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Abstract.

Let w be a string of 0’s and 1’s, and let aw(n) be the function which counts the number
of (possibly overlapping) occurrences of w in the binary expansion of n. We show that
there exists an effectively computable rational function bw(n) such that

∑

n≥0

log2(bw(n))X
aw(n) = − 1

1−X
.

By setting X = −1 and exponentiating, we recover previous results and also obtain some
new ones; for example,

∏

n≥1

( 2n

2n+ 1

)(−1)a0(n)

=

√
2

2
.

Our work is a generalization of previous results of D. Woods, D. Robbins, H. Cohen,
M. Mendès France, and the authors.
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I. Introduction.

Let sq(n) denote the sum of the digits of the nonnegative integer n when written in
base q. WOODS and ROBBINS [9] [7] showed that

∏

n≥0

(
2n+ 1

2n+ 2

)(−1)s2(n)

=

√
2

2
(1)

This formula was generalized by the second author to bases other than 2 using methods
of real analysis [8]. Later, the first author and H. COHEN found more general results using
Dirichlet series [1].

In a joint paper with COHEN and M. MENDÈS FRANCE [3] the authors showed that

∑

n≥0

Xsq(n) logq

(

n+ 1

qbn
q
c+ q

)

= − 1

1−X
(2)

for X in a suitable region of convergence, from which the results of WOODS and ROBBINS

easily follow upon letting X = −1 and q = 2.

In [3] it was also shown that

∑

n≥0

Xu(n) log2

(

(2n+ 1)
2

(n+ 1)(4n+ 1)

)

= − 1

1−X
,

where u(n) is the Rudin-Shapiro function, which counts the number of occurrences of ‘11’
in the binary expansion of n. This formula naturally suggests the existence of similar
formulas corresponding to the counting of any binary string.

The existence of such formulas is the question we address in this paper. For any finite
nonempty block w of 0’s and 1’s, we define aw(n) as the number of occurrences of w in
the binary expansion of n. With this quantity we associate an infinite series of the form

∑

n

log2(bw(n))X
aw(n)

whose sum is also − 1
1−X . This allows us to evaluate some novel infinite products, as well

as recover previous results.

II. Notation.

Let w be a string or block of 0’s and 1’s (i. e. w ∈ (0 + 1)
∗
). Let v : (0 + 1)∗ → NN be

the map that assigns to w its value when interpreted in base 2; e. g. v(0101) = 5. Let |w|
denote the length of w, i. e. the number of symbols in the string w.

Let w be nonempty and let aw(n) count the number of (possibly overlapping) occur-
rences of the block w in the binary expansion of n. For example, a11(15) = 3. Some

clarification is needed in the case where w starts with a 0; if w 6= 0j , then in evaluating
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aw(n) we assume that the binary expansion of n starts with an arbitrarily long prefix of
0’s. Thus a010(5) = 1, since we consider the binary expansion of 5 to be 00 . . . 00101. This

definition of aw(n) is appropriate for all cases except w = 0j ; in this case we use the binary
expansion of n which starts with a 1. Thus a00(4) = 1.

If w and z are strings, let a′w(z) count the number of (possibly overlapping) occurrences
of w in z. Note that here the string z is not extended with leading zeroes.

Finally, we define

L(x) = log2

(
x

x+ 1

)

.

III. Some infinite series.

Our goal is to prove the result mentioned at the end of the introduction. First,
however, we will prove the following

Lemma 1.

Let w be a nonempty string of 0’s and 1’s and let aw(n) be as defined above. Let g
and h be integers. Then for all k ≥ 0, the series

∑

n≥1
aw(gn+h)=k

1

n

converges.

Proof.

It suffices to prove that
∑

n≥1
aw(gn+h)=k

1

gn+ h

converges. But this is majorized by

∑

n≥1
aw(n)=k

1

n
,

so it suffices to prove that this last series converges.

Let b = 2|w|, let N be a positive integer, and let l be defined by bl−1 ≤ N ≤ bl − 1,

so that l ≤ 1 + logN
log b . We may suppose l ≥ k. Let us write sw(n) for the function which

counts the number of occurrences of the “digit” w when n is written in base b. Then

S(N) =
∑

0≤n≤N
aw(n)=k

1 ≤
∑

0≤n≤bl−1
sw(n)≤k

1 =
∑

0≤j≤k

(
l

j

)

(b− 1)
l−j

.
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Now bound (b− 1)
l−j

by (b− 1)
l
and

(
l
j

)
by lj

j! ≤ lk. Thus

S(N) =
∑

0≤n≤N
aw(n)=k

1 ≤ (k + 1)lk(b− 1)
l ≤ ck(logN)

k
N

log(b−1)
log b .

Now put

a(n) =
{
1 if aw(n) = k,
0 otherwise.

We see that

S(N) =
∑

0≤n≤N
aw(n)=k

1 =
∑

0≤n≤N

a(n),

from which we get

∑

1≤n≤N
aw(n)=k

1

n
=

∑

1≤n≤N

a(n)

n
=

∑

1≤n≤N

S(n)− S(n− 1)

n

= −S(0) + S(N)

N
+

∑

1≤n≤N−1

S(n)

n(n+ 1)

and, using the bound determined above for S(n), this quantity tends to a finite limit as
N →∞.

Theorem 2.

Let w be a nonempty string of 0’s and 1’s and

g = 2|w|−1, h =

⌊
v(w)

2

⌋

.

Then, for all k ≥ 0,
∑

n
aw(gn+h)=k

L(2gn+ v(w)) = −1, (3)

where the sum is over n ≥ 1 if w = 0j and n ≥ 0 otherwise.

Proof.

Note that we claim that the sum is −1, independent of k. Since

L(2gn+ v(w)) =
−1

2(log 2)gn
+O

(
1

n2

)

,
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Lemma 1 ensures convergence of these series.

The proof is divided into three cases: (I) w ends in a 1; (II) w ends in a 0 but w 6= 0j ;

and (III) w = 0j .

Case I: w ends in a 1.

Let dw(k) be defined by

dw(k) =
∑

n≥0
aw(n)=k

L(2n+ 1).

By writing n = gr +m, with r ≥ 0 and 0 ≤ m ≤ g − 1, we see that

dw(k) =

g−1
∑

m=0

∑

r≥0
aw(gr+m)=k

L(2gr + 2m+ 1).

Similarly, if we let

ew(k) =
∑

n≥0
aw(2n+1)=k

L(2n+ 1),

then

ew(k) =

g−1
∑

m=0

∑

r≥0
aw(2gr+2m+1)=k

L(2gr + 2m+ 1).

Now we claim that

aw(2gn+ 2m+ 1)− aw(gn+m) =
{
1 if m = bv(w)/2c,
0 otherwise.

This is easy to see, since the binary expansion of 2gn + 2m + 1 is the same as that for
gn+m, except that there is an extra 1-bit on the end. Hence if

aw(2gn+ 2m+ 1) > aw(gn+m)

then the last |w| bits of 2g+2m+1 must coincide with the string w, and so m = bv(w)/2c,
since w ends in 1. Thus we see that all but one of the terms in the sums for dw(k) and
ew(k) are identical, and hence, on recalling h = bv(w)/2c,

dw(k)− ew(k) =
∑

r≥0
aw(gr+h)=k

L(2gr + v(w)) −
∑

r≥0
aw(gr+h)=k−1

L(2gr + v(w)). (4)

Now if we could show that dw(k) = ew(k) for k > 0, then it would follow from equation
(4) that the value of the sum
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∑

r≥0
aw(gr+h)=k

L(2gr + v(w))

is independent of k and hence equal to dw(0)− ew(0). In fact, we now show that

dw(k) = ew(k) + Ek

where

Ek =

{

−1 if k = 0,
0 if k ≥ 1.

For we have

∑

n≥1
aw(n)=k

L(n) =
∑

n≥1
aw(2n)=k

L(2n) +
∑

n≥0
aw(2n+1)=k

L(2n+ 1).

Hence

ew(k) =
∑

n≥0
aw(2n+1)=k

L(2n+ 1) =
∑

n≥1
aw(n)=k

(L(n)− L(2n))

= (−Ek) +
∑

n≥0
aw(n)=k

L(2n+ 1) = dw(k)− Ek.

This completes the proof of case I.

Case II: w ends in a 0, but w 6= 0j .

First, we define functions d′w and e′w similar to those defined above:

d′w(k) =
∑

n≥1
aw(n)=k

L(2n)

and

e′w(k) =
∑

n≥1
aw(2n)=k

L(2n).

Following the method used for Case I, we easily find

d′w(k)− e′w(k) =
∑

r≥0
aw(gn+h)=k

L(2gr + v(w)) −
∑

r≥0
aw(gn+h)=k−1

L(2gr + v(w)).
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As before, we shall obtain the relation between d′w(k) and e′w(k). We have

∑

n≥1
aw(n)=k

L(n) =
( ∑

n≥1
aw(2n)=k

L(2n)
)

+
( ∑

n≥1
aw(2n+1)=k

L(2n+ 1)
)

+ Ek.

Hence

e′w(k) =
∑

n≥1
aw(2n)=k

L(2n) = (−Ek) +
∑

n≥1
aw(n)=k

(L(n)− L(2n+ 1))

= (−Ek) +
∑

n≥1
aw(n)=k

L(2n) = d′w(k)− Ek.

This completes the proof of Case II.

Case III: w = 0j .

Left to the reader.

This completes the proof of Theorem 2.

IV. Some unusual power series.

We now modify Theorem 2 to obtain some unusual power series:

Theorem 3.

Let w be a string of 0’s and 1’s, and

g = 2|w|−1, h =

⌊
v(w)

2

⌋

,

and let X be a complex number with |X| < 1. Then

∑

n

Xaw(gn+h)L(2gn+ v(w)) = − 1

1−X
,

where the sum is over n ≥ 1 for w = 0j and n ≥ 0 otherwise.

Proof.

For |X| < 1, the series
∑

n≥0X
n is absolutely convergent, and the quantities

L(2gn+ v(w))
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are all negative; thus we have

− 1

1−X
=
∑

k≥0

Xk(−1)

=
∑

k≥0

Xk
∑

n
aw(gn+h)=k

L(2gn+ v(w))

=
∑

n

Xaw(gn+h)L(2gn+ v(w)),

where we have used Theorem 2.

This result, although appealing, is unsatisfactory in two ways. First, the exponent
of X is aw(gn + h) instead of aw(n). Second, in order to obtain the infinite products
mentioned in the introduction, we must show that Theorem 3 in fact holds for all |X| ≤ 1,
X 6= 1. The first of these problems is corrected in this section, while the question of
convergence on the unit circle is addressed in the next section.

We now show how to modify Theorem 2 so that the summation is over all n with
aw(n) = k. To do this, we need the notion of a suffix of a string. Let x and y be two
strings. Then we say x is a suffix of y if there exists a third string z such that y = zx.

Now we prove the following

Lemma 4.

Let t be an integer with binary expansion t = b1b2 · · · brbr+1 · · · bs.
(A) If b1b2 · · · br is not a suffix of w, then

∑

n
aw(2rn+v(b1···br))=k

L(2sn+ t) =
∑

n
aw(2r−1n+v(b1···br−1))=k

L(2sn+ t).

(B) If, however, b1b2 · · · br is a suffix of w, then
∑

n
aw(2rn+v(b1···br))=k

L(2sn+ t) =

∑

n

aw(2r−1n+v(b2···br))=k

L(2s−1n+ t1)−
∑

n

aw(2r−1n+v(b1b2···br−1))=k

L(2sn+ t2)

where t1 = v(b2b3 · · · brbr+1 · · · bs), t2 = v(b1b2 · · · brbr+1 · · · bs), and by b we mean the

complement of the bit b; i. e. 0 = 1; 1 = 0.
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Proof.

Part (A) of the lemma can be left to the reader. To prove part (B), we start with the
summation

∑

n
aw(2r−1n+v(b2···br))=k

L(2s−1n+ t1)

and break the sum into two parts, corresponding to n = 2m+ b1 and n = 2m+ b1, where
b1 is a single bit. We get

∑

n
aw(2r−1n+v(b2···br))=k

L(2s−1n+ t1) =

∑

m

aw(2rm+v(b1···br))=k

L(2sm+ t) +
∑

m

aw(2rm+v(b1b2···br))=k

L(2sm+ t2).

Now b1b2 · · · br is a suffix of w, so b1b2 · · · br cannot be a suffix of w. Thus we may

change the index of summation in the rightmost sum to aw(2
r−1m+ v(b1b2 · · · br−1)), and

the result follows.

Lemma 5.

There is a rational function bw(n) such that for all k ≥ 0 we have

∑

n
aw(n)=k

log2(bw(n)) = −1. (5)

(The summation is over n ≥ 1 for w = 0j and n ≥ 0 otherwise.) This function bw(n)
is effectively computable, and the degree dw of the numerator and denominator of bw(n)
satisfies

dw ≤ 2|w|−1.

Proof.

To prove the first statement, we start with Theorem 2 and successively apply Lemma
4. At each step, we convert a sum over aw(2

rn + x1) to either one or two sums over

aw(2
r−1n+x2). Thus, after at most |w|−1 stages (and a total of at most 2|w|−1 invocations

of Lemma 4), we will reduce the original sum (3) to a sum of sums of the form (5), which
can be combined in a single sum using the properties of the logarithm. The degree dw of
the numerator and denominator correspond to the number of invocations of Lemma 4 (B),

and hence dw ≤ 2|w|−1.
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Let us give an example. For w = 1010, Theorem 2 shows that

∑

n≥0
a1010(8n+5)=k

L(16n+ 10) = −1.

By successive applications of Lemma 4, we find

∑

n≥0
a1010(8n+5)=k

L(16n+ 10) =
∑

n≥0
a1010(n)=k

(

L(4n+ 2)−L(8n+ 6)−L(8n+ 2)+L(16n+ 10)
)

.

Putting this all together, we conclude that, for all k ≥ 0,

∑

n≥0
a1010(n)=k

log2

(

(4n+ 2)(8n+ 7)(8n+ 3)(16n+ 10)

(4n+ 3)(8n+ 6)(8n+ 2)(16n+ 11)

)

= −1.

Comment.

It can be shown that max|w|≤x dw = O(x10.1); from this it easily follows that the

algorithm to calculate bw(n) is actually a polynomial-time algorithm. For the details, see
[4].

V. Behaviour On the Unit Circle.

In this section, we examine the convergence of

∑

n

Xaw(n)L(2gn+ v(w)) (6)

on the unit circle. We will show that (6) converges uniformly on each radius of the unit
disc, with the exception of the radius lying on the positive reals.

It suffices to show uniform convergence for the series

∑

n≥1

Xaw(n)

n
.

For this, we follow the technique used previously in [3]. Write

Tw(N) = Tw(N,X) =
∑

0≤n<N

Xaw(n)

so that
∑

1≤n≤N

Xaw(n)

n
=

Tw(N + 1)

N
− Tw(1) +

∑

1≤n≤N−1

Tw(n+ 1)

n(n+ 1)
.
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Thus it suffices to show that, for each ray from the origin to a point (6= 1) on the unit
circle, there exists α < 1 such that

|Tw(N,X)| = O(Nα) (7)

uniformly in X on the ray.

We do this for w 6= 0j , leaving the case w = 0j to the reader. For w = 1, this easily
follows from the fact that

T1(2
m, X) = (X + 1)m.

Thus let us assume that |w| ≥ 2. We write A = 2|w|−1 and define A different sums,
P0(m) through PA−1(m), by

Pi(m) =
∑

0≤n<Am

Xaw(An+i), 0 ≤ i < A.

Clearly at least one of the sums Pi(m) coincides with Tw(A
m); if w = w1w2 · · ·wk, we may

take
i = v(wkwk · · ·wk

︸ ︷︷ ︸

k

).

Thus to bound Tw(A
m), it suffices to give an upper bound for

‖P (m)‖∞,

where the column vector P (m) is defined by

P (m) =






P0(m)
...

PA−1(m)




 ,

and the norm ‖v‖∞ is defined by

‖v‖∞ =
∑

1≤i≤k

|vi|.

First, we observe that the vector P (m) can be written as a linear transformation of
the vector P (m− 1). Recall that a′w(z) counts the number of occurrences of the string w
in the string z. Then we have the following

Lemma 6.

Let Mw(X) be the A×A matrix with

Mw(X) = [Mij ] =
[

Xa′w(yjyi)
]

,

where yj and yi are strings such that v(yj) = j, v(yi) = i, |yj | = |yi| = |w| − 1. Then

P (m) = Mw(X)P (m− 1).
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Proof.

We have

Pi(m) =
∑

0≤n<Am

Xaw(An+i)

=
∑

0≤j<A

∑

0≤k<Am−1

Xaw(A(Ak+j)+i)

=
∑

0≤j<A

∑

0≤k<Am−1

Xaw(Ak+j)+a′w(yjyi)

=
∑

0≤j<A

Xa′w(yjyi)Pj(m− 1).

Thus to bound ‖P (m)‖∞, it suffices to determine a good bound for the matrix norm
‖Mw(X)‖∞, where

‖M‖∞ = max
1≤i≤n

∑

1≤j≤n

|Mij |.

Lemma 7.

(A) The matrix Mw(X) contains at least one row of all 1’s.

(B) At least one row of Mw(X) is not identically 1. In every such row, there is at
least one element 1 and at least one element X.

Proof.

(A) Write w = w1w2 · · ·wk. Let

i′ = v(wkwk · · ·wk
︸ ︷︷ ︸

k−1

).

Then it is easily verified that w is not a substring of any string of the form yjyi′ , and the
result follows from the description of Lemma 6.

(B) To see that at least one row of Mw(X) is not identically 1, let

i′′ = v(w2w3 · · ·wk).

Then in row i′′, any column j whose least significant bit equals w1 will contain a non-1
entry.

An argument similar to (A), but for columns, shows that every row contains at least
one element 1.

Finally, let i be the index of a row of M = Mw(X) that is not identically 1. Then
w must be a substring of some string of the form yjyi. Choose j so that this substring

12



appears as far to the right as possible; then yjyi = xwz for some strings x and z. Then
either |x| = 0, in which case Mij = X, or |x| = p > 0. In this latter case, let

x′ = w1w1 · · ·w1
︸ ︷︷ ︸

p

.

Then w matches the string x′wz in exactly one place, and this string corresponds to yj′yi
for some value of j′; i. e. an element X in the i’th row.

Now let us recall the basic facts about matrix norms [5]. Let M be a matrix. Let
σ(M) be the set of all eigenvalues of M . The spectral radius of M , rσ(M), is defined as

rσ(M) = max
λ∈σ(M)

|λ|.

Define the matrix norm
‖M‖2 =

√

rσ(MM∗),

where M∗ denotes the conjugate transpose.

Lemma 8.

Let |X| ≤ 1, X 6= 1. Then ‖Mw(X)‖2 < A.

Proof.

Let |X| ≤ 1, X 6= 1. Write M = Mw(X) and M ′ = MM∗. Note that each element
Mij of M satisfies |Mij | ≤ 1. Fix a row i of the matrix M . If it is identically 1, then by

Lemma 7, there exists a column j of M ∗ which contains an element 1 and an element X,
the conjugate of X. Hence

|M ′
ij | ≤ A− 2 + |X + 1| < A.

If row i is not identically 1, then by Lemma 7, it must contain an element 1 and an
element X. Let j′ be a column of M∗ which is identically 1. Then again |M ′

ij′ | < A.

Thus we see that each row of M ′ contains an element M ′
ij with |M ′

ij | < A. Thus for

each i, 0 ≤ i < A we have
∑

0≤j<A

|M ′
ij | < A2.

Thus ‖M ′‖∞ < A2. By a well-known theorem [5, Theorem 7.8],

rσ(M
′) ≤ ‖M ′‖∞,

and the result follows.
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Lemma 9.

There exists α < 1 such that

|Tw(N,X)| = O(Nα)

uniformly in X on any ray from the origin to a point (6= 1) on the unit circle.

Proof.

Write c(X) = ‖Mw(X)‖2. Lemma 8 shows that c(X) < A. Fix an angle θ, 0 < θ < 2π,

and consider c(X) as a function ofX = reiθ, 0 ≤ r ≤ 1. Since c(X) is a continuous function
of r, and the interval 0 ≤ r ≤ 1 is compact, c(X) must attain its maximum on this interval,
which is necessarily a positive constant c < A.

Thus there are constants c1, c2 such that

|Tw(Am, X)| ≤ ‖P (m)‖∞ ≤ c1‖P (m)‖2
= c1‖Mw(X)mP (0)‖2 = c1‖Mw(X)‖2m‖P (0)‖2
≤ c2c

m,

uniformly in X on the ray.

Now writing α = log c
logA < 1, we have proved

|Tw(N,X)| = O(Nα)

uniformly in X on the ray, for N = Am. We now sketch how to extend this bound to all
integers N , as was done previously in [2].

To do this, we observe that Tw(N,X) can be written as a sum over at most A logAN
terms of the form

Qd,i(m) =
∑

d·Am≤n<(d+1)·Am

Xaw(An+i).

It is easily verified that the vector

Qd(m) =






Qd,0(m)
...

Qd,A−1(m)






can be written as a linear transformation of the vector Qd(m− 1), using the same matrix
that appeared in Lemma 6. Repeating the argument in Lemmas 6-8, we see that |Qd,i(m)|
is bounded in the same way as |Pi(m)|. Thus

|Tw(N,X)| = O((logN)Nα) = O(Nα′)

where α′ < 1.
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We have shown

Theorem 10.

Theorem 3 also holds for all X on the unit circle except X = 1.

There is a rational function bw(n) (which is effectively computable using Lemmas 4
and 5) such that, for all X 6= 1 with |X| ≤ 1, we have

∑

n

log2(bw(n))X
aw(n) = − 1

1−X
.

(Here the summation is over n ≥ 1 for w = 0j and n ≥ 0 otherwise.)

Comment.

After the original version of this paper was completed, we learned of the results of
Boyd, Cook, and Morton, in which they study the partial sums

∑

0≤n≤N

(−1)aw(n)

for arbitrary w ∈ (0 + 1)
∗
. This corresponds to the case X = −1 in equation (7). See [6].

VI. Some consequences.

Let us put w = 0, X = −1 in Theorem 10 and exponentiate. We get a nice companion
formula to (1); namely,

∏

n≥1

( 2n

2n+ 1

)(−1)a0(n)

=

√
2

2
.

Similarly, using the example from section IV, we find

∏

n≥0

(

(4n+ 2)(8n+ 7)(8n+ 3)(16n+ 10)

(4n+ 3)(8n+ 6)(8n+ 2)(16n+ 11)

)(−1)a1010(n)

=

√
2

2
.
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