Linear Fractional Transformations of Continued Fractions with Bounded Partial Quotients

J. C. Lagarias
AT\&T Research
Murray Hill, New Jersey 07974 USA
jcl@research.att.com
J. O. Shallit
Department of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1
Canada
shallit@uwaterloo.ca

(August 2, 1996)

ABSTRACT
Let θ be a real number with continued fraction expansion $\theta=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$, and let $M=$ $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ quotients, then $\frac{a \theta+b}{c \theta+d}=\left[a_{0}^{*}, a_{1}^{*}, a_{2}^{*}, \ldots\right]$ also has bounded partial quotients. More precisely, if $a_{j} \leq K$ for all sufficiently large j, then $a_{j}^{*} \leq|\operatorname{det}(M)|(K+2)$ for all sufficiently large j. We also give a weaker bound valid for all a_{j}^{*} with $j \geq 1$.

1991 Mathematics Subject Classification: Primary 11J70; Secondary 11A55 11J06.
Key Words and Phrases: bounded partial quotients, continued fraction, Lagrange and Markoff spectrum.

Linear Fractional Transformations of Continued Fractions with Bounded Partial Quotients

J. C. Lagarias
AT\&T Research
Murray Hill, New Jersey 07974 USA
jcl@research.att.com
J. O. Shallit
Department of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1
Canada
shallit@uwaterloo.ca

(August 2, 1996)

1. Introduction

Let θ be a real number whose expansion as a simple continued fraction is

$$
\theta=\left[a_{0}, a_{1}, a_{2}, \ldots\right],
$$

and set

$$
\begin{equation*}
K(\theta):=\sup _{i \geq 1} a_{i} \tag{1.1}
\end{equation*}
$$

where we adopt the convention that $K(\theta)=+\infty$ if θ is rational. We say that θ has bounded partial quotients if $K(\theta)$ is finite. We also set

$$
\begin{equation*}
K_{\infty}(\theta):=\underset{i \geq 1}{\lim \sup } a_{i} \tag{1.2}
\end{equation*}
$$

where $K_{\infty}(\theta)=+\infty$ if θ is rational. Certainly $K_{\infty}(\theta) \leq K(\theta)$, and $K_{\infty}(\theta)$ is finite if and only if $K(\theta)$ is finite. A survey of results about real numbers with bounded partial quotients is given in [16].

The property of having bounded partial quotients is equivalent to θ being a badly approximable number, which is that

$$
\liminf _{q \rightarrow \infty} q\|q \theta\|>0
$$

in which $\|x\|=\min (x-\lfloor x\rfloor,\lceil x\rceil-x)$ denotes the distance from x to the nearest integer.
This note proves two quantitative versions of the "folk theorem" that if θ has bounded partial quotients and $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is an integer matrix with $\operatorname{det}(M) \neq 0$, then $\psi=\frac{a \theta+b}{c \theta+d}$ also has bounded partial quotients.

The first result bounds $K_{\infty}\left(\frac{a \theta+b}{c \theta+d}\right)$ in terms of $K_{\infty}(\theta)$ and depends only on $|\operatorname{det}(M)|$.

Theorem 1.1. Let θ have a bounded partial quotients. If $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is an integer matrix with $|\operatorname{det}(M)| \neq 0$, then

$$
\begin{equation*}
K_{\infty}\left(\frac{a \theta+b}{c \theta+d}\right) \leq|\operatorname{det}(M)|\left(K_{\infty}(\theta)+2\right) . \tag{1.3}
\end{equation*}
$$

The second result bounds $K\left(\frac{a \theta+b}{c \theta+d}\right)$ in terms of $K(\theta)$, and depends on the entries of M.
Theorem 1.2. Let θ have bounded partial quotients. If $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is an integer matrix with $|\operatorname{det}(M)| \neq 0$, then

$$
\begin{equation*}
K\left(\frac{a \theta+b}{c \theta+d}\right) \leq|\operatorname{det}(M)|(K(\theta)+2)+|c(c \theta+d)| . \tag{1.4}
\end{equation*}
$$

The last term in (1.4) can be bounded in terms of the partial quotient a_{0} of θ, since

$$
|c \theta+d| \leq|c|\left(\left|a_{0}\right|+1\right)+|d| \leq\left|c a_{0}\right|+|c|+|d| .
$$

Theorem 1.2 gives no bound for the partial quotient $A_{0}:=\left\lfloor\frac{a \theta+b}{c \theta+d}\right\rfloor$ of $\frac{a \theta+b}{c \theta+d}$.
Chowla [2] proved in 1931 that $K\left(\frac{a}{c} \theta\right)<2 a c(K(\theta)+1)^{3}$, a result rather weaker than Theorem 1.2.

We obtain Theorem 1.1 and Theorem 1.2 from stronger bounds that relate the Diophantine approximation constants of θ and $\frac{a \theta+b}{c \theta+d}$, which appear below as Theorem 3.2 and Theorem 4.1, respectively. Theorem 3.2 is a simple consequence of a result of Cusick and Mendès France [4] concerning the Lagrange constant of θ.

The continued fraction of $\frac{a \theta+b}{c \theta+d}$ can be directly computed from that for θ, as was observed in 1894 by Hurwitz [8], who gave an explicit formula for the continued fraction of 2θ in terms of that of θ. In 1947 Hall [6] gave a method to compute the continued fraction for general $\frac{a \theta+b}{c \theta+d}$. Let $\mathcal{M}(n, \mathbb{Z})$ denote the set of $n \times n$ integer matrices. Raney [14] gave for each $M=$
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathcal{M}(2, \mathbb{Z})$ with $\operatorname{det}(M) \neq 0$ an explicit finite automaton to compute the additive continued fraction of $\frac{a \theta+b}{c \theta+d}$ from the additive continued fraction of θ.

In connection with the bound of Theorem 1.1, Davenport [5] observed that for each irrational θ and prime p there exists some integer $0 \leq a<p$ such that $\theta^{\prime}=\theta+\frac{a}{p}$ has infinitely many partial quotients $a_{n}\left(\theta^{\prime}\right) \geq p$. Mendès France [12] then showed that there exists some $\theta^{\prime}=\theta+\frac{a}{p}$ having the property that a positive portion of the partial quotients $a_{n}\left(\theta^{\prime}\right)$ of θ^{\prime} are $\geq p$.

Some other related results appear in Mendès France [10, 11]. Basic facts on continued fractions appear in $[1,7,9,17]$.

2. Badly Approximable Numbers

Recall that the continued fraction expansion of an irrational real number $\theta=\left[a_{0}, a_{1}, \ldots\right]$ is determined by

$$
\theta=a_{0}+\theta_{0}, \quad 0<\theta_{0}<1,
$$

and for $n \geq 1$ by the recursion

$$
\frac{1}{\theta_{n-1}}=a_{n}+\theta_{n}, \quad 0<\theta_{n}<1 .
$$

The n-th complete quotient α_{n} of θ is

$$
\alpha_{n}:=\frac{1}{\theta_{n}}=\left[a_{j}, a_{j+1}, a_{j+2}, \ldots\right] .
$$

The n-th convergent $\frac{p_{n}}{q_{n}}$ of θ is

$$
\frac{p_{n}}{q_{n}}=\left[a_{0}, a_{1}, \ldots, a_{n}\right],
$$

whose denominator is given by the recursion $q_{-1}=0, q_{0}=1$, and $q_{n+1}=a_{n+1} q_{n}+q_{n-1}$. It is well known (see [7, §10.7]) that

$$
\begin{equation*}
\left|\left|q_{n} \theta \|=\left|q_{n} \theta-p_{n}\right|=\frac{1}{q_{n} \alpha_{n+1}+q_{n-1}} .\right.\right. \tag{2.1}
\end{equation*}
$$

Since $a_{n+1} \leq \alpha_{n+1}<a_{n+1}+1$ and $q_{n-1} \leq q_{n}$, this implies that

$$
\begin{equation*}
\frac{1}{a_{n+1}+2}<q_{n}\left\|q_{n} \theta\right\| \leq \frac{1}{a_{n+1}}, \tag{2.2}
\end{equation*}
$$

for $n \geq 0$.

For an irrational number θ define its type $L(\theta)$ by

$$
L(\theta)=\sup _{q \geq 1}(q\|q \theta\|)^{-1}
$$

and define the Lagrange constant $L_{\infty}(\theta)$ of θ by

$$
L_{\infty}(\theta)=\limsup _{q \geq 1}(q\|q \theta\|)^{-1}
$$

Again we use the convention that $L(\theta)=L_{\infty}(\theta)=+\infty$ if θ is rational.
The best approximation properties of continued fraction convergents give

$$
\begin{equation*}
L(\theta)=\sup _{n \geq 0}\left(q_{n}\left\|q_{n} \theta\right\|\right)^{-1} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{\infty}(\theta)=\limsup _{n \geq 0}\left(q_{n}\left\|q_{n} \theta\right\|\right)^{-1} \tag{2.4}
\end{equation*}
$$

There are simple relations between these quantities and the partial quotient bounds $K(\theta)$ and $K_{\infty}(\theta)$, cf. [15, pp. 22-23].

Lemma 2.1. For any irrational θ with bounded partial quotients, we have

$$
\begin{equation*}
K(\theta) \leq L(\theta) \leq K(\theta)+2 . \tag{2.5}
\end{equation*}
$$

Proof. This is immediate from (2.2) and (2.3).

Lemma 2.2. For any irrational θ with bounded partial quotients

$$
\begin{equation*}
K_{\infty}(\theta) \leq L_{\infty}(\theta) \leq K_{\infty}(\theta)+2 . \tag{2.6}
\end{equation*}
$$

Proof. This is immediate from (2.2) and (2.4).
Although we do not use it in the sequel, we note that both inequalities in (2.6) can be slightly improved. Since $q_{n} \leq\left(a_{n}+1\right) q_{n-1}$, (2.1) yields

$$
q_{n}\left\|q_{n} \theta\right\| \leq \frac{1}{\alpha_{n+1}+\frac{q_{n-1}}{q_{n}}} \leq \frac{1}{a_{n+1}+1 /\left(a_{n}+1\right)} .
$$

Since $a_{n} \leq K_{\infty}(\theta)$ from some point on, this and (2.4) yield

$$
\begin{equation*}
L_{\infty}(\theta) \geq K_{\infty}(\theta)+\frac{1}{K_{\infty}(\theta)+1} . \tag{2.7}
\end{equation*}
$$

Next, from (2.1) we have

$$
\begin{aligned}
q_{n}\left\|q_{n} \theta\right\| & =\frac{q_{n}}{\alpha_{n+1} q_{n}+q_{n-1}} \\
= & \frac{1}{a_{n+1}+\frac{1}{\alpha_{n+2}}+\frac{q_{n-1}}{q_{n}}} .
\end{aligned}
$$

Hence

$$
\left(q_{n}\left\|q_{n} \theta\right\|\right)^{-1}=a_{n+1}+\frac{1}{\alpha_{n+2}}+\frac{q_{n-1}}{q_{n}} .
$$

Let $K=K_{\infty}(\theta)$. Then for all n sufficiently large we have

$$
\alpha_{n+2} \geq 1+\frac{1}{K+1}=\frac{K+2}{K+1}
$$

so

$$
\begin{aligned}
\left(q_{n}\left\|q_{n} \theta\right\|\right)^{-1} & \leq K+\frac{K+1}{K+2}+1 \\
& =K+2-\frac{1}{K+2} .
\end{aligned}
$$

We conclude that

$$
\begin{equation*}
L_{\infty}(\theta) \leq K_{\infty}(\theta)+2-\frac{1}{K_{\infty}(\theta)+2} . \tag{2.8}
\end{equation*}
$$

3. Lagrange Spectrum and Proof of Theorem 1.1.

The Lagrange constant satisfies $L_{\infty}(\theta) \geq \sqrt{5}$ for all θ, and is also given by the formula

$$
\begin{equation*}
L(\theta)=\underset{j \rightarrow \infty}{\limsup }\left(\left[a_{j}, a_{j+1}, \ldots\right]+\left[0, a_{j-1}, a_{j-2}, \ldots, a_{1}\right]\right) ; \tag{3.1}
\end{equation*}
$$

see Cusick and Flahive [3].
Given an integer matrix $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with $\operatorname{det}(M) \neq 0$, set

$$
\begin{equation*}
M(\theta):=\frac{a \theta+b}{c \theta+d}, \tag{3.2}
\end{equation*}
$$

and note that $M_{1}\left(M_{2}(\theta)\right)=M_{1} M_{2}(\theta)$.

Lemma 3.1. If M is an integer matrix with $\operatorname{det}(M)= \pm 1$, then

$$
L_{\infty}(M(\theta))=L_{\infty}(\theta) .
$$

Proof. This is well-known, cf. [13] and [4, Lemma 1], and is deducible from (3.1).
The main result of Cusick and Mendès France [4] yields:

Theorem 3.2. For any integer $m \geq 1$, let

$$
G_{m}=\{M \in \mathcal{M}(2, \mathbb{Z}):|\operatorname{det}(M)|=m\} .
$$

Then for any irrational number θ,

$$
\begin{equation*}
\sup _{M \in G_{m}}\left(L_{\infty}(M(\theta))\right)=m L(\theta) . \tag{3.3}
\end{equation*}
$$

Proof. Theorem 1 of [4] states that

$$
\begin{align*}
& \max _{\substack{a, b, d \\
a d=m}}\left(L_{\infty}\left(\frac{a \theta+b}{d}\right)\right)=m L(\theta) . \tag{3.4}\\
& 0 \leq b<d
\end{align*}
$$

Let $G L(2, \mathbb{Z})$ denote the group of 2×2 integer matrices with determinant ± 1. We need only observe that for any M in G_{m} there exists some $\tilde{M} \in G L(2, \mathbb{Z})$ such that $\tilde{M} M=\left[\begin{array}{cc}a^{\prime} & b^{\prime} \\ 0 & d^{\prime}\end{array}\right]$ with $a^{\prime} d^{\prime}=m$ and $0 \leq b^{\prime}<d^{\prime}$. For if so, and $\psi=\frac{a \theta+b}{c \theta+d}$, then Lemma 3.1 gives

$$
L_{\infty}(\psi)=L_{\infty}(\tilde{M}(\psi))=L_{\infty}(\tilde{M} M(\theta))=L_{\infty}\left(\frac{a^{\prime} \theta+b^{\prime}}{d^{\prime}}\right)
$$

whence (3.4) implies (3.3). Finally set $\tilde{M}=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$, and we need

$$
C a+D c=0 .
$$

Take $C=\frac{\operatorname{lcm}(a, c)}{a}$ and $D=-\frac{\operatorname{lcm}(a, c)}{c}$. Then $\operatorname{gcd}(C, D)=1$, so we may complete this row to a matrix $\tilde{M} \in G L(2, \mathbb{Z})$. Multiplying this by a suitable matrix $\left[\begin{array}{cc} \pm 1 & c \\ 0 & \pm 1\end{array}\right]$ yields the desired \tilde{M}.

Proof of Theorem 1.1. Theorem 3.2 gives $L_{\infty}(M(\theta)) \leq \operatorname{det}(M) L(\theta)$. Now apply Lemma 2.2 twice to get

$$
\begin{aligned}
K_{\infty}(M(\theta)) & \leq L_{\infty}(M(\theta)) \\
& \leq|\operatorname{det}(M)| L_{\infty}(\theta) \\
& \leq|\operatorname{det}(M)|\left(K_{\infty}(\theta)+2\right)
\end{aligned}
$$

4. Numbers of Bounded Type and Proof of Theorem 1.2

Recall that the type $L(\theta)$ of θ is the smallest real number such that $q\|q \theta\| \geq \frac{1}{L(\theta)}$ for all $q \geq 1$.

Theorem 4.1. Let θ have bounded partial quotients. If $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is an integer matrix with $\operatorname{det}(M) \neq 0$, then

$$
\begin{equation*}
L\left(\frac{a \theta+b}{c \theta+d}\right) \leq|\operatorname{det}(M)| L(\theta)+|c(c \theta+d)| \tag{4.1}
\end{equation*}
$$

Proof. Set $\psi=\frac{a \theta+b}{c \theta+d}$. Suppose first that $c=0$ so that $|\operatorname{det}(M)|=|a d|>0$. Then $L(\psi) \geq \frac{1}{x}$, where

$$
\begin{equation*}
x:=q\|q \psi\|=q\left\|q\left(\frac{a \theta+b}{d}\right)\right\|=q\left|q\left(\frac{a \theta+b}{d}\right)-p\right| \tag{4.2}
\end{equation*}
$$

We have

$$
\begin{align*}
|a d| x & =|a q||a q \theta+(b q-d p)| \\
& \geq|a q| \| a q \theta| | \geq \frac{1}{L(\theta)} \tag{4.3}
\end{align*}
$$

For any $\epsilon>0$ we may choose q in (4.2) so that $\frac{1}{x} \geq L(\psi)-\epsilon$. Then

$$
\begin{equation*}
|\operatorname{det}(M)| L(\theta)=|a d| L(\theta) \geq \frac{1}{x} \geq L(\psi)-\epsilon \tag{4.4}
\end{equation*}
$$

Letting $\epsilon \rightarrow 0$ yields (4.1) when $c=0$.
Suppose now that $c \neq 0$. Again $L(\psi) \geq \frac{1}{x}$ where

$$
x:=q| | q \psi| |=q\left|q\left(\frac{a \theta+b}{c \theta+d}\right)-p\right| .
$$

We have

$$
\begin{equation*}
|c \theta+d| x=q|(q a-p c) \theta-(p d-q b)| \tag{4.5}
\end{equation*}
$$

so that

$$
\begin{align*}
|c \theta+d|\left|\frac{q a-p c}{q}\right| x & =|q a-p c||(q a-p c) \theta-(p d-q b)| \\
& \geq|q a-p c| \|(q a-p c) \theta| | \tag{4.6}
\end{align*}
$$

We first treat the case $q a-p c=0$. Now

$$
\left[\begin{array}{cc}
a & -c \\
-b & d
\end{array}\right]\left[\begin{array}{l}
q \\
p
\end{array}\right]=\left[\begin{array}{c}
q a-p c \\
p d-q b
\end{array}\right] \neq\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

since $\operatorname{det}\left[\begin{array}{cc}a & -c \\ -b & d\end{array}\right]=\operatorname{det}(M) \neq 0$. Thus if $q a-p c=0$ then $|p d-q b| \geq 1$, hence (4.5) gives

$$
\begin{equation*}
|c \theta+d| x=q|p d-q b| \geq 1 . \tag{4.7}
\end{equation*}
$$

It follows that $q a-p c \neq 0$ provided that

$$
\begin{equation*}
\frac{1}{x}>|c \theta+d| \tag{4.8}
\end{equation*}
$$

We next treat the case when $q a-p c \neq 0$. Now from the definition of $L(\theta)$ we see

$$
\begin{equation*}
|q a-p c|\|(q a-p c) \theta\| \geq \frac{1}{L(\theta)} \tag{4.9}
\end{equation*}
$$

Given $\epsilon>0$, we may choose q so that $\frac{1}{x} \geq L(\psi)-\epsilon$, and we obtain from (4.6) and (4.9) that

$$
\begin{equation*}
|c \theta+d|\left|\frac{q a-p c}{q}\right| L(\theta) \geq \frac{1}{x} \geq L(\psi)-\epsilon . \tag{4.10}
\end{equation*}
$$

However, the bound

$$
\left|q\left(\frac{a \theta+b}{c \theta+d}\right)-p\right| \leq \frac{1}{2}
$$

implies that

$$
\begin{aligned}
\left|q\left(\frac{a}{c}\right)-p\right| & \leq\left|q\left(\frac{a \theta+b}{c \theta+d}\right)-q\left(\frac{a}{c}\right)\right|+\frac{1}{2} \\
& \leq q|\operatorname{det}(M)|\left|\frac{1}{c(c \theta+d)}\right|+\frac{1}{2}
\end{aligned}
$$

Multiplying this by $\frac{c}{q}$ and substituting with (4.10) yields

$$
\begin{equation*}
L\left(\frac{a \theta+b}{c \theta+d}\right)-\epsilon \leq|\operatorname{det}(M)| L(\theta)+\frac{1}{2} \frac{|c(c \theta+d)|}{q} . \tag{4.11}
\end{equation*}
$$

Letting $\epsilon \rightarrow 0$ and using $q \geq 1$ yields

$$
\begin{equation*}
L\left(\frac{a \theta+b}{c \theta+d}\right) \leq|\operatorname{det}(M)| L(\theta)+\frac{1}{2}|c(c \theta+d)| \tag{4.12}
\end{equation*}
$$

provided that (4.8) holds. Now (4.8) fails to hold only if

$$
\begin{equation*}
L\left(\frac{a \theta+b}{c \theta+d}\right) \leq|c \theta+d| \tag{4.13}
\end{equation*}
$$

The last two inequalities imply (4.1) when $c \neq 0$.

Proof of Theorem 1.2. Applying Theorem 4.1 and Lemma 2.1 gives

$$
\begin{aligned}
K\left(\frac{a \theta+b}{c \theta+d}\right) & \leq L\left(\frac{a \theta+b}{c \theta+d}\right) \\
& \leq|\operatorname{det}(M)| L(\theta)+|c(c \theta+d)| \\
& \leq|\operatorname{det}(M)|(K(\theta)+2)+|c(c \theta+d)|
\end{aligned}
$$

which is the desired bound.
Remark. The proof method of Theorem 4.1 can also be used to directly prove the upper bound

$$
\begin{equation*}
L_{\infty}(M(\theta)) \leq|\operatorname{det}(M)| L_{\infty}(\theta) \tag{4.14}
\end{equation*}
$$

in Theorem 3.1, from which Theorem 1.1 can be easily deduced. We sketch a proof of (4.14) for the case $\psi=\frac{a \theta+b}{c \theta+d}$ with $c \neq 0$. For any $\epsilon^{*}>0$ and all sufficiently large $q^{*} \geq q^{*}\left(\epsilon^{*}\right)$, we have

$$
q^{*}\left\|q^{*} \theta\right\| \geq \frac{1}{L_{\infty}(\theta)+\epsilon^{*}}
$$

We choose $q=q_{n}(\psi)$ for sufficiently large n, and note that

$$
q^{*}=\left|q_{n}(\psi) a-p_{n}(\psi) c\right| \rightarrow \infty
$$

as $n \rightarrow \infty$, since ψ is irrational. We can then replace (4.9) by

$$
q^{*}\left\|q^{*} \theta\right\| \geq \frac{1}{L_{\infty}(\theta)+\epsilon^{*}}
$$

This yields (4.12) with $L(\theta)$ replaced by $L_{\infty}(\theta)+\epsilon^{*}$, and letting $q \rightarrow \infty, \epsilon \rightarrow 0$ and $\epsilon^{*} \rightarrow 0$ yields (4.13).

References

[1] A. Baker, A Concise Introduction to the Theory of Numbers, Cambridge University Press, 1984.
[2] S. D. Chowla, Some problems of diophantine approximation (I), Math. Zeitschrift 33 (1931), 544-563.
[3] T. W. Cusick and M. Flahive, The Markoff and Lagrange Spectra, American Mathematical Society: Providence, RI 1989.
[4] T. W. Cusick and M. Mendès France, The Lagrange spectrum of a set, Acta Arith. 34 (1979), 287-293.
[5] H. Davenport, A remark on continued fractions, Michigan Math. J. 11 (1964), 343-344.
[6] M. Hall, On the sum and product of continued fractions, Annals of Math. 48 (1947), 966-993.
[7] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth edition, Oxford University Press, 1985.
[8] A. Hurwitz, Über die angenäherte Darstellungen der Zahler durch rationale Brüche, Math. Ann. 44 (1894), 417-436.
[9] D. E. Knuth, The Art of Computer Programming, Vol. II: Seminumerical Algorithms, Addison-Wesley, 1981.
[10] M. Mendès France, Sur les fractions continues limitées, Acta Arith. 23 (1973), 207-215.
[11] M. Mendès France, The depth of a rational number, in Topics in Number Theory (Proc. Colloq. Debrecen, 1974) Colloq. Soc. Janos Bolyai, Vol. 13, North-Holland: Amsterdam 1976, pp. 183-194.
[12] M. Mendès France, On a theorem of Davenport concerning continued fractions, Mathematika 23 (1976), 136-141.
[13] O. Perron, Über die Approximation irrationaler Zahlen durch rationale, Sitz. Heidelberg. Akad. Wiss. XII A (4. Abhandlung) (1921), 3-17.
[14] G. N. Raney, On continued fractions and finite automata, Math. Annalen 206 (1973), 265-283.
[15] W. Schmidt, Diophantine Approximation, Lecture Notes in Mathematics, vol. 785, Springer-Verlag, 1980.
[16] J. O. Shallit, Continued fractions with bounded partial quotients: a survey, Enseign. Math. 38 (1992), 151-187.
[17] H. M. Stark, Introduction to Number Theory, Markham, 1970.

	J. C. Lagarias	J. O. Shallit
Room 2C-373	Department of Computer Science	
	AT\&T Research	University of Waterloo
	Murray Hill, NJ 07974-0636	Waterloo, Ontario N2L 3G1
E-mail address:	USA	jcl@research.att.com
	CANADA	
shallit@uwaterloo.ca		

