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ABSTRACT

Let � be a real number with continued fraction expansion � = [a

0

; a

1

; a

2

; : : :], and let M =

"

a b

c d

#

be a matrix with integer entries and with j det(M)j 6= 0. If � has bounded partial

quotients, then

a�+b

c�+d

= [a

�

0

; a

�

1

; a

�

2

; : : :] also has bounded partial quotients. More precisely, if

a

j

� K for all su�ciently large j, then a

�

j

� j det(M)j(K + 2) for all su�ciently large j. We

also give a weaker bound valid for all a

�

j

with j � 1.
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1. Introduction

Let � be a real number whose expansion as a simple continued fraction is

� = [a

0

; a

1

; a

2

; : : :] ;

and set

K(�) := sup

i�1

a

i

; (1.1)

where we adopt the convention that K(�) = +1 if � is rational. We say that � has bounded

partial quotients if K(�) is �nite. We also set

K

1

(�) := lim sup

i�1

a

i

; (1.2)

where K

1

(�) = +1 if � is rational. Certainly K

1

(�) � K(�), and K

1

(�) is �nite if and only

if K(�) is �nite. A survey of results about real numbers with bounded partial quotients is given

in [16].

The property of having bounded partial quotients is equivalent to � being a badly approx-

imable number, which is that

lim inf

q!1

qjjq�jj > 0 ;
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in which jjxjj = min(x� bxc; dxe � x) denotes the distance from x to the nearest integer.

This note proves two quantitative versions of the \folk theorem" that if � has bounded

partial quotients and M =

"

a b

c d

#

is an integer matrix with det(M) 6= 0, then  =

a�+b

c�+d

also

has bounded partial quotients.

The �rst result bounds K

1

(

a�+b

c�+d

) in terms of K

1

(�) and depends only on j det(M)j.

Theorem 1.1. Let � have a bounded partial quotients. If M =

"

a b

c d

#

is an integer matrix

with j det(M)j 6= 0, then

K

1

�

a� + b

c� + d

�

� j det(M)j(K

1

(�) + 2) : (1.3)

The second result bounds K(

a�+b

c�+d

) in terms of K(�), and depends on the entries of M .

Theorem 1.2. Let � have bounded partial quotients. If M =

"

a b

c d

#

is an integer matrix

with j det(M)j 6= 0, then

K

�

a� + b

c� + d

�

� j det(M)j(K(�) + 2) + jc(c�+ d)j : (1.4)

The last term in (1.4) can be bounded in terms of the partial quotient a

0

of �, since

jc� + dj � jcj(ja

0

j+ 1) + jdj � jca

0

j+ jcj+ jdj :

Theorem 1.2 gives no bound for the partial quotient A

0

:= b

a�+b

c�+d

c of

a�+b

c�+d

.

Chowla [2] proved in 1931 that K(

a

c

�) < 2ac(K(�) + 1)

3

, a result rather weaker than

Theorem 1.2.

We obtain Theorem 1.1 and Theorem 1.2 from stronger bounds that relate the Diophantine

approximation constants of � and

a�+b

c�+d

, which appear below as Theorem 3.2 and Theorem 4.1,

respectively. Theorem 3.2 is a simple consequence of a result of Cusick and Mend�es France [4]

concerning the Lagrange constant of �.

The continued fraction of

a�+b

c�+d

can be directly computed from that for �, as was observed

in 1894 by Hurwitz [8], who gave an explicit formula for the continued fraction of 2� in terms

of that of �. In 1947 Hall [6] gave a method to compute the continued fraction for general

a�+b

c�+d

. Let M(n;Z) denote the set of n � n integer matrices. Raney [14] gave for each M =

3



"

a b

c d

#

2 M(2;Z) with det(M) 6= 0 an explicit �nite automaton to compute the additive

continued fraction of

a�+b

c�+d

from the additive continued fraction of �.

In connection with the bound of Theorem 1.1, Davenport [5] observed that for each irrational

� and prime p there exists some integer 0 � a < p such that �

0

= � +

a

p

has in�nitely many

partial quotients a

n

(�

0

) � p. Mend�es France [12] then showed that there exists some �

0

= �+

a

p

having the property that a positive portion of the partial quotients a

n

(�

0

) of �

0

are � p.

Some other related results appear in Mend�es France [10, 11]. Basic facts on continued

fractions appear in [1, 7, 9, 17].

2. Badly Approximable Numbers

Recall that the continued fraction expansion of an irrational real number � = [a

0

; a

1

; : : :] is

determined by

� = a

0

+ �

0

; 0 < �

0

< 1 ;

and for n � 1 by the recursion

1

�

n�1

= a

n

+ �

n

; 0 < �

n

< 1 :

The n-th complete quotient �

n

of � is

�

n

:=

1

�

n

= [a

j

; a

j+1

; a

j+2

; : : :] :

The n-th convergent

p

n

q

n

of � is

p

n

q

n

= [a

0

; a

1

; : : : ; a

n

] ;

whose denominator is given by the recursion q

�1

= 0; q

0

= 1, and q

n+1

= a

n+1

q

n

+ q

n�1

. It is

well known (see [7, x10.7]) that

jjq

n

�jj = jq

n

� � p

n

j =

1

q

n

�

n+1

+ q

n�1

: (2.1)

Since a

n+1

� �

n+1

< a

n+1

+ 1 and q

n�1

� q

n

, this implies that

1

a

n+1

+ 2

< q

n

jjq

n

�jj �

1

a

n+1

; (2.2)

for n � 0.
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For an irrational number � de�ne its type L(�) by

L(�) = sup

q�1

(qjjq�jj)

�1

;

and de�ne the Lagrange constant L

1

(�) of � by

L

1

(�) = lim sup

q�1

(qjjq�jj)

�1

:

Again we use the convention that L(�) = L

1

(�) = +1 if � is rational.

The best approximation properties of continued fraction convergents give

L(�) = sup

n�0

(q

n

jjq

n

�jj)

�1

(2.3)

and

L

1

(�) = lim sup

n�0

(q

n

jjq

n

�jj)

�1

: (2.4)

There are simple relations between these quantities and the partial quotient bounds K(�)

and K

1

(�), cf. [15, pp. 22{23].

Lemma 2.1. For any irrational � with bounded partial quotients, we have

K(�) � L(�) � K(�) + 2 : (2.5)

Proof. This is immediate from (2.2) and (2.3). 2

Lemma 2.2. For any irrational � with bounded partial quotients

K

1

(�) � L

1

(�) � K

1

(�) + 2 : (2.6)

Proof. This is immediate from (2.2) and (2.4). 2

Although we do not use it in the sequel, we note that both inequalities in (2.6) can be

slightly improved. Since q

n

� (a

n

+ 1)q

n�1

, (2.1) yields

q

n

jjq

n

�jj �

1

�

n+1

+

q

n�1

q

n

�

1

a

n+1

+ 1=(a

n

+ 1)

:

Since a

n

� K

1

(�) from some point on, this and (2.4) yield

L

1

(�) � K

1

(�) +

1

K

1

(�) + 1

: (2.7)
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Next, from (2.1) we have

q

n

jjq

n

�jj =

q

n

�

n+1

q

n

+ q

n�1

=

1

a

n+1

+

1

�

n+2

+

q

n�1

q

n

:

Hence

(q

n

jjq

n

�jj)

�1

= a

n+1

+

1

�

n+2

+

q

n�1

q

n

:

Let K = K

1

(�). Then for all n su�ciently large we have

�

n+2

� 1 +

1

K + 1

=

K + 2

K + 1

;

so

(q

n

jjq

n

�jj)

�1

� K +

K+1

K+2

+ 1

= K + 2�

1

K+2

:

We conclude that

L

1

(�) � K

1

(�) + 2�

1

K

1

(�) + 2

: (2.8)

3. Lagrange Spectrum and Proof of Theorem 1.1.

The Lagrange constant satis�es L

1

(�) �

p

5 for all �, and is also given by the formula

L(�) = lim sup

j!1

([a

j

; a

j+1

; : : :] + [0; a

j�1

; a

j�2

; : : : ; a

1

]) ; (3.1)

see Cusick and Flahive [3].

Given an integer matrixM =

"

a b

c d

#

with det(M) 6= 0, set

M(�) :=

a� + b

c� + d

; (3.2)

and note that M

1

(M

2

(�)) =M

1

M

2

(�).

Lemma 3.1. If M is an integer matrix with det(M) = �1, then

L

1

(M(�)) = L

1

(�) :

6



Proof. This is well-known, cf. [13] and [4, Lemma 1], and is deducible from (3.1). 2

The main result of Cusick and Mend�es France [4] yields:

Theorem 3.2. For any integer m � 1, let

G

m

= fM 2 M(2;Z) : j det(M)j = mg :

Then for any irrational number �,

sup

M2G

m

(L

1

(M(�))) = mL(�) : (3.3)

Proof. Theorem 1 of [4] states that

max

a; b; d

ad = m

0 � b < d

�

L

1

�

a� + b

d

��

= mL(�) : (3.4)

Let GL(2;Z) denote the group of 2 � 2 integer matrices with determinant �1. We need only

observe that for any M in G

m

there exists some

~

M 2 GL(2;Z) such that

~

MM =

"

a

0

b

0

0 d

0

#

with a

0

d

0

= m and 0 � b

0

< d

0

. For if so, and  =

a�+b

c�+d

, then Lemma 3.1 gives

L

1

( ) = L

1

(

~

M( )) = L

1

(

~

MM(�)) = L

1

�

a

0

� + b

0

d

0

�

;

whence (3.4) implies (3.3). Finally set

~

M =

"

A B

C D

#

, and we need

Ca+Dc = 0 :

Take C =

lcm(a;c)

a

and D = �

lcm(a;c)

c

. Then gcd(C;D) = 1, so we may complete this row to a

matrix

�

M

2 GL(2;Z). Multiplying this by a suitable matrix

"

�1 c

0 �1

#

yields the desired

~

M .

2

Proof of Theorem 1.1. Theorem 3.2 gives L

1

(M(�)) � det(M)L(�). Now apply Lemma 2.2

twice to get

K

1

(M(�)) � L

1

(M(�))

� j det(M)jL

1

(�)

� j det(M)j(K

1

(�) + 2) : 2
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4. Numbers of Bounded Type and Proof of Theorem 1.2

Recall that the type L(�) of � is the smallest real number such that qjjq�jj �

1

L(�)

for all

q � 1.

Theorem 4.1. Let � have bounded partial quotients. If M =

"

a b

c d

#

is an integer matrix

with det(M) 6= 0, then

L

�

a� + b

c� + d

�

� j det(M)jL(�) + jc(c�+ d)j : (4.1)

Proof. Set  =

a�+b

c�+d

. Suppose �rst that c = 0 so that j det(M)j = jadj > 0. Then L( ) �

1

x

,

where

x := qjjq jj= qjjq

�

a� + b

d

�

jj = qjq

�

a� + b

d

�

� pj : (4.2)

We have

jadjx = jaqj jaq� + (bq � dp)j

� jaqj jjaq�jj �

1

L(�)

: (4.3)

For any � > 0 we may choose q in (4.2) so that

1

x

� L( )� �. Then

j det(M)jL(�) = jadjL(�) �

1

x

� L( )� � : (4.4)

Letting �!0 yields (4.1) when c = 0.

Suppose now that c 6= 0. Again L( ) �

1

x

where

x := qjjq jj= qjq

�

a� + b

c� + d

�

� pj :

We have

jc� + djx = qj(qa� pc)� � (pd� qb)j ; (4.5)

so that

jc� + dj

�

�

�

�

qa� pc

q

�

�

�

�

x = jqa� pcj j(qa� pc)� � (pd� qb)j

� jqa� pcj jj(qa� pc)�jj : (4.6)

8



We �rst treat the case qa� pc = 0. Now

"

a �c

�b d

# "

q

p

#

=

"

qa� pc

pd� qb

#

6=

"

0

0

#

;

since det

"

a �c

�b d

#

= det(M) 6= 0. Thus if qa� pc = 0 then jpd� qbj � 1, hence (4.5) gives

jc� + djx = qjpd� qbj � 1 : (4.7)

It follows that qa� pc 6= 0 provided that

1

x

> jc� + dj : (4.8)

We next treat the case when qa� pc 6= 0. Now from the de�nition of L(�) we see

jqa� pcj jj(qa� pc)�jj �

1

L(�)

: (4.9)

Given � > 0, we may choose q so that

1

x

� L( )� �, and we obtain from (4.6) and (4.9) that

jc� + dj j

qa� pc

q

jL(�) �

1

x

� L( )� � : (4.10)

However, the bound

jq

�

a� + b

c� + d

�

� pj �

1

2

implies that

jq

�

a

c

�

� pj � jq

�

a� + b

c� + d

�

� q

�

a

c

�

j+

1

2

� qj det(M)j j

1

c(c�+ d)

j+

1

2

:

Multiplying this by

c

q

and substituting with (4.10) yields

L

�

a� + b

c� + d

�

� � � j det(M)jL(�) +

1

2

jc(c� + d)j

q

: (4.11)

Letting �!0 and using q � 1 yields

L

�

a� + b

c� + d

�

� j det(M)jL(�) +

1

2

jc(c� + d)j ; (4.12)

provided that (4.8) holds. Now (4.8) fails to hold only if

L

�

a� + b

c� + d

�

� jc� + dj : (4.13)

9



The last two inequalities imply (4.1) when c 6= 0. 2

Proof of Theorem 1.2. Applying Theorem 4.1 and Lemma 2.1 gives

K

�

a� + b

c� + d

�

� L

�

a� + b

c� + d

�

� j det(M)jL(�) + jc(c�+ d)j

� j det(M)j(K(�) + 2) + jc(c�+ d)j ;

which is the desired bound. 2

Remark. The proof method of Theorem 4.1 can also be used to directly prove the upper bound

L

1

(M(�)) � j det(M)jL

1

(�) (4.14)

in Theorem 3.1, from which Theorem 1.1 can be easily deduced. We sketch a proof of (4.14)

for the case  =

a�+b

c�+d

with c 6= 0. For any �

�

> 0 and all su�ciently large q

�

� q

�

(�

�

), we have

q

�

jjq

�

�jj �

1

L

1

(�) + �

�

:

We choose q = q

n

( ) for su�ciently large n, and note that

q

�

= jq

n

( )a� p

n

( )cj!1

as n!1, since  is irrational. We can then replace (4.9) by

q

�

jjq

�

�jj �

1

L

1

(�) + �

�

:

This yields (4.12) with L(�) replaced by L

1

(�) + �

�

, and letting q!1, �!0 and �

�

!0 yields

(4.13).
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