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ABSTRACT

Let 6 be a real number with continued fraction expansion 0 = [ag, a1, as, .. ], and let M =

[ Z Z ] be a matrix with integer entries and with |det(M)| # 0. If § has bounded partial

quotients, then gg_‘l'_'s = [a}, a7, a3, .. ] also has bounded partial quotients. More precisely, if

a; < K for all sufficiently large j, then a} < [det(M)|(K + 2) for all sufficiently large j. We
also give a weaker bound valid for all a} with j > 1.
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1. Introduction

Let @ be a real number whose expansion as a simple continued fraction is
0= [(10, a, az, .. ] ’

and set

K(0) :==sup a;, (1.1)
i>1

where we adopt the convention that K(#) = +oo if § is rational. We say that 6 has bounded
partial quotients if K () is finite. We also set
K (8) :=limsup q; , (1.2)
i>1

where K (f) = 400 if 0 is rational. Certainly K. (0) < K(0), and K (0) is finite if and only
if K(0) is finite. A survey of results about real numbers with bounded partial quotients is given
in [16].

The property of having bounded partial quotients is equivalent to € being a badly approz-
1mable number, which is that

lim inf[|¢6][ > 0,



in which ||z|| = min(z — |z |, [#] — «) denotes the distance from  to the nearest integer.

This note proves two quantitative versions of the “folk theorem” that if § has bounded

a

is an integer matrix with det(M) # 0, then ¢ = 2t also

partial quotients and M = cOtd

b
d
has bounded partial quotients.

The first result bounds Koo(jﬁS) in terms of K., (#) and depends only on |det(M)|.

a

Theorem 1.1. Let 8 have a bounded partial gquotients. If M = [ . ] is an integer matric

d
with | det(M)| # 0, then

<a0—|—b

m) < | det(M)|(K~o(6) +2) - (1.3)

The second result bounds K(ggj_’g) in terms of K(6), and depends on the entries of M.

Theorem 1.2. Let 8 have bounded partial quotients. If M = [ Z Z ] is an integer matriz
with | det(M)| # 0, then

<a0—|—b

Sr) < 1det Q)| () +2) + [e(et + )] (14)

The last term in (1.4) can be bounded in terms of the partial quotient ag of 8, since
|0+ d] < [c[(laol +1) +[d] < |eao| + |e| +|d] .

Theorem 1.2 gives no bound for the partial quotient Ay := ngISJ of gg-—ll——s‘

Chowla [2] proved in 1931 that K(%0) < 2ac(K(0) + 1)°, a result rather weaker than

Theorem 1.2.

We obtain Theorem 1.1 and Theorem 1.2 from stronger bounds that relate the Diophantine

af+b
cf+d?

approximation constants of # and which appear below as Theorem 3.2 and Theorem 4.1,

respectively. Theorem 3.2 is a simple consequence of a result of Cusick and Mendés France [4]

concerning the Lagrange constant of 6.

af+b
cO+d

The continued fraction of can be directly computed from that for 8, as was observed

in 1894 by Hurwitz [8], who gave an explicit formula for the continued fraction of 20 in terms

of that of 6. In 1947 Hall [6] gave a method to compute the continued fraction for general

af+b
cO+d

Let M(n,Z) denote the set of n X n integer matrices. Raney [14] gave for each M =



d

continued fraction of

[ Z b ] € M(2,7) with det(M) # 0 an explicit finite automaton to compute the additive

af+b

o from the additive continued fraction of 8.

In connection with the bound of Theorem 1.1, Davenport [5] observed that for each irrational
6 and prime p there exists some integer 0 < a < p such that 8’ = 6 + % has infinitely many
partial quotients a,,(6’) > p. Mendés France [12] then showed that there exists some 6’ = 6+ 5
having the property that a positive portion of the partial quotients a,,(8') of 6’ are > p.

Some other related results appear in Mendés France [10, 11]. Basic facts on continued

fractions appear in [1, 7, 9, 17].
2. Badly Approximable Numbers

Recall that the continued fraction expansion of an irrational real number 6 = [ag, a4, .. ] is
determined by
O=ap+6y, 0<by<1,

and for n > 1 by the recursion

=a,+6,, 0<6,<1.
on—l

The n-th complete quotient a,, of 8 is

1
Qp 1= 0_ = [aja Ajt1y jd2, - - ] :
n
The n-th convergent 5—" of 0 is
Pn
. = lag, a1, ...,0,] ,
n

whose denominator is given by the recursion ¢_; = 0,90 = 1, and ¢nt1 = @pnt1¢n + Gn-1. It is

well known (see [7, §10.7]) that

1
Ol =g.0 —py| = ——— 2.1
||n0]] = |gnf — Pl P (2.1)

Since a1 < opy1 < apy1 + 1 and g,—1 < gy, this implies that

1
—— < qnl]]g.0|| < , 2.2
g <l < (2:2)

for n > 0.



For an irrational number 8 define its type L(6) by
L(9) = sup (qllg0]])7",
g1
and define the Lagrange constant L..(8) of 6 by
Loo () = limsup (qll¢0]))~" .
g1
Again we use the convention that L(8) = L (6) = +oo if 8 is rational.

The best approximation properties of continued fraction convergents give

L(0) = sup (gn|lg.0]))"* (2.3)
n>0
and
Loo(6) = limsup (ga[|.01)™" - (2-4)

There are simple relations between these quantities and the partial quotient bounds K ()

and K. (9), cf. [15, pp. 22-23].

Lemma 2.1. For any irrational 8 with bounded partial quotients, we have

K(0) < L(6) < K(6) +2 . (2.5)

Proof. This is immediate from (2.2) and (2.3). O

Lemma 2.2. For any irrational 8 with bounded partial quotients
Koo(0) <L(0) <Ko(0)+2. (2.6)

Proof. This is immediate from (2.2) and (2.4). O
Although we do not use it in the sequel, we note that both inequalities in (2.6) can be
slightly improved. Since ¢, < (a, + 1)gn—1, (2.1) yields

1 1
< .
Upt1 + qz—;l T Qptl + 1/(an + ]-)

gnllgn8]| <

Since a,, < K (6) from some point on, this and (2.4) yield

1

Loo(0) > Koo+ 1y -

(2.7)



Next, from (2.1) we have

qn
n n0 -
e ||q || an-l—lqn—l'Qn—l
_ 1
Apy1 + anl+2 + q:’l—;l'
Hence
— In—1
n no = Ay, + + .
(4n1291]) nt ot
Let K = K (6). Then for all n sufficiently large we have
S 14 1 K+2
2778 = )
=TT K41 K41

S0

(aallgfl) ™t <K+ 41

We conclude that

3. Lagrange Spectrum and Proof of Theorem 1.1.

(2.8)

The Lagrange constant satisfies L., () > /5 for all 8, and is also given by the formula

L(0) = limsup([a;, aj+1,...]+[0,a;-1,aj_2,..

Jj—oo
see Cusick and Flahive [3].

Z ] with det(M) # 0, set

. . . a
Given an integer matrix M = [
c

ad +b
cd+d’

M(9) =

and note that M;(M2(0)) = M; M2 (6).

Lemma 3.1. If M is an integer matric with det(M) = £1, then

"al]) )

(3.1)

(3.2)



Proof. This is well-known, cf. [13] and [4, Lemma 1], and is deducible from (3.1). O

The main result of Cusick and Mendes France [4] yields:

Theorem 3.2. For any integer m > 1, let
G ={M e M(2,Z) : |det(M)| =m} .
Then for any irrational number 0,

sup (Lo (M(8))) =mL(0) . (3.3)
MeGnm

Proof. Theorem 1 of [4] states that

o, <LOO <“0; b)) — mI(8) . (3.4)

ad=m
0<b<d

Let GL(2,7) denote the group of 2 x 2 integer matrices with determinant +1. We need only

/ /
observe that for any M in G,, there exists some M € GL(2,7%) such that MM = [ L(l) Z, ]

with a’d’ = m and 0 < ¥ < d'. For if so, and ¢ = gg—l—l——s’ then Lemma 3.1 gives

Do) = L () = Lo (V0M(0) = Lo (20

A B
C D

Ca+Dec=0.

whence (3.4) implies (3.3). Finally set M = [ ] , and we need

Take C' = %ﬂ and D = _Mmcﬂ' Then ged(C, D) = 1, so we may complete this row to a

matrix ]\7[6 GL(2,7). Multiplying this by a suitable matrix [ 1 yields the desired M.

¢
0 =1
a
Proof of Theorem 1.1. Theorem 3.2 gives L. (M(6)) < det(M)L(#). Now apply Lemma 2.2

twice to get

Ka(M(0)) < Loo(M())
< | det(M)| Lo (6)
< |det(M)|(Kn(0) +2) . O



4. Numbers of Bounded Type and Proof of Theorem 1.2

Recall that the type L(6) of 0 is the smallest real number such that g||¢6|| > ﬁ for all
g>1

Theorem 4.1. Let 8 have bounded partial quotients. If M = [ Z ] is an integer matriz

d
with det(M) # 0, then

ab +b
< . .
<c0—|—d> < | det(M)|L(0) + |c(ch + d)| (4.1)
Proof. Set ¢ = gg—l—l——s' Suppose first that ¢ = 0 so that | det(M)| = |ad| > 0. Then L(¢) > I,
where
ad +b ab +b
e =gl = alla (“27) 11=alg () -5l (42)
d d
We have
ladjz = |aq] |agf + (bq — dp)|
1
> |ag| |lagfl] > — . (4.3)
(9)
For any € > 0 we may choose ¢ in (4.2) so that % > L(¢) — €. Then
|det(M)|L(0) = [adL(0) > = > L(¥) — <. (4.4)
T

Letting ¢—0 yields (4.1) when ¢ = 0.
Suppose now that ¢ # 0. Again L(¢) > % where

ad +b
wr:qllq¢||=q|q< >—pl-

cd+d
We have
|0 + d|z = g|(ga — pc)d — (pd — ¢b)] , (4.5)
so that
o8+ d| |25z = |ga— pel |(ga — pe)f — (pd — gb)|
> |ga — pcl [|(ga — pc)d|| . (4.6)



We first treat the case ga — pc = 0. Now
a —c q| | ga—pc ” 0
-b d p| | pd—gb 0]’
. a
since det [ b d
|6 + d|z = q|pd — ¢b| > 1.
It follows that ga — pc # 0 provided that
1
= > |cO+d|.
x

We next treat the case when ga — pc # 0. Now from the definition of L(6) we see

00— pel (g~ pe)0ll > 7

¢ ] = det(M) # 0. Thus if ga — pc = 0 then |pd — ¢gb| > 1, hence (4.5) gives

(4.7)

(4.8)

(4.9)

Given € > 0, we may choose ¢ so that % > L(¢) — €, and we obtain from (4.6) and (4.9) that

— 1
je0+d| |T—FE|L(8) > — > L(y) — .
x
However, the bound
ab+b 1
_pl< =
|q<c0—|—d> Py
implies that
a ad +b a 1
2 = < _ hd -l
|q<c> pl < |q<ce+d> q<c>|+2
1 1
< gl des(M)] ||+ 5

c(cd+ d)
Multiplying this by g and substituting with (4.10) yields

<a0—|—b

69—|—d> — e < [det(M)|L(6) + %M .

q

Letting e—0 and using ¢ > 1 yields

<a0—|—b
cd+d

< det(M)|L(6) + gle(cd +d)]

provided that (4.8) holds. Now (4.8) fails to hold only if

<a0—|—b
cd+d

>§|c0—|—d|.

9

(4.10)

(4.11)

(4.12)

(4.13)



The last two inequalities imply (4.1) when ¢ #0. O
Proof of Theorem 1.2. Applying Theorem 4.1 and Lemma 2.1 gives

ab+b ab +b
<
K<60+d> - L<c0+d>

| det(M)|L(8) + |c(c + d)|

IA

IA

| det(M)|(K(6) +2) + |e(cf + d)|

which is the desired bound. O

Remark. The proof method of Theorem 4.1 can also be used to directly prove the upper bound
Lo (M(6)) < |det(M)|L(0) (4.14)

in Theorem 3.1, from which Theorem 1.1 can be easily deduced. We sketch a proof of (4.14)

for the case ¥ = gg_‘ll_'s with ¢ # 0. For any € > 0 and all sufficiently large ¢* > ¢*(¢*), we have

1
Nl > ———— .
70> e

We choose ¢ = ¢,,(¢) for sufficiently large n, and note that
q* = |Qn(¢)a - Pn(¢)c|_>°°

as n—00, since ¥ is irrational. We can then replace (4.9) by

1

Nl > ————— .
70> e

This yields (4.12) with L(8) replaced by L..(8) + €*, and letting g—o0, €0 and ¢"—0 yields
(4.13).
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