THE PRIME FACTORIZATION OF 1

1. Introduction. The answer to the question "Is one a prime?" is hardly one of earth-shaking consequences. Nevertheless, there has been far from complete argreement among mathematicians on the answer.

It is generally accepted today that 1 is a number that is neither prime nor composite. One important exception occurs in the table of prime numbers by D. N. Lehmer [1] . Here, 1 is given as a prime. Another exception occurs in [2, p. 211] where it is stated that "from the numble 2, the only even prime, and 1, the smallest of the odd primes, [the prime numbers] rise in an unending succesion aloof and irrefrangible."

Since it is impossible to "prove" whether or not 1 is a prime, here we will obtain n intuitive definition for the prime factorization of 1 , and then show how well the definition holds together.
2. A Factoring Program. For our discussion, we will need a program to separate integers greater than 1 into their prime factors. The particular definition does not matter; for example, the one in $[3, \mathrm{p}, 10]$ can be used.

Observe the following examples:

FACTOR 2
2
FACTOR 8
222
FACTOR 30
235
FACTOR 45
335
pFACTOR 2
.1

The question arises of how to define the result of FACTOR 1. If 1 is a prime, then the result should obviously be 1 . However, the following identity then would not hold for A equal to 1:
$\rho F A C T O R A \times B \rightarrow(\rho F A C T O R A)+\rho F A C T O R B$
Letting A equal 1 , we find that

```
\rhoFACTOR B ↔(\rhoFACTOR 1) + \rhoFACTOR B
            0\leftrightarrow\rhoFACTOR 1
    10}\leftrightarrow\mathrm{ FACTOR 1
```

Since (ρ FACTOR X) is the number of prime factors of X, we are forced to conclude that 1 is a number with 0 prime factors. In other words, the prime factorization of 1 is the empty vector.
3. Is our definition consistent? Here we give several examples of the value of the definition of FACTOR 1 as 10 .

First we note the following identity

$$
X \leftrightarrow \times / F A C T O R X
$$

For X equal to 1 , we have $1 \leftrightarrow \times / 10$, and the definition holds.

Second, we introduce the function ANALYZE with the following definition:

$$
\begin{array}{cl}
& \nabla Z+A N A L Y 2 E X ; R \\
{[1]} & R+((X, X)=0 X) / X \\
{[2]} & 2+R,[1.5]+/ R^{\circ} .=X \\
\nabla &
\end{array}
$$

The purpose of $A N A L Y Z E$ is to form a matrix of dimension $(K, 2)$, where K is the number of distinct elements in the vector argument X. (ANALYZE $X)[; 1]$ gives the distinct elements in X, and $A N A L Y Z E X][2]$ gives the number of occurrences of each distinct element.

If $R+\operatorname{ANALYZE}$ FACTOR X, then we have the following identity

$$
X \leftrightarrow R[; 1] \times . \star R[; 2]
$$

If X is 1 , then $(\rho R) \leftrightarrow 02$ and 1 $\leftrightarrow(10) \times . * 10$. Again, the definition of FACTOR 1 as 10 holds.

Third, we introduce the function MOEBIUS which is the number-theoretic function $u(X)$:

∇ Z + MOEBIUS $X ; R$

[1] $R^{+(A N A L Y Z E-F A C T O R ~ Z)[2] ~}$
[2] $2+(\geq / 1=R) \times{ }^{-1 *+/ R}$ ∇

In most number theory texts, for example, in [4], the following definition for $u(x)$, is given:
(A) $u(1)=1$, by definition.
(B) $u(x)=0$ if x is divisible by a square > 1.
(C) $u(x)=+1$ if x is square-free and contains an even number of prime factors.
(D) $u(x)=-1$ if x is square-free and contains an odd number of prime factors.

Note that $u(1)$ is defined as 1 in a special case. However, if use our definition of 1 as a number with 0 prime factors (hence, even number of printe factors), then part (A) of the definition of $u(x)$ is unnecessary--it is replaced with part (C).

Indeed,

MOEBIUS 1

$$
1
$$

Fourth, we introduce the function TOTIENT , which is the number-theoretic function $\phi(x)$. This function is traditionally defined as follows:
$\phi(1)=1$, by definition.
$\phi(x)=$ the number of positive integers $<x$ and relatively prime to x.

Again, note that $\phi(1)$ is defined as 1 in a special case.
Here is the APL definition of the function TOTIENT :

However, with our definition of the prime factorization of 1 as 10 we have

TOTIENT 1

1
Finally, we observe that the positive integers can be split into three classes:
(1) The numbers such that ($\mathrm{pFACTOR} X$) > 1. These are the compositve numbers $4,6,8,9,10,12,14,15, \ldots$
(2) The numbers such that ($\rho F A C T O R \quad X$) $=1$. These are the prime numbers 2, 3, $5,7,11,13,17,19,23, \ldots$
(3) The numbers such that ($\rho F A C T O R X$) $=0$. The only number with ($\rho F A C T O R$ X) equal to 0 is 1 . This explains why 1 is considered neither prime nor composite.

References

1. D. N. Lehmer, List of Prime Numbers from 1 to $10,006,721$, Carnegie Institute, Washington, Pub. 165 (1914).
2. Albert H. Beiler, Recreations in the Theory of Numbers, Dover, 1964.
3. SHARE $\star A P L / 360$ Newsletter, Number 2, July, 1969.
4. J. V. Uspensky and M. A. Heaslet. Elementary Number Theory, McGraw- Hill, 1939.

Mr. Jeffrey Shallit Student
Princeton University

