardi. Quanti�er elimination in the theory of an algebraically-closed �eld. In Proc.

Twenty-�rst Ann. ACM Symp. Theor. Comput., pp. 138{147, 1989.

28



[10] S. Lang. Algebra. Addison-Wesley, 1971.

[11] S. V. Lokam. Spectral methods for matrix rigidity with applications to size-depth tradeo�s

and communication complexity. In Proc. 36th Ann. Symp. Found. Comput. Sci., pp. 6{16,

1995.

[12] Y. V. Matiyasevich. Hilbert's Tenth Problem. The MIT Press, 1993.

[13] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes.

J. Comput. System Sci. 43 (1991), 425{440.

[14] J. Renegar. On the computational complexity and geometry of the �rst-order theory of the

reals. part I: Introduction. preliminaries. the geometry of semi-algebraic sets. the decision

problem for the existential theory of the reals. J. Symbolic Comput. 13 (1992), 255{299.

[15] J. T. Schwartz. Fast probabilistic algorithms for veri�cation of polynomial identities. J. Assoc.

Comput. Mach. 27 (1980), 701{717.

[16] J. O. Shallit. On approximation by rational series in noncommuting variables. Unpublished

manuscript, in preparation, 1996.

[17] L. Valiant. Graph-theoretic arguments in low-level complexity. In 6th Mathematical Foun-

dations of Computer Science, Vol. 197 of Lecture Notes in Computer Science, pp. 162{176.

Springer-Verlag, 1977.

[18] L. G. Valiant. Completeness classes in algebra. In Proc. Eleventh Ann. ACM Symp. Theor.

Comput., pp. 249{261, 1979.

29


